CS583 Lecture 03
 Jana Kosecka

Heapsort, Quicksort
some materials here are based on E. Demaine, D. Luebke slides

Previously

- Solving recurrences
- Substitution method
- Iteration methods
- Recursion tree
- Masters's theorem

$$
\begin{aligned}
& \text { CASE 1: } f(n)=O\left(n^{\log b a-\varepsilon}\right) \text {, constant } \varepsilon>0 \\
& \Rightarrow T(n)=\Theta\left(n^{\log b a}\right) \text {. } \\
& \text { CASE 2: } f(n)=\Theta\left(n^{\log b}{ }^{1} 1 g^{k} n\right) \text {, constant } k \geq 0 \\
& \Rightarrow T(n)=\Theta\left(n^{\log b^{a}} \lg ^{k+1} n\right) \text {. } \\
& \text { CASE 3: } f(n)=\Omega\left(n^{\log b a+\varepsilon}\right) \text {, constant } \varepsilon>0 \text {, } \\
& \text { and regularity condition } \\
& \Rightarrow T(n)=\Theta(f(n)) \text {. }
\end{aligned}
$$

Loop Invariants

- Insertion Sort
for $j \leftarrow 2$ to n do Temp $\leftarrow A[j]$ $i \leftarrow j-1$ while $i>0$ and $A[i]>$ Temp do $A[i+1] \leftarrow A[i]$
$i \leftarrow i-1$ end while $A[i+1] \leftarrow$ Temp
end for
- At any point we are looking at element j
- There is an invariant that is being maintained at each iteration of the loop
- Loop invariant: At the beginning of each iteration, elements in $A[1, \ldots j-1]$ are sorted
- At each iteration you add one element and increase the length of sorted elements

Loop Invariants

- Useful for showing correctness of programs
- Step 1: Show that the loop invariant is true at initialization
- Step 2: Maintenance: if it is true before iteration of the loop, it is true after the iteration of the loop
- Step 3: Termination: When the loop terminates, the invariant gives useful property showing that the algorithm is correct

Sorting Continued

- So far we've talked about two algorithms to sort an array of numbers
- What is the advantage of merge sort?
- What is the advantage of insertion sort?
- Next on the agenda: Heapsort
- Combines advantages of both previous algorithms

Heaps

- A heap can be seen as a complete binary

What makes a binary tree complete?
Is the example above complete?

Heaps

- A heap can be seen as a complete binary tree:

The book calls them "nearly complete" binary trees; can think of unfilled slots as null pointers

Heaps

- In practice, heaps are usually implemented as arrays:

Heaps

- To represent a complete binary tree as an array:
- The root node is $\mathrm{A}[1]$
- Node i is $\mathrm{A}[i]$
- The parent of node i is $\mathrm{A}[i / 2]$ (note: integer divide)
- The left child of node i is A[2i]
- The right child of node i is $\mathrm{A}[2 i+1]$

$$
[2 i+1]
$$

$$
\mathrm{A}=\begin{array}{|l|l|l|l|l|l|l|l|l|}
\hline 16 & 14 & 10 & 8 & 7 & 9 & 3 & 2 & 4 \\
\hline
\end{array}
$$

Referencing Heap Elements

- So...

Parent(i) \{ return [i/2]; \}
Left(i) \{ return 2*i; \}
right(i) \{ return 2*i +1 ; \}

- An aside: How would you implement this most efficiently?

The Heap Property

- Heaps also satisfy the heap property:
$\mathrm{A}[$ Parent $(i)] \geq \mathrm{A}[i] \quad$ for all nodes $i>1$
- In other words, the value of a node is at most the value of its parent
- Where is the largest element in a heap stored?
- Definitions:
- The height of a node in the tree = the number of edges on the longest downward path to a leaf
- The height of a tree = the height of its root

Heap Height

- What is the height of an n-element heap? Why?
- This is nice: basic heap operations take at most time proportional to the height of the heap

Heap Height

- What is the height of an n-element heap? Why? $\Theta(\lg n)$
- This is nice: basic heap operations take at most time proportional to the height of the heap $O(\lg n)$
- Max- heap for sorting
- Min-heap for priority cues

Heap Height

- Heapsort procedures
- Heapify
- Build-heap
- Heapsort

Heap Operations: Heapify()

- Heapify () : maintain the heap property
- Given: a node i in the heap with children l and r
- Given: two subtrees rooted at l and r, assumed to be heaps
- Problem: The subtree rooted at i may violate the heap property (How?)
- Action: let the value of the parent node "float down" so subtree at i satisfies the heap property - What do you suppose will be the basic operation between i, l, and r ?

Example

Heap Operations: Heapify()

```
Heapify(A, i)
{
    l = Left(i); r = Right(i);
    if (l <= heap_size(A) && A[l] > A[i])
        largest = 1;
    else
        largest = i;
    if (r <= heap_size(A) && A[r] > A[largest])
        largest = r;
    if (largest != i)
        Swap(A, i, largest);
        Heapify(A, largest);
}
```

Heapify(A,2) Example

Heapify(A,2) Example

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline \mathrm{A}=16 & 14 & 10 & 4 & 7 & 9 & 3 & 2 & 8 & 1 \\
\hline
\end{array}
$$

$\mathrm{A}=16$	14	10	4	7	9	3	2	8	1

Heapify(A,4) Example

Heapify(A,4) Example

$\mathrm{A}=16$	14	10	8	7	9	3	2	4	1

Heapify(A,4) Example

$$
\begin{array}{|l|l|l|l|l|l|l|l|l|l|}
\hline \mathrm{A}=16 & 14 & 10 & 8 & 7 & 9 & 3 & 2 & 4 & 1 \\
\hline
\end{array}
$$

Heapify(A,9) Example

Analyzing Heapify(): Informal

- Aside from the recursive call, what is the running time of Heapify () ?
- How many times can Heapify () recursively call itself?
- What is the worst-case running time of Heapify () on a heap of size n ?

Analyzing Heapify(): Formal

- Fixing up relationships between i, l, and r takes Θ (1) time
- If the heap at i has n elements, how many elements can the subtrees at lor r have?
- Draw it
- Answer: $2 n / 3$ (worst case: bottom row $1 / 2$ full)
- So time taken by Heapify () is given by $T(n) \leq T(2 n / 3)+\Theta(1)$

Analyzing Heapify(): Formal

- So we have

$$
T(n) \leq T(2 n / 3)+\Theta(1)
$$

- By case 2 of the Master Theorem,

$$
T(n)=\mathrm{O}(\lg n)
$$

- Thus, Heapify() takes logarithmic time

Heap Operations: BuildHeap()

- We can build a heap in a bottom-up manner by running Heapify() on successive subarrays
- Fact: for array of length n, all elements in range $\mathrm{A}[\lfloor\mathrm{n} / 2\rfloor+1 . . \mathrm{n}]$ are heaps (Why?)
- So:
- Walk backwards through the array from $\mathrm{n} / 2$ to 1 , calling Heapify() on each node.
- Order of processing guarantees that the children of node i are heaps when i is processed

BuildHeap()

// given an unsorted array A, make A a heap
BuildHeap (A)
\{
heap_size(A) = length(A);
for (i = \length $[\mathrm{A}] / 2\rfloor$ downto 1)
Heapify (A, i);
\}

BuildHeap() Example

- Work through example
$\mathrm{A}=\{4,1,3,2,16,9,10,14,8,7\}$

Analyzing BuildHeap()

- Each call to Heapify() takes O(lgn) time
- There are $\mathrm{O}(n)$ such calls (specifically, $\lfloor\mathrm{n} /$ 2])
- Thus the running time is $\mathrm{O}(n \lg n)$
- Is this a correct asymptotic upper bound?
- Is this an asymptotically tight bound?
- A tighter bound is $\mathrm{O}(n)$
- How can this be? Is there a flaw in the above reasoning?

Analyzing BuildHeap(): Tight

- To Heapify () a subtree takes $\mathrm{O}(h)$ time where h is the height of the subtree
- $h=\mathrm{O}(\lg m), \mathrm{m}=\#$ nodes in subtree
- The height of most subtrees is small
- Fact: an n-element heap has at most $\left\lceil n / 2^{h}\right.$ ${ }^{+1}$] nodes of height h
- CLR 7.3 uses this fact to prove that BuildHeap () takes $\mathrm{O}(n)$ time

Heapsort

- Given BuildHeap (), an in-place sorting algorithm is easily constructed:
- Maximum element is at A[1]
- Discard by swapping with element at $\mathrm{A}[\mathrm{n}]$
- Decrement heap_size[A]
- $\mathrm{A}[\mathrm{n}]$ now contains correct value
- Restore heap property at A[1] by calling Heapify()
- Repeat, always swapping A[1] for A[heap_size (A)]

Heapsort

```
Heapsort(A)
{
        BuildHeap(A);
        for (i = length(A) downto 2)
        {
            Swap(A[1], A[i]);
            heap_size(A) -= 1;
            Heapify(A, 1);
    }
}
```


Analyzing Heapsort

- The call to BuildHeap () takes O(n) time
- Each of the $n-1$ calls to Heapify () takes $\mathrm{O}(\lg n)$ time
- Thus the total time taken by HeapSort ()
$=\mathrm{O}(n)+(n-1) \mathrm{O}(\lg n)$
$=\mathrm{O}(n)+\mathrm{O}(n \lg n)$
$=\mathrm{O}(n \lg n)$

Priority Queues

- Heapsort is a nice algorithm, but in practice Quicksort (coming up) usually wins
- But the heap data structure is incredibly useful for implementing priority queues
- A data structure for maintaining a set S of elements, each with an associated value or key
- Supports the operations Insert(), Maximum(), and ExtractMax()
- What might a priority queue be useful for?

Priority Queue Operations

- Insert (S, x) inserts the element x into set S
- Maximum (S) returns the element of S with the maximum key
- ExtractMax (S) removes and returns the element of S with the maximum key
- How could we implement these operations using a heap?

Quicksort

- Sorts in place
- Sorts $\mathrm{O}(\mathrm{n} \lg \mathrm{n})$ in the average case
- Sorts $\mathrm{O}\left(\mathrm{n}^{2}\right)$ in the worst case
- So why would people use it instead of merge sort?

Review: Quicksort

- Sorts in place
- Sorts $O(\mathrm{n} \lg \mathrm{n})$ in the average case
- Sorts $O\left(n^{2}\right)$ in the worst case
- But in practice, it's quick
- And the worst case doesn't happen often (but more on this later...)

Quicksort

- Another divide-and-conquer algorithm
- The array $\mathrm{A}[\mathrm{p} . \mathrm{r}]$ is partitioned into two non-empty subarrays $\mathrm{A}[\mathrm{p} . . \mathrm{q}]$ and $\mathrm{A}[\mathrm{q}$ +1..r]
- Invariant: All elements in A[p..q] are less than all elements in $A[q+1 . . r]$
- The subarrays are recursively sorted by calls to quicksort
- Unlike merge sort, no combining step: two subarrays form an already-sorted array

Quicksort Code

Quicksort(A, p, r)
\{
if (p < r)
\{
$q=\operatorname{Partition(A,p,r);~}$
Quicksort(A, p, q) ;
Quicksort(A, q+1, r);
\}
\}

Partition

- Clearly, all the action takes place in the partition() function
- Rearranges the subarray in place
- End result:
- Two subarrays
- All values in first subarray \leq all values in second
- Returns the index of the "pivot" element separating the two subarrays
- How do you suppose we implement this?

Partition procedure

```
\(\operatorname{Partition}(A, p, q) \triangleright A[p \ldots q]\)
\(x \leftarrow A[p] \quad \triangleright\) pivot \(=A[p]\)
\(i \leftarrow p\)
for \(j \leftarrow p+1\) to \(q\)
        do if \(A[j] \leq x\)
                then \(i \leftarrow i+1\)
                    exchange \(A[i] \leftrightarrow A[j]\)
    exchange \(A[p] \leftrightarrow A[i]\)
    return \(i\)
```


Partition Example

$\operatorname{Partition}(A, p, q) \triangleright A[p \ldots q]$
$x \leftarrow A[p] \quad \triangleright$ pivot $=A[p]$
$\left.\begin{array}{l}i \leftarrow p \\ \text { for } j \leftarrow p+1\end{array}\right)$ to q
do if $A[j] \leq x$
then $i \leftarrow i+1$
exchange $A[i] \leftrightarrow A[j]$
exchange $A[p] \leftrightarrow A[i]$
return i
$A=\{6,10,13,5,8,3,2,11\}$

Quicksort Code

Quicksort(A, p, r)
\{

$$
\text { if }(p<r)
$$

\{
$q=\operatorname{Partition(A,p,r);~}$
Quicksort(A, p, q) ;
Quicksort(A, q+1, r);
\}
\}

Analyzing Quicksort

- What will be the worst case for the algorithm?
- Partition is always unbalanced
- What will be the best case for the algorithm?
- Partition is perfectly balanced
- Which is more likely?
- The latter, by far, except...
- Will any particular input elicit the worst case?
- Yes: Already-sorted input

Analyzing Quicksort

- In the worst case, input sorted or reverse sorted. One side of partion has no elemets
$\mathrm{T}(1)=\Theta(1)$
$\mathrm{T}(\mathrm{n})=\mathrm{T}(\mathrm{n}-1)+\Theta(\mathrm{n})$
- Works out to (via aritmetic series)
$\mathrm{T}(\mathrm{n})=\Theta\left(\mathrm{n}^{2}\right)$

Worst case recursion tree

Worst case recursion tree

Analyzing Quicksort

- In the best case:
$\mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\mathrm{n} / 2)+\Theta(\mathrm{n})$
- What does this work out to?
$\mathrm{T}(\mathrm{n})=\Theta(\mathrm{n} \lg \mathrm{n})$

Analyzing Quicksort

- What is we split

$$
\mathrm{T}(\mathrm{n})=\mathrm{T}(9 \mathrm{n} / 10)+\mathrm{T}(\mathrm{n} / 10)+\mathrm{cn}
$$

Improving Quicksort

- The real liability of quicksort is that it runs in $\mathrm{O}\left(\mathrm{n}^{2}\right)$ on already-sorted input
- Book discusses two solutions:
- Randomize the input array, OR
- Pick a random pivot element
- How will these solve the problem?
- By insuring that no particular input can be chosen to make quicksort run in $\mathrm{O}\left(\mathrm{n}^{2}\right)$ time

Analyzing Quicksort: Average Case

- Assuming random input, average-case running time is much closer to $\mathrm{O}(\mathrm{n} \lg \mathrm{n})$ than $\mathrm{O}\left(\mathrm{n}^{2}\right)$
- First, a more intuitive explanation/example:
- Suppose that partition() always produces a 9-to-1 split. This looks quite unbalanced! Use n instead of $\mathrm{O}(\mathrm{n})$
- The recurrence is thus: for convenience (how?) $\mathrm{T}(\mathrm{n})=\mathrm{T}(9 \mathrm{n} / 10)+\mathrm{T}(\mathrm{n} / 10)+\mathrm{n}$
- How deep will the recursion go? (draw it)

Using Recurrence tree

$c n \log _{10} n \leq T(n) \leq c n \log _{10 / 9} n+O(n)$

Analyzing Quicksort: Average Case

- Intuitively, a real-life run of quicksort will produce a mix of "bad" and "good" splits
- Randomly distributed among the recursion tree
- Pretend for intuition that they alternate between best-case ($\mathrm{n} / 2: \mathrm{n} / 2$) and worstcase ($\mathrm{n}-1: 1$)
- What happens if we bad-split root node, then good-split the resulting size (n-1) node?

Analyzing Quicksort: Average Case

- Intuitively, a real-life run of quicksort will produce a mix of "bad" and "good" splits
- Randomly distributed among the recursion tree
- Pretend for intuition that they alternate between best-case ($\mathrm{n} / 2: \mathrm{n} / 2$) and worst-case ($\mathrm{n}-1: 1$)
- What happens if we bad-split root node, then goodsplit the resulting size ($n-1$) node?
- We end up with three subarrays, size $1,(\mathrm{n}-1) / 2$, ($\mathrm{n}-1$)/2
$T(n)=2(T(n / 2-1)+\Theta(n / 2))+\Theta(n)=\Theta(n \lg n)$
- No worse than if we had good-split the root node!

Analyzing Quicksort: Average Case

- Intuitively, the $\mathrm{O}(\mathrm{n})$ cost of a bad split (or 2 or 3 bad splits) can be absorbed into the $\mathrm{O}(\mathrm{n})$ cost of each good split
- Thus running time of alternating bad and good splits is still $O(n \lg n)$, with slightly higher constants
- How can we be more rigorous?

Analyzing Quicksort: Average Case

- Idean partition around random element
- Running time is independent of inout order
- No assumptions made about input distribution
- No specific case gives worst case behavior
- Worst case is determined only by the output of random number generator
- Idea: let $\mathrm{T}(\mathrm{n})=$ random variable for running time of quicksort

Analyzing Quicksort: Average Case

- For simplicity, assume:
- All inputs distinct (no repeats)
- Slightly different partition() procedure
- partition around a random element, which is not included in subarrays
- all splits (0:n-1, 1:n-2, 2:n-3, ... , $\mathrm{n}-1: 0$) equally likely
- What is the probability of a particular split happening?
- Answer: 1/n,

$$
\begin{gathered}
\text { Analysis } \\
T(n)=\left\{\begin{array}{c}
T(0)+T(n-1)+\Theta(n) \text { if } 0: n-1 \text { split, } \\
T(1)+T(n-2)+\Theta(n) \text { if } 1: n-2 \text { split, } \\
\vdots \\
T(n-1)+T(0)+\Theta(n) \text { if } n-1: 0 \text { split, }
\end{array}\right. \\
=\sum_{k=0}^{n-1} X_{k}(T(k)+T(n-k-1)+\Theta(n))
\end{gathered}
$$

$X_{k}= \begin{cases}1 & \text { if Partition generates a } k: n-k-1 \text { split }, \\ 0 & \text { otherwise } .\end{cases}$
$E\left[X_{k}\right]=\operatorname{Pr}\left\{X_{k}=1\right\}=1 / n$

Analysis

$$
\begin{aligned}
E[T(n)] & =E\left[\sum_{k=0}^{n-1} X_{k}(T(k)+T(n-k-1)+\Theta(n))\right] \\
& =\sum_{k=0}^{n-1} E\left[X_{k}(T(k)+T(n-k-1)+\Theta(n))\right] \\
& =\sum_{k=0}^{n-1} E\left[X_{k}\right] \cdot E[T(k)+T(n-k-1)+\Theta(n)] \\
& =\frac{1}{n} \sum_{k=0}^{n-1} E[T(k)]+\frac{1}{n} \sum_{k=0}^{n-1} E[T(n-k-1)]+\frac{1}{n} \sum_{k=0}^{n-1} \Theta(n)
\end{aligned}
$$

Linearity of expectation; $E\left[X_{k}\right]=1 / n$.

$$
\begin{aligned}
& \text { Analysis } \\
& E[T(n)]=E\left[\sum_{k=0}^{n-1} X_{k}(T(k)+T(n-k-1)+\Theta(n))\right] \\
&= \sum_{k=0}^{n-1} E\left[X_{k}(T(k)+T(n-k-1)+\Theta(n))\right] \\
&= \sum_{k=0}^{n-1} E\left[X_{k}\right] \cdot E[T(k)+T(n-k-1)+\Theta(n)] \\
&= \frac{1}{n} \sum_{k=0}^{n-1} E[T(k)]+\frac{1}{n} \sum_{k=0}^{n-1} E[T(n-k-1)]+\frac{1}{n} \sum_{k=0}^{n-1} \Theta(n)
\end{aligned}
$$

Linearity of expectation; $E\left[X_{k}\right]=1 / n$.

$$
=\frac{2}{n} \sum_{k=1}^{n-1} E[T(k)]+\Theta(n)
$$

$$
\begin{gathered}
\text { Analysis } \\
E[T(n)]=\frac{2}{n} \sum_{k=2}^{n-1} E[T(k)]+\Theta(n)
\end{gathered}
$$

Prove: $E[T(n)] \leq a n \lg n$ for constant $a>0$.

- Choose a large enough so that $a n \lg n$ dominates $E[T(n)]$ for sufficiently small $n \geq 2$.

Use fact: $\sum_{k=2}^{n-1} k \lg k \leq \frac{1}{2} n^{2} \lg n-\frac{1}{8} n^{2}$ (exercise).
Use substitution method

$$
E[T(n)] \leq \frac{2}{n} \sum_{k=2}^{n-1} a k \lg k+\Theta(n)
$$

$$
\begin{aligned}
& A[T(n)] \leq \text { Analysis } \\
& n \sum_{k=2}^{n-1} a k \lg k+\Theta(n) \\
& \leq \frac{2 a}{n}\left(\frac{1}{2} n^{2} \lg n-\frac{1}{8} n^{2}\right)+\Theta(n) \\
&= a n \lg n-\left(\frac{a n}{4}-\Theta(n)\right) \\
& \leq a n \lg n
\end{aligned}
$$

If a is large enough such that an/4 dominates $\Theta(n)$

Quicksort summary

- Great general purpose sorting algorithm
- Typically twice as fast as merge sort
- Can benefit from code tuning

Analyzing Quicksort: Average Case

- So partition generates splits
(0:n-1, 1:n-2, $2: n-3, \ldots, n-2: 1, n-1: 0)$ each with probability $1 / n$
- If $T(n)$ is the expected running time,

$$
T(n)=\frac{1}{n} \sum_{k=0}^{n-1}[T(k)+T(n-1-k)]+\Theta(n)
$$

- What is each term under the summation for?
- What is the $\Theta(n)$ term for?

Alternative Analysis

Without formal expectations E[.]

Analyzing Quicksort: Average Case

- So...

$$
\begin{aligned}
T(n) & =\frac{1}{n} \sum_{k=0}^{n-1}[T(k)+T(n-1-k)]+\Theta(n) \\
& =\frac{2}{n} \sum_{k=0}^{n-1} T(k)+\Theta(n) \stackrel{\text { Write it on }}{\text { the board }}
\end{aligned}
$$

- Note: this is just like the book's recurrence (p166), except that the summation starts with $\mathrm{k}=0$
- We'll take care of that in a second

Analyzing Quicksort: Average Case

- We can solve this recurrence using the dreaded substitution method
- Guess the answer
- Assume that the inductive hypothesis holds
- Substitute it in for some value $<\mathrm{n}$
- Prove that it follows for n

Analyzing Quicksort: Average Case

- We can solve this recurrence using the substitution method
- Guess the answer
- What's the answer?
- Assume that the inductive hypothesis holds
- Substitute it in for some value <n
- Prove that it follows for n

Analyzing Quicksort: Average Case

- We can solve this recurrence using the dreaded substitution method
- Guess the answer
- $T(n)=O(n \lg n)$
- Assume that the inductive hypothesis holds
- Substitute it in for some value < n
- Prove that it follows for n

Analyzing Quicksort: Average Case

- We can solve this recurrence using the dreaded substitution method
- Guess the answer
- $\mathrm{T}(n)=\mathrm{O}(n \lg n)$
- Assume that the inductive hypothesis holds
- $\mathrm{T}(n) \leq a n \lg n+b$ for some constants a and b
- Substitute it in for some value $<\mathrm{n}$
- Prove that it follows for n

Analyzing Quicksort: Average Case

- We can solve this recurrence using the dreaded substitution method
- Guess the answer
- $\mathrm{T}(n)=\mathrm{O}(n \lg n)$
- Assume that the inductive hypothesis holds
- $\mathrm{T}(n) \leq a n \lg n+b$ for some constants a and b
- Substitute it in for some value $<\mathrm{n}$ - What value?
- Prove that it follows for n

Analyzing Quicksort: Average Case

$$
T(n)=\frac{2}{n} \sum^{n-1}(a k \lg k+b)+\Theta(n) \quad \begin{gathered}
\text { The recurrence to be } \\
\text { solved }
\end{gathered}
$$

$$
=\frac{2}{n} \sum_{k=1}^{n-1} a k \lg k+\frac{2}{n} \sum_{k=1}^{n-1} b+\Theta(n) \quad \begin{gathered}
\text { Distribute the } \\
\text { summation }
\end{gathered}
$$

$$
=\frac{2 a}{n} \sum_{k=1}^{n-1} k \lg k+\frac{2 b}{n}(n-1)+\Theta(n)^{\text {Evaluate the summation: }} \begin{gathered}
\mathrm{b}+\mathrm{b}+\ldots+\mathrm{b}=\mathrm{b}(\mathrm{n}-1)
\end{gathered}
$$

$$
\leq \frac{2 a \sum_{k=1}^{n-1} k \lg k+2 b+\Theta(n)}{} \quad \text { Since } \mathrm{n}-1<\mathrm{n}, 2 \mathrm{~b}(\mathrm{n}-1) / \mathrm{n}<
$$

This summation gets its own set of slides later

> Analyzing Quicksort: Average Case
> $T(n)=\frac{2}{n} \sum_{k=0}^{n-1} T(k)+\Theta(n)$
> $\leq \frac{2}{n} \sum_{k=0}^{n-1}(a k \lg k+b)+\Theta(n)$
> $\leq \frac{2}{n}\left[b+\sum_{k=1}^{n-1}(a k \lg k+b)\right]+\Theta(n) \quad \begin{gathered}\text { Expand out the } \mathrm{k}=0 \\ \text { case }\end{gathered}$
> $=\frac{2}{n} \sum_{k=1}^{n-1}(a k \lg k+b)+\frac{2 b}{n}+\Theta(n) \quad \begin{array}{r}2 \mathrm{~b} / \mathrm{n} \text { is just a constant, } \\ \text { so fold it into } \Theta(\mathrm{n})\end{array}$
> $=\frac{2}{n} \sum_{k=1}^{n-1}(a k \lg k+b)+\Theta(n)$
> Note: leaving the same recurrence as the book

Analyzing Quicksort: Average Case

$$
\begin{array}{rlr}
T(n) & \leq \frac{2 a}{n} \sum_{k=1}^{n-1} k \lg k+2 b+\Theta(n) & \begin{array}{c}
\text { The recurrence to be } \\
\text { solved }
\end{array} \\
& \leq \frac{2 a}{n}\left(\frac{1}{2} n^{2} \lg n-\frac{1}{8} n^{2}\right)+2 b+\Theta(n) \text { We'll prove this later } \\
& =a n \lg n-\frac{a}{4} n+2 b+\Theta(n) & \begin{array}{c}
\text { Distribute the }(2 \mathrm{a} / \mathrm{n}) \\
\text { term }
\end{array} \\
& =a n \lg n+b+\left(\Theta(n)+b-\frac{a}{4} n\right) \begin{array}{c}
\text { Remember, our goal is } \\
\text { to get T(n) } \leq \text { an } \lg \mathrm{n}+\mathrm{b} \\
\text { Pick a large enough that } \\
\text { an/4 dominates } \Theta(\mathrm{n})+\mathrm{b}
\end{array} \\
& \leq a n \lg n+b &
\end{array}
$$

Analyzing Quicksort: Average Case

- So $\mathrm{T}(n) \leq a n \lg n+b$ for certain a and b
- Thus the induction holds
- Thus $\mathrm{T}(\mathrm{n})=\mathrm{O}(\mathrm{n} \lg \mathrm{n})$
- Thus quicksort runs in $\mathrm{O}(\mathrm{n} \lg \mathrm{n})$ time on average
- Oh yeah, the summation...

$$
\begin{gathered}
\text { Tightly Bounding } \\
\text { The Key Summation } \\
\sum_{k=1}^{n-1} k \lg k=\sum_{k=1}^{[n / 2]^{-1}} k \lg k+\sum_{k=\lceil n / 2\rceil}^{n-1} k \lg k \quad \begin{array}{c}
\text { Split the summation for } \\
\text { a tighter bound }
\end{array} \\
\leq \sum_{k=1}^{\lceil n / 2]^{-1}} k \lg k+\sum_{k=\lceil n / 2\rceil}^{n-1} k \lg n \quad \begin{array}{c}
\text { The } \lg \mathrm{k} \text { in the second } \\
\text { term is bounded by } \lg \mathrm{n}
\end{array} \\
=\sum_{k=1}^{[n / 2\rceil^{-1} k \lg k+\lg n \sum_{k=\lceil n / 2\rceil}^{n-1} k} \quad \begin{array}{c}
\text { Move the } \lg \mathrm{n} \text { outside } \\
\text { the summation }
\end{array}
\end{gathered}
$$

$$
\begin{gathered}
\text { Tightly Bounding } \\
\text { The Key Summation } \\
\sum_{k=1}^{n-1} k \lg k \leq \sum_{k=1}^{[n / 2]^{-1}} k \lg k+\lg n \sum_{k=[n / 2]}^{n-1} k \quad \begin{array}{c}
\text { The summation bound } \\
\text { so far }
\end{array} \\
\leq \sum_{k=1}^{[n / 2]^{-1}} k \lg (n / 2)+\lg n \sum_{k=[n / 2]}^{n-1} k \begin{array}{c}
\begin{array}{c}
\text { The } \lg \mathrm{k} \text { in the first term } \\
\text { is bounded by } \lg \mathrm{n} / 2
\end{array} \\
=\sum_{k=1}^{[n / 2]^{-1}} k(\lg n-1)+\lg n \sum_{k=[n / 2\rceil}^{n-1} k \\
\lg \mathrm{n} / 2=\lg \mathrm{n}-1
\end{array} \\
=(\lg n-1)^{\left[n / 2 \sum_{k=1}^{-1} k+\lg n \sum_{k=[n / 2\rceil}^{n-1} k\right.} \begin{array}{c}
\text { Move }(\lg \mathrm{n}-1) \text { outside } \\
\text { the summation }
\end{array}
\end{gathered}
$$

$$
\begin{gathered}
\text { Tightly Bounding } \\
\text { The Key Summation } \\
\sum_{k=1}^{n-1} k \lg k \leq(\lg n-1)^{[n / 2]-1} \sum_{k=1}^{\left[1 / \lg n \sum_{k=[n / 2}^{n-1} k\right.} \begin{array}{c}
\text { The summation bound } \\
\text { so far }
\end{array} \\
=\lg n \sum_{k=1}^{[n / 2]^{-1}} k-\sum_{k=1}^{[n / 2]-1} k+\lg n \sum_{k=[n / 2]}^{n-1} k \text { Distribute the }(\lg n-1) \\
=\lg n \sum_{k=1}^{n-1} k-\sum_{k=1}^{[n / 2]^{-1}} k \quad \begin{array}{l}
\text { The summations overlap } \\
\text { in range; combine them }
\end{array} \\
=\lg n\left(\frac{(n-1)(n)}{2}\right)-\sum_{k=1}^{[n / 2]^{-1}} k \quad \text { The Gaussian series }
\end{gathered}
$$

$$
\begin{gathered}
\text { Tightly Bounding } \\
\text { The Key Summation } \\
\sum_{k=1}^{n-1} k \lg k \leq\left(\frac{(n-1)(n)}{2}\right) \lg n-\sum_{k=1}^{[n / 2} k \overbrace{\substack{-1}}^{\text {The summation bound }} \begin{array}{c}
\text { so far }
\end{array} \\
\leq \frac{1}{2}[n(n-1)] \lg n-\sum_{k=1}^{n / 2-1} k
\end{gathered} \begin{gathered}
\text { Rearrange first term, } \\
\text { place upper bound on } \\
\text { second }
\end{gathered},
$$

Tightly Bounding

The Key Summation

$$
\begin{aligned}
\sum_{k=1}^{n-1} k \lg k & \leq \frac{1}{2}\left(n^{2} \lg n-n \lg n\right)-\frac{1}{8} n^{2}+\frac{n}{4} \\
& \leq \frac{1}{2} n^{2} \lg n-\frac{1}{8} n^{2} \text { when } n \geq 2
\end{aligned}
$$

Done!!!

