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CS583 Lecture 03	


Jana Kosecka	



Heapsort, Quicksort	



some materials here are based on E. Demaine , D. Luebke slides	



Previously	



•  Solving recurrences	


•  Substitution method	


•  Iteration methods	


•  Recursion tree	


•  Masters’s theorem	
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•  Insertion Sort	


•  At any point we are looking at element j	


•  There is an invariant that is being maintained at each 

iteration of the loop	


•  Loop invariant: At the beginning of each iteration, 

elements in A[1, … j-1] are sorted	


•  At each iteration you add one element and increase the 

length of sorted elements	



Loop Invariants	



• Useful for showing correctness of programs	


•  Step 1: Show that the loop invariant is true at 

initialization	


•  Step 2: Maintenance: if it is true before iteration 

of the loop, it is true after the iteration of the loop	


•  Step 3: Termination: When the loop terminates, 

the invariant gives useful property showing that 
the algorithm is correct	



Loop Invariants	
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Sorting Continued	



•  So far we’ve talked about two algorithms to 
sort an array of numbers	



- What is the advantage of merge sort?	



- What is the advantage of insertion sort?	



•  Next on the agenda: Heapsort	



-  Combines advantages of both previous 
algorithms	



•  A heap can be seen as a complete binary 
tree:	



What makes a binary tree complete?  	



Is the example above complete?	



Heaps	
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•  A heap can be seen as a complete binary tree:	



The book calls them “nearly complete” binary trees; 
can think of unfilled slots as null pointers	



Heaps	
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Heaps	



•  In practice, heaps are usually implemented 
as arrays:	
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Heaps	


•  To represent a complete binary tree as an array: 	


-  The root node is A[1]	


-  Node i is A[i]	


-  The parent of node i is A[i/2] (note: integer 

divide)	


-  The left child of node i is A[2i]	


-  The right child of node i is A[2i + 1]	
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Referencing Heap Elements	



•  So…	



Parent(i) { return ⎣i/2⎦; } 

Left(i) { return 2*i; } 

right(i) { return 2*i + 1; } 

•  An aside: How would you implement this ���
most efficiently?	
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The Heap Property	


•  Heaps also satisfy the heap property:	


	

A[Parent(i)] ≥ A[i]	

 	

for all nodes i > 1	


-  In other words, the value of a node is at most 

the value of its parent	


-  Where is the largest element in a heap 

stored?	


•  Definitions:	


-  The height of a node in the tree = the number 

of edges on the longest downward path to a 
leaf 	



-  The height of a tree = the height of its root	



Heap Height	



•  What is the height of an n-element heap? 
Why?	



•  This is nice: basic heap operations take at 
most time proportional to the height of the 
heap	
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Heap Height	



•  What is the height of an n-element heap? 
Why?	



•  This is nice: basic heap operations take at 
most time proportional to the height of the 
heap	



•  Max- heap for sorting 	



•  Min-heap for priority cues	



€ 

Θ(lgn)

€ 

O(lgn)

Heap Height	



•  Heapsort procedures	



•  Heapify 
•  Build-heap 
•  Heapsort 
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Heap Operations: Heapify()	


•  Heapify(): maintain the heap property	


-  Given: a node i in the heap with children l and r	


-  Given: two subtrees rooted at l and r, assumed to 

be heaps	


-  Problem: The subtree rooted at i may violate the 

heap property (How?)	


-  Action: let the value of the parent node “float 

down” so subtree at i satisfies the heap property 	


‣  What do you suppose will be the basic operation 

between i, l, and r?	



Example	
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Heap Operations: Heapify()	


Heapify(A, i) 
{  
 l = Left(i); r = Right(i); 
 if (l <= heap_size(A) && A[l] > A[i])  
  largest = l; 
 else 
  largest = i; 
 if (r <= heap_size(A) && A[r] > A[largest]) 
  largest = r; 
 if (largest != i)  
  Swap(A, i, largest); 
  Heapify(A, largest); 

}   

Heapify(A,2) Example	
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Heapify(A,2) Example	
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Heapify(A,2) Example	
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Heapify(A,2) Example	
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Heapify(A,4) Example	
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Heapify(A,4) Example	
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Heapify(A,4) Example	
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Heapify(A,9) Example	
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Analyzing Heapify(): Informal	



•  Aside from the recursive call, what is the 
running time of Heapify()? 

•  How many times can Heapify() 
recursively call itself?	



•  What is the worst-case running time of 
Heapify() on a heap of size n?	
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Analyzing Heapify(): Formal	



•  Fixing up relationships between i, l, and r 
takes Θ(1) time	



•  If the heap at i has n elements, how many 
elements can the subtrees at l or r have? 	


-  Draw it	



•  Answer: 2n/3 (worst case: bottom row 1/2 
full)	



•  So time taken by Heapify() is given by	


	

T(n) ≤ T(2n/3) + Θ(1) 	



Analyzing Heapify(): Formal	



•  So we have 	



	

 	

T(n) ≤ T(2n/3) + Θ(1) 	



•  By case 2 of the Master Theorem,	



	

 	

T(n) = O(lg n)	



•  Thus, Heapify() takes logarithmic time	
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Heap Operations: BuildHeap()	


•  We can build a heap in a bottom-up manner by 

running Heapify() on successive subarrays	


-  Fact: for array of length n, all elements in range ���

A[⎣n/2⎦ + 1 .. n] are heaps (Why?)	


-  So: 	


‣  Walk backwards through the array from n/2 

to 1, calling Heapify() on each node.	


‣  Order of processing guarantees that the 

children of node i are heaps when i is 
processed	



BuildHeap()	



// given an unsorted array A, make A a 
heap 

BuildHeap(A) 
{ 
 heap_size(A) = length(A); 
 for (i = ⎣length[A]/2⎦  downto 1) 
  Heapify(A, i); 

} 
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BuildHeap() Example	



•  Work through example���
A = {4, 1, 3, 2, 16, 9, 10, 14, 8, 7}	
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Analyzing BuildHeap()	



•  Each call to Heapify() takes O(lg n) time	


•  There are O(n) such calls (specifically, ⎣n/

2⎦)	


•  Thus the running time is O(n lg n)	


-  Is this a correct asymptotic upper bound?	


-  Is this an asymptotically tight bound?	



•  A tighter bound is O(n) 	


-  How can this be?  Is there a flaw in the 

above reasoning?	



Analyzing BuildHeap(): Tight	



•  To Heapify() a subtree takes O(h) time 
where h is the height of the subtree	


-  h = O(lg m), m = # nodes in subtree	


-  The height of most subtrees is small	



•  Fact: an n-element heap has at most ⎡n/2h

+1⎤ nodes of height h	


•  CLR 7.3 uses this fact to prove that 
BuildHeap() takes O(n) time 	
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Heapsort	



•  Given BuildHeap(),  an in-place sorting 
algorithm is easily constructed:	


- Maximum element is at A[1]	


-  Discard by swapping with element at A[n]	


‣  Decrement heap_size[A]	


‣  A[n] now contains correct value	



-  Restore heap property at A[1] by calling 
Heapify() 

-  Repeat, always swapping A[1] for A[heap_size
(A)]	



Heapsort	



Heapsort(A) 
{ 
  BuildHeap(A); 
  for (i = length(A) downto 2) 
  { 
   Swap(A[1], A[i]); 
   heap_size(A) -= 1; 
   Heapify(A, 1); 
  } 

} 
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Analyzing Heapsort	



•  The call to BuildHeap() takes O(n) 
time 	



•  Each of the n - 1 calls to Heapify() 
takes O(lg n) time	



•  Thus the total time taken by HeapSort() ���
= O(n) + (n - 1) O(lg n)���
= O(n) + O(n lg n)���
= O(n lg n)	



Priority Queues	



•  Heapsort is a nice algorithm, but in practice 
Quicksort (coming up) usually wins	



•  But the heap data structure is incredibly useful 
for implementing priority queues	


-  A data structure for maintaining a set S of 

elements, each with an associated value or 
key	



-  Supports the operations Insert(), 
Maximum(), and ExtractMax() 

-  What might a priority queue be useful for?	
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Priority Queue Operations	



•  Insert(S, x) inserts the element x 
into set S	



•  Maximum(S) returns the element of S 
with the maximum key	



•  ExtractMax(S) removes and returns 
the element of S with the maximum key	



•  How could we implement these operations 
using a heap?	



Quicksort	



•  Sorts in place	



•  Sorts O(n lg n) in the average case	



•  Sorts O(n2) in the worst case	



•  So why would people use it instead of 
merge sort?	
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Review: Quicksort	



•  Sorts in place	


•  Sorts O(n lg n) in the average case	


•  Sorts O(n2) in the worst case	


-  But in practice, it’s quick	


-  And the worst case doesn’t happen often 

(but more on this later…)	



Quicksort	



•  Another divide-and-conquer algorithm	


-  The array A[p..r] is partitioned into two 

non-empty subarrays A[p..q] and A[q
+1..r] 	


‣  Invariant: All elements in A[p..q] are 

less than all elements in A[q+1..r]	


-  The subarrays are recursively sorted by 

calls to quicksort	


-  Unlike merge sort, no combining step: 

two subarrays form an already-sorted 
array	
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Quicksort Code	



Quicksort(A, p, r) 
{ 
    if (p < r) 
    { 
        q = Partition(A, p, r); 
        Quicksort(A, p, q); 
        Quicksort(A, q+1, r); 
    } 
} 

Partition	



•  Clearly, all the action takes place in the 
partition() function	


-  Rearranges the subarray in place	


-  End result: 	


‣  Two subarrays	


‣  All values in first subarray ≤ all values 

in second	


-  Returns the index of the “pivot” element 

separating the two subarrays	


•  How do you suppose we implement this?	
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Partition procedure	



Partition Example	


A = {6,10,13,5,8,3,2,11} 
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Quicksort Code	



Quicksort(A, p, r) 
{ 
    if (p < r) 
    { 
        q = Partition(A, p, r); 
        Quicksort(A, p, q); 
        Quicksort(A, q+1, r); 
    } 
} 

Analyzing Quicksort	


•  What will be the worst case for the 

algorithm?	


-  Partition is always unbalanced	



•  What will be the best case for the 
algorithm?	


-  Partition is perfectly balanced	



•  Which is more likely?	


-  The latter, by far, except...	



•  Will any particular input elicit the worst 
case?	


-  Yes: Already-sorted input	
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Analyzing Quicksort	



•  In the worst case, input sorted or reverse 
sorted. One side of partion has no elemets	



T(1) = Θ(1)	



T(n) = T(n - 1) + Θ(n)	



•  Works out to (via aritmetic series)	



	

T(n) = Θ(n2)	



Worst case recursion tree	
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Worst case recursion tree	



 Analyzing Quicksort	



•  In the best case:	



T(n) = 2T(n/2) + Θ(n)	



•  What does this work out to?	



T(n) = Θ(n lg n) 	
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 Analyzing Quicksort	



•  What is we split	



T(n) = T(9n/10) + T(n/10) + cn	



 Improving Quicksort	



•  The real liability of quicksort is that it runs 
in O(n2) on already-sorted input	



•  Book discusses two solutions:	


-  Randomize the input array, OR	


-  Pick a random pivot element	



•  How will these solve the problem?	


-  By insuring that no particular input can 

be chosen to make quicksort run in O(n2) 
time	
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Analyzing Quicksort: Average Case	



•  Assuming random input, average-case 
running time is much closer to O(n lg n) 
than O(n2)	



•  First, a more intuitive explanation/example:	


-  Suppose that partition() always produces 

a 9-to-1 split.  This looks quite 
unbalanced!	



-  The recurrence is thus:	


	

T(n) = T(9n/10) + T(n/10) + n 	

	



- 	

 How deep will the recursion go?  (draw 
it)	



Use n instead of O(n)  
for convenience (how?) 

Using Recurrence tree	





9/13/11	



29	



Using Recurrence tree	



Analyzing Quicksort: Average Case	



•  Intuitively, a real-life run of quicksort will 
produce a mix of “bad” and “good” splits	


-  Randomly distributed among the 

recursion tree	


-  Pretend for intuition that they alternate 

between best-case (n/2 : n/2) and worst-
case (n-1 : 1)	



-  What happens if we bad-split root node, 
then good-split the resulting size (n-1) 
node?	
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Analyzing Quicksort: Average Case	


•  Intuitively, a real-life run of quicksort will produce a 

mix of “bad” and “good” splits	


-  Randomly distributed among the recursion tree	


-  Pretend for intuition that they alternate between 

best-case (n/2 : n/2) and worst-case (n-1 : 1)	


•  What happens if we bad-split root node, then good-

split the resulting size (n-1) node?	


- We end up with three subarrays, size 1, (n-1)/2, 

(n-1)/2  	



-  No worse than if we had good-split the root node!	



€ 

T(n) = 2(T(n /2 −1) +Θ(n /2)) +Θ(n) =Θ(n lgn)

Analyzing Quicksort: Average Case	


•  Intuitively, the O(n) cost of a bad split ���

(or 2 or 3 bad splits) can be absorbed ���
into the O(n) cost of each good split	



•  Thus running time of alternating bad and good 
splits is still O(n lg n), with slightly higher 
constants	



•  How can we be more rigorous?	
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Analyzing Quicksort: Average Case	


•  Idean partition around random element	



•  Running time is independent of inout order	



•  No assumptions made about input distribution	



•  No specific case gives worst case behavior	



•  Worst case is determined only by the output of 
random number generator	



•  Idea: let T(n) = random variable for running 
time of quicksort	



Analyzing Quicksort: Average Case	


•  For simplicity, assume:	


-  All inputs distinct (no repeats)	


-  Slightly different partition() 

procedure	


‣  partition around a random element, 

which is not included in subarrays	


‣  all splits (0:n-1, 1:n-2, 2:n-3, … , 

n-1:0) equally likely	


•  What is the probability of a particular split 

happening?	


•  Answer: 1/n, 	
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Analysis	



Analysis	
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Analysis	



Analysis	



Use substitution method	
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Analysis	



If  a is large enough such that 	


an/4 dominates 	



€ 

Θ(n)

Quicksort summary	



•  Great general purpose sorting algorithm	



•  Typically twice as fast as merge sort	



•   Can benefit from code tuning 	
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Analyzing Quicksort: Average Case	


•  So partition generates splits ���

	

(0:n-1,  1:n-2,  2:n-3, … ,  n-2:1,  n-1:0) ���
each with probability 1/n	



•  If T(n) is the expected running time,	



•  What is each term under the summation for?	



•  What is the Θ(n) term for? 	



Alternative Analysis	



Without formal expectations E[.]	
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Analyzing Quicksort: Average Case	



•  So…	



-  Note: this is just like the book’s 
recurrence (p166), except that the 
summation starts with k=0	



- We’ll take care of that in a second 	



Write it on  
the board 

Analyzing Quicksort: Average Case	



•  We can solve this recurrence using the 
dreaded substitution method	


-  Guess the answer	


-  Assume that the inductive hypothesis 

holds	


-  Substitute it in for some value < n	


-  Prove that it follows for n	
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Analyzing Quicksort: Average Case	



•  We can solve this recurrence using the 
substitution method	


-  Guess the answer	


‣  What’s the answer?	



-  Assume that the inductive hypothesis 
holds	



-  Substitute it in for some value < n	


-  Prove that it follows for n	



Analyzing Quicksort: Average Case	



•  We can solve this recurrence using the 
dreaded substitution method	


-  Guess the answer	


‣  T(n) = O(n lg n)	



-  Assume that the inductive hypothesis 
holds	



-  Substitute it in for some value < n	


-  Prove that it follows for n	
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Analyzing Quicksort: Average Case	



•  We can solve this recurrence using the 
dreaded substitution method	


-  Guess the answer	


‣  T(n) = O(n lg n)	



-  Assume that the inductive hypothesis 
holds	


‣  T(n) ≤ an lg n + b   for some constants 

a and b	


-  Substitute it in for some value < n	


-  Prove that it follows for n	



Analyzing Quicksort: Average Case	



•  We can solve this recurrence using the 
dreaded substitution method	


-  Guess the answer	


‣  T(n) = O(n lg n)	



-  Assume that the inductive hypothesis 
holds	


‣  T(n) ≤ an lg n + b   for some constants 

a and b	


-  Substitute it in for some value < n	


‣  What value?	



-  Prove that it follows for n	
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Note: leaving the same 
recurrence as the book 

What are we doing 
here? 

Analyzing Quicksort: Average Case	


The recurrence to be 

solved 

What are we doing 
here? 

What are we doing 
here? 

Plug in inductive 
hypothesis 

Expand out the k=0 
 case 

2b/n is just a constant,  
so fold it into Θ(n) 

What are we doing 
here? 

What are we doing 
here? 

Evaluate the summation:  
b+b+…+b = b (n-1) 

The recurrence to be 
solved 

Since n-1<n, 2b(n-1)/n < 
2b 

Analyzing Quicksort: Average Case	



What are we doing 
here? 

Distribute the 
summation 

This summation gets its own set of slides later 
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How did we do this? Pick a large enough that 
an/4 dominates Θ(n)+b  

What are we doing 
here? 

Remember, our goal is 
to get T(n) ≤ an lg n + b 

What the hell? We’ll prove this later 

What are we doing 
here? 

Distribute the (2a/n) 
term 

The recurrence to be 
solved 

Analyzing Quicksort: Average Case	



Analyzing Quicksort: Average Case	



•  So T(n) ≤ an lg n + b  for certain a and b	



-  Thus the induction holds	



-  Thus T(n) = O(n lg n)	



-  Thus quicksort runs in O(n lg n) time on 
average 	



•  Oh yeah, the summation… 	
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What are we doing 
here? 

The lg k in the second 
term is bounded by lg n 

Tightly Bounding ���
The Key Summation	



What are we doing 
here? 

Move the lg n outside 
the summation 

What are we doing 
here? 

Split the summation for 
a tighter bound 

The summation bound 
so far 

Tightly Bounding���
The Key Summation	



What are we doing 
here? 

The lg k in the first term 
is bounded by lg n/2 

What are we doing 
here? 

lg n/2 = lg n – 1 

What are we doing 
here? 

Move (lg n - 1) outside 
the summation 
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The summation bound 
so far 

Tightly Bounding���
The Key Summation	



What are we doing 
here? Distribute the (lg n - 1) 

What are we doing 
here? 

The summations overlap 
in  range; combine them 

What are we doing 
here? The Gaussian series 

The summation bound 
so far 

Tightly Bounding ���
The Key Summation	



What are we doing 
here? 

Rearrange first term, 
place upper bound on 

second 

What are we doing?  Gaussian series 

What are we doing? Multiply it  
all out 
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Tightly Bounding ���
The Key Summation	




