CS583 Lecture 03

Jana Kosecka

Heapsort, Quicksort

some materials here are based on E. Demaine , D. Luebke slides

Previously

* Solving recurrences

e Substitution method

¢ Jteration methods CASE 1: f(n) = O(n'°2b% =), constant & > 0
» Recursion tree = T(n) = ©(ne) .

s CASE 2: f(n) = ©(n'°2% 1g*n), constant k& > 0
* Masters’s theorem = T(n) = ©(nlo%s 1gh*in)

CASE 3: f(n) = Q(n'e* " &), constant & > 0,
and regularity condition

= I(n) =0(f(n)) .

9/13/11



Loop Invariants

1: for j — 2 ton do
Temp «— A[j]
i j—1
while ¢ > 0 and A[¢] > Temp do
A[i + 1] — A[l]
te—1—1
end while
8:  Ali+ 1] « Temp
* Insertion Sort 9: end for

* At any point we are looking at element j

* There is an invariant that is being maintained at each
iteration of the loop

* Loop invariant: At the beginning of each iteration,
elements in A[1, ... j-1] are sorted

* At each iteration you add one element and increase the
length of sorted elements

Loop Invariants

* Useful for showing correctness of programs

e Step 1: Show that the loop invariant is true at
initialization

* Step 2: Maintenance: if it is true before iteration
of the loop, it is true after the iteration of the loop

* Step 3: Termination: When the loop terminates,
the invariant gives useful property showing that
the algorithm is correct

9/13/11



Sorting Continued

* So far we’ve talked about two algorithms to
sort an array of numbers

= What is the advantage of merge sort?
= What is the advantage of insertion sort?
» Next on the agenda: Heapsort

= Combines advantages of both previous
algorithms

Heaps

* A heap can be seen as a complete binary
tree:

What makes a binary tree complete?

Is the example above complete?

9/13/11



Heaps

* A heap can be seen as a complete binary tree:

The book calls them “nearly complete” binary trees;
can think of unfilled slots as null pointers

Heaps

* In practice, heaps are usually implemented
as arrays:

A=[16[14{10[8[7[9[3[2[4]]

9/13/11



Heaps

* To represent a complete binary tree as an array:

= The root node is A[1]

= Node i is A[i]

= The parent of node i is A[i/2] (note: integer
divide)
The left child of node i is A[2i]
The right child of node i is A[2i + 1]

l6{14{10[8[7[9[3[2[4]]

Referencing Heap Elements

* So...

Parent (i) { return |i/2]; }
Left (i) { return 2*i; }
right(i) { return 2*i + 1; }

* An aside: How would you implement this
most efficiently?

9/13/11



The Heap Property
» Heaps also satisty the heap property:
AlParent(i)] = Ali] for all nodes i > 1

= In other words, the value of a node is at most
the value of its parent

= Where is the largest element in a heap
stored?

e Definitions:

= The height of a node in the tree = the number
of edges on the longest downward path to a
leaf

= The height of a tree = the height of its root

Heap Height

» What is the height of an n-element heap?
Why?

 This is nice: basic heap operations take at
most time proportional to the height of the
heap

9/13/11



Heap Height

What is the height of an n-element heap?
Why? ©(lgn)

This is nice: basic heap operations take at
most time proportional to the height of the
heap O(lgn)

Max- heap for sorting

Min-heap for priority cues

Heap Height

Heapsort procedures
Heapify
Build-heap

Heapsort

9/13/11



Heap Operations: Heapify()

* Heapify () : maintain the heap property

= Given: a node i in the heap with children / and r

= Given: two subtrees rooted at / and r, assumed to
be heaps

= Problem: The subtree rooted at i may violate the
heap property (How?)

= Action: let the value of the parent node “float
down” so subtree at i satisfies the heap property
» What do you suppose will be the basic operation

between i, |, and r?

Example

9/13/11



Heap Operations: Heapify()

Heapify (A, 1)
{
1l = Left(i); r = Right(i);
if (1 <= heap_size(A) && A[l] > A[i])
largest = 1;
else
largest = i;
if (r <= heap_size(A) && A[r] > A[largest])
largest = r;
if (largest !'= i)
Swap (A, i, largest);
Heapify (A, largest);

Heapify(A,2) Example

A=[16[4]10[14[7[9[3[2[8]]

9/13/11



Heapify(A,2) Example

Heapify(A,2) Example

A=|16[14]10(4]|719]3]2][8]1

9/13/11



Heapify(A,2) Example

A=|16[14]10(4|7]9]3]|2]8

Heapify(A . 4) Example

9/13/11



Heapify(A . 4) Example

A=|16[14]10/8|719]3]2[4]1

Heapify(A . 4) Example

A=|16[14]10/8|719]3]2[4]1

9/13/11



Heapify(A.,9) Example

A=|16[14]10/8|719]3]2[4]1

Analyzing Heapify(): Informal

* Aside from the recursive call, what is the
running time of Heapify () ?

* How many times can Heapify ()
recursively call itself?

* What is the worst-case running time of
Heapify () on a heap of size n?

9/13/11



Analyzing Heapify(): Formal

 Fixing up relationships between i, [, and r
takes O(1) time

* Ifthe heap at i has n elements, how many

elements can the subtrees at | or r have?

= Draw it

Answer: 2n/3 (worst case: bottom row 1/2

full)

So time taken by Heapify() is given by

T(n) = T(2n/3) + O(1)

Analyzing Heapify(): Formal

* So we have
T(n) =T(2n/3) + ©(1)
* By case 2 of the Master Theorem,
T(n) = O(lg n)
e Thus, Heapify() takes logarithmic time

9/13/11



9/13/11

Heap Operations: BuildHeap()

* We can build a heap in a bottom-up manner by
running Heapify() on successive subarrays
= Fact: for array of length n, all elements in range
A[|n/2] + 1 .. n] are heaps (Why?)
= So:
» Walk backwards through the array from n/2
to 1, calling Heapify() on each node.
» Order of processing guarantees that the
children of node i are heaps when i is
processed

BuildHeap()

// given an unsorted array A, make A a
heap
BuildHeap (3)
{
heap size(A) = length(a);
for (i = |length[A]/2| downto 1)
Heapify (A, 1i);




BuildHeap() Example

* Work through example
A={4,1,3,2,16,9,10,14,8,7}

9/13/11



Analyzing BuildHeap()

Each call to Heapify() takes O(lg n) time

There are O(n) such calls (specifically, | n/

2))

Thus the running time is O(n 1g n)

= Is this a correct asymptotic upper bound?

= Is this an asymptotically tight bound?

A tighter bound is O(n)

= How can this be? Is there a flaw in the
above reasoning?

Analyzing BuildHeap(): Tight

* ToHeapify () a subtree takes O(h) time
where /4 is the height of the subtree
= h =0(lg m), m = # nodes in subtree
= The height of most subtrees is small

* Fact: an n-element heap has at most [n/2"
11 nodes of height

* CLR 7.3 uses this fact to prove that
BuildHeap () takes O(n) time

9/13/11



9/13/11

Heapsort

* Given BuildHeap (), an in-place sorting

algorithm 1is easily constructed:

= Maximum element is at A[1]

= Discard by swapping with element at A[n]
» Decrement heap_size[A]
» A[n] now contains correct value

= Restore heap property at A[1] by calling
Heapify ()

= Repeat, always swapping A[1] for A[heap_size
(A)]

Heapsort

Heapsort (3)
{
BuildHeap (3) ;
for (i = length(A) downto 2)
{
Swap (A[1], A[i]);
heap size(A) -= 1;
Heapify (A, 1);




Analyzing Heapsort

* The call to BuildHeap () takes O(n)
time

* Each of the n - 1 calls to Heapify ()
takes O(lg n) time

e Thus the total time taken by HeapSort ()
=0mn)+(n-1)0dgn)
=0(n) + O(nlg n)
= O(nlgn)

Priority Queues

* Heapsort is a nice algorithm, but in practice
Quicksort (coming up) usually wins
» But the heap data structure is incredibly useful
for implementing priority queues
= A data structure for maintaining a set S of
elements, each with an associated value or
key
= Supports the operations Insert (),
Maximum (), and ExtractMax ()
= What might a priority queue be useful for?

9/13/11



Priority Queue Operations

* Insert(S, x) inserts the element x
into set S

* Maximum (S) returns the element of S
with the maximum key

« ExtractMax (S) removes and returns
the element of S with the maximum key

* How could we implement these operations
using a heap?

Quicksort

* Sorts in place
» Sorts O(n Ig n) in the average case

 Sorts O(n?) in the worst case

9/13/11

20



Review: Quicksort

* Sorts in place
* Sorts O(n Ig n) in the average case
 Sorts O(n?) in the worst case
= But in practice, it’s quick
= And the worst case doesn’t happen often
(but more on this later...)

Quicksort

* Another divide-and-conquer algorithm

= The array A[p..r] is partitioned into two
non-empty subarrays A[p..q] and A[q
+1..r]
» Invariant: All elements in A[p..q] are

less than all elements in A[g+1..r]

= The subarrays are recursively sorted by
calls to quicksort

= Unlike merge sort, no combining step:
two subarrays form an already-sorted
array

9/13/11

21



Quicksort Code

Quicksort (A, p, r)
{
if (p < r)

{
q = Partition(A, p, r);

Quicksort (A, p, 9q);
Quicksort (A, gq+l, r);

Partition

* Clearly, all the action takes place in the
partition () function
= Rearranges the subarray in place
= End result:
» Two subarrays
» All values in first subarray < all values
in second
= Returns the index of the “pivot” element
separating the two subarrays
* How do you suppose we implement this?

9/13/11

22



Partition procedure

PARTITION(4, p, q) > A[p . . q]
x <« A[p] > pivot = A p|
i< p
forj« p+ltog
doif A /] <x
then i<« i+1

exchange A[i]| <> Al J]
exchange A| p| <> A[i]
return
Invariant: | x <x > X ? I
p I J q

Partition Example
PARTITION(4, p, ) > A[p . . q]
x<Alp]  >pivot=Ap] A = {6,10,13,5,8,3,2,11}
l<_p 14 14 14 14 14 14 14
forj< p+1tog
doif A[j] <x
then i<« i+1
exchange A[i] <> A[ /]
exchange A[ p] <> A[i]
return ;

9/13/11

23



Quicksort Code
Quicksort (A, p, r)
{
if (p < r)
{
q = Partition(A, p, r);
Quicksort (A, p, q):;
Quicksort (A, g+l, r);
}
}

Analyzing Quicksort

What will be the worst case for the
algorithm?

= Partition is always unbalanced
What will be the best case for the
algorithm?

= Partition is perfectly balanced
Which is more likely?

= The latter, by far, except...

Will any particular input elicit the worst
case?

= Yes: Already-sorted input

9/13/11

24



Analyzing Quicksort

* In the worst case, input sorted or reverse
sorted. One side of partion has no elemets

T(1) =0(1)
T(n) =T(n- 1) + O(n)
* Works out to (via aritmetic series)

T(n) = O(n?)

Worst case recursion tree
cn
S
1(0) c(n-1)

7 O

70) c(n-2)
v
1(0)

0(1)

9/13/11

25



Worst case recursion tree

cn n
16 cnl) ®(Z_k):®("2)
P k=1 )

700) c(n-2)
7O T(n)=0© O(n?
~
O(1)
Analyzing Quicksort

* In the best case:
T(n) =2T(n/2) + O(n)
 What does this work out to?

T(n) =0O(nlgn)

9/13/11

26



Analyzing Quicksort

* What is we split
T(n) = T(9n/10) + T(n/10) + cn

Improving Quicksort

* The real liability of quicksort is that it runs
in O(n?) on already-sorted input
* Book discusses two solutions:
= Randomize the input array, OR
= Pick a random pivot element
* How will these solve the problem?
= By insuring that no particular input can
be chosen to make quicksort run in O(n?)
time

9/13/11

27



Analyzing Quicksort: Average Case

* Assuming random input, average-case
running time is much closer to O(n 1g n)
than O(n?)

 First, a more intuitive explanation/example:
= Suppose that partition() always produces

a 9-to-1 split. This looks quite

unbalanced! Use n instead of O(n)

. for convenience
= The recurrence is thus: (

T(n) = T(O9n/10) + T(n/10) + n
= How deep will the recursion go? (draw
it)

)

Using Recurrence tree

/Cn\_ _______________ cn
1 9
10N oCN Nmmmmmm oo cn
/ / \10g10/9”
len 2 cn cn 8lepm \-------- cn
100 100 100 100

/ /N /N

@(/1) ‘ O(n) leaves ] \

9/13/11

28



Using Recurrence tree

loggn ~_— n T cn
ncn SR Nmmmmmeo oo cn

L AR log;gen
100 1 180 cn 130 cn 1%10 Cn -Xc-"""""- cn

o) | Ow)leaves | "'\
O(1)

cnlog,,n < T(n) < cnlog,yyn + O(n)

Analyzing Quicksort: Average Case

* Intuitively, a real-life run of quicksort will
produce a mix of “bad” and “good” splits
= Randomly distributed among the
recursion tree

= Pretend for intuition that they alternate
between best-case (n/2 : n/2) and worst-
case (n-1:1)

= What happens if we bad-split root node,
then good-split the resulting size (n-1)
node?

9/13/11

29



Analyzing Quicksort: Average Case

* Intuitively, a real-life run of quicksort will produce a
mix of “bad” and “good” splits
= Randomly distributed among the recursion tree
= Pretend for intuition that they alternate between
best-case (n/2 : n/2) and worst-case (n-1: 1)
» What happens if we bad-split root node, then good-
split the resulting size (n-1) node?
= We end up with three subarrays, size 1, (n-1)/2,
(n-1)/2
T(n)=2(T(n/2-1)+0O(n/2))+BO(n)=0(nlgn)

= No worse than if we had good-split the root node!

Analyzing Quicksort: Average Case

* Intuitively, the O(n) cost of a bad split
(or 2 or 3 bad splits) can be absorbed
into the O(n) cost of each good split

e Thus running time of alternating bad and good
splits is still O(n Ig n), with slightly higher
constants

* How can we be more rigorous?

9/13/11

30



Analyzing Quicksort: Average Case

Idean partition around random element
Running time is independent of inout order
No assumptions made about input distribution
No specific case gives worst case behavior

Worst case 1s determined only by the output of
random number generator

Idea: let T(n) = random variable for running
time of quicksort

Analyzing Quicksort: Average Case

* For simplicity, assume:

= All inputs distinct (no repeats)
= Slightly different partition ()

procedure
» partition around a random element,
which is not included in subarrays
» all splits (O:n-1, 1:n-2, 2:n-3, ...,
n-1:0) equally likely
What is the probability of a particular split

happening?

Answer: 1/n,

9/13/11

31



Analysis

7(0) + T(n—1) + O(n) if0:n—1 split,

T(n) = (1) "' T(n-2) +O(n) if 1:n-2 split,

T(n—l.) + 7(0) + ©(n) if n—1: 0 split,
n—1
= ZXk(T(k)+ T(n—k—1)+0(n))

{ if PARTITION generates a & : n—/4—1 split,
X, =
0 otherwise.

E[X,]=Pr{X,=1} =1/n

Analysis
E[T(n)]=E kZOXk(T(k) +T(n-k-1)+ @(n))
= Z;E[Xk(T(k)+ T(n—k—1)+©(n))]
kgﬁ{xk]- EHT(k) +T(n—k—1)+0(n)]
nf

=1 nz_‘,E{T(/‘f)]+ 1 nZ_:lE{T(n— k-1)]+ 1 ,il@(n)
k=0 k=0 k=0

Linearity of expectation; £[.X,]| = 1/n.

9/13/11

32



Analysis

E[T(n)]=E 'ka(T(k) +T(n-k-1)+ @(n))}
k=0

n-1

> H X (T(k)+ T(n—k-1)+0O(n))]
k=0
n-1

=Y E X, ] HT(k)+T(n—k-1)+O(n)]

=0

n-1 n-1 n-1
S HT®)]+ LY Hr(n—k-1)]+ 1 T 0m)
k=0 -0 o

ES

=

Linearity of expectation; £[.X,]| = 1/n.
n-1
=23 Hr(®)]+0(n)
=1

Analysis
n—1
E[T(n)]= gz HT(k)]+©(n)
k=2

Prove: E[T(n)] < anlgn for constant a > 0.
* Choose a large enough so that anlgn

dominates £[7(n)] for sufficiently small » > 2.

n—1

Use fact: ) klgk< yn?lgn—in? (exercise).
k=2

Use substitution method

n—1
E[T(n)]< 2 Z aklgk +0®(n)
M=

9/13/11

33



Analysis
n—1
HT(n)]< 2 aklgk+©(n)
M=2

Sza(lnz 1gn—1n2W+®(n)
n\2 8 J

= anlgn—(an—(@(n)w
4 J
<anlgn

If ais large enough such that
an/4 dominates ®(n)

Quicksort summary

Great general purpose sorting algorithm
Typically twice as fast as merge sort

Can benefit from code tuning

9/13/11

34



Analyzing Quicksort: Average Case

So partition generates splits
(O:n-1, 1:n-2, 2:n-3, ..., n-2:1, n-1:0)
each with probability 1/n

If T(n) is the expected running time,
n-1
T(n)= S )+ 7-1-k)} 0)
n 1=

What is each term under the summation for?

What is the ©(n) term for?

Alternative Analysis

Without formal expectations E[.]

9/13/11

35



Analyzing Quicksort: Average Case

So... -
T(n)- %Z}[T(kﬁ T(r-1-k)}+ 0(n)

n-1 . .
=EZT(k)+G)(n) Write 1t on
n =4 the board

= Note: this is just like the book’s
recurrence (p166), except that the
summation starts with k=0

= We’ll take care of that in a second

Analyzing Quicksort: Average Case

* We can solve this recurrence using the
dreaded substitution method
= Guess the answer
= Assume that the inductive hypothesis
holds
= Substitute it in for some value < n
= Prove that it follows for n

9/13/11

36



Analyzing Quicksort: Average Case

* We can solve this recurrence using the
substitution method

= Guess the answer
» What’s the answer?

= Assume that the inductive hypothesis
holds

= Substitute it in for some value <n
= Prove that it follows for n

Analyzing Quicksort: Average Case

* We can solve this recurrence using the
dreaded substitution method

= Guess the answer
» T(n) = O(nlgn)

= Assume that the inductive hypothesis
holds

= Substitute it in for some value < n

= Prove that it follows for n

9/13/11

37



Analyzing Quicksort: Average Case

* We can solve this recurrence using the

dreaded substitution method

= Guess the answer
» T(n)=0(nlgn)

= Assume that the inductive hypothesis
holds
» T(n)<anlgn+ b for some constants

aand b
= Substitute it in for some value < n
= Prove that it follows for n

Analyzing Quicksort: Average Case

* We can solve this recurrence using the
dreaded substitution method
= Guess the answer
» T(n)=0(nlgn)
= Assume that the inductive hypothesis
holds
» T(n)<anlgn+ b for some constants
aand b
= Substitute it in for some value < n
» What value?
= Prove that it follows for n

9/13/11

38



Analyzing Quicksort: Average Case

n-1
T (n): % kE T(k) + @(n) The recslj)rlrf:ge to be
=0
n-1 o '
< % 20 (aklgk+b)+0O(n) T

case

n-1 B
< z[b_l_ Z(aklgk+b) +®(n) Expand out the k=0
n =

AN 2b 2b/n is just a constant,
) ;Z(ﬂklgk+b)+7+®(n) so fold it into ©(n)

recurrence as the book

2 Note: leaving the same
= — klgk+b)+ O
, > (aklgk+b)+ ()

Analyzing Quicksort: Average Case

2l The recurrence to be
r0)-2S agkenio)
=
n-1 n-1 . .
-2 Zaklglﬁ% So+0()  Dhruene
~ =

n-1 2 .
_2a Z Klgk+22 (n-1)+ O ) Fratuate the summation
n n (n-1)

< 2—a§klgk+ 2b + @(n) Since n-l<r;,b2b(n-1)/n<
n:ie

This summation gets its own set of slides later

9/13/11

39



Analyzing Quicksort: Average Case

The recurrence to be
solved

n-1
T(n)< 2—a2klgk+2b+®(n)
n 4

< z—a(%nz lgn —%nz) +2b+ @(n) We’ll prove this later
n

= an lg n— ﬁn + 2b + @(n) Distribute the (23./11)
4 term

= an lg n+b+ @(n )+ b - a n Remember, our goal is
toget T(n)<anlgn+b

<anlgn+b Pick a large enough that
an/4 dominates ©(n)+b

Analyzing Quicksort: Average Case

* SoT(n)<anlgn+ b for certain a and b
= Thus the induction holds
= Thus T(n) = O(n Ig n)

= Thus quicksort runs in O(n lg n) time on
average

* Oh yeah, the summation...

9/13/11

40



Tightly Bounding
The Key Summation

}S klgk = Wﬁ_}f Igk + « klgk Split the summation for
=1 =

a tighter bound
k=|n/2]
[723-1 n-l The Ig k in the second
= klgk + klgn term is bounded by Ig n
=] k= n/2'|
[72]] n-l Move the Ig n outside
= klgk+lgn k the summation
=1 k=|n/2]
Tightly Bounding
The Key Summation
n-l [72]! Lol The summation bound
klgk < klgk+lgn ) k <o far
=1 =1 k= n/2'|
[723-1 nl The Ig k in the first term
< Sklg(/2)+1gn Sk isbounded by lg n2
=1 k=[n/2]
[7[2]] n-l lgn/2=1gn-1
= 2k(lgn—1)+lgn k
=1 k=[n/2]

|'n/2 -1 n-1 ] )
= (lg n-= 1) g k+lgn k Move (Ig n - 1) outside
=

the summation
k= n/2'|

9/13/11

41



Tightly Bounding
The Key Summation

& = Th tion bound
Shigks Gen-1) Skeign So T
=1 k= n/2
[n/2]-1 [/
lgn 2 2k+]gn k Distribute the (Ign - 1)
n/2]

The summations overlap

[n/2]-1
=1g nz k- 2 in range; combine them

—-1 |'n/2 -1
g n(@) - 2 k The Gaussian series
=

Tightly Bounding
The Key Summation

( (I’l 1Xl’l ) ) lgn - Wﬁ_}f The summation bound
=

so far
1 nf/2-1 Rearrange first term,
— [n(n — 1)]1g n-— Z k place upper bound on
2 =1 second
1 |
E[n(n - 1)]1gn —E(g)(g - 1) Gaussian series
1 ( )_ 1 , n o
—\Wwlgn-nlgn no+— Multiply it
2 8 4 all out

9/13/11

42



Tightly Bounding
The Key Summation

Uil 1 1 n
klek<—\Wllen—-nlen —n*+—
; g 2( gn-nlg }8 .

< ln2 lgn—ln2 when n = 2
2 8

Done!!!

9/13/11

43



