
9/13/11	

1	

CS583 Lecture 03	

Jana Kosecka	

Heapsort, Quicksort	

some materials here are based on E. Demaine , D. Luebke slides	

Previously	

•  Solving recurrences	

•  Substitution method	

•  Iteration methods	

•  Recursion tree	

•  Masters’s theorem	

9/13/11	

2	

•  Insertion Sort	

•  At any point we are looking at element j	

•  There is an invariant that is being maintained at each

iteration of the loop	

•  Loop invariant: At the beginning of each iteration,

elements in A[1, … j-1] are sorted	

•  At each iteration you add one element and increase the

length of sorted elements	

Loop Invariants	

• Useful for showing correctness of programs	

•  Step 1: Show that the loop invariant is true at

initialization	

•  Step 2: Maintenance: if it is true before iteration

of the loop, it is true after the iteration of the loop	

•  Step 3: Termination: When the loop terminates,

the invariant gives useful property showing that
the algorithm is correct	

Loop Invariants	

9/13/11	

3	

Sorting Continued	

•  So far we’ve talked about two algorithms to
sort an array of numbers	

- What is the advantage of merge sort?	

- What is the advantage of insertion sort?	

•  Next on the agenda: Heapsort	

-  Combines advantages of both previous
algorithms	

•  A heap can be seen as a complete binary
tree:	

What makes a binary tree complete? 	

Is the example above complete?	

Heaps	

16	

14	
 10	

8	
 7	
 9	
 3	

2	
 4	
 1	

9/13/11	

4	

•  A heap can be seen as a complete binary tree:	

The book calls them “nearly complete” binary trees;
can think of unfilled slots as null pointers	

Heaps	

16	

14	
 10	

8	
 7	
 9	
 3	

2	
 4	
 1	
 1	
 1	
 1	
1	
1	

Heaps	

•  In practice, heaps are usually implemented
as arrays:	

16	

14	
 10	

8	
 7	
 9	
 3	

2	
 4	
 1	

16	
14	
10	
 8	
 7	
 9	
 3	
 2	
 4	
 1	
A =	

9/13/11	

5	

Heaps	

•  To represent a complete binary tree as an array: 	

-  The root node is A[1]	

-  Node i is A[i]	

-  The parent of node i is A[i/2] (note: integer

divide)	

-  The left child of node i is A[2i]	

-  The right child of node i is A[2i + 1]	

16	

14	
 10	

8	
 7	
 9	
 3	

2	
 4	
 1	

16	
14	
10	
 8	
 7	
 9	
 3	
 2	
 4	
 1	
A =	

Referencing Heap Elements	

•  So…	

Parent(i) { return ⎣i/2⎦; }

Left(i) { return 2*i; }

right(i) { return 2*i + 1; }

•  An aside: How would you implement this ���
most efficiently?	

9/13/11	

6	

The Heap Property	

•  Heaps also satisfy the heap property:	

	
A[Parent(i)] ≥ A[i]	
 	
for all nodes i > 1	

-  In other words, the value of a node is at most

the value of its parent	

-  Where is the largest element in a heap

stored?	

•  Definitions:	

-  The height of a node in the tree = the number

of edges on the longest downward path to a
leaf 	

-  The height of a tree = the height of its root	

Heap Height	

•  What is the height of an n-element heap?
Why?	

•  This is nice: basic heap operations take at
most time proportional to the height of the
heap	

9/13/11	

7	

Heap Height	

•  What is the height of an n-element heap?
Why?	

•  This is nice: basic heap operations take at
most time proportional to the height of the
heap	

•  Max- heap for sorting 	

•  Min-heap for priority cues	

€

Θ(lgn)

€

O(lgn)

Heap Height	

•  Heapsort procedures	

•  Heapify
•  Build-heap
•  Heapsort

9/13/11	

8	

Heap Operations: Heapify()	

•  Heapify(): maintain the heap property	

-  Given: a node i in the heap with children l and r	

-  Given: two subtrees rooted at l and r, assumed to

be heaps	

-  Problem: The subtree rooted at i may violate the

heap property (How?)	

-  Action: let the value of the parent node “float

down” so subtree at i satisfies the heap property 	

‣  What do you suppose will be the basic operation

between i, l, and r?	

Example	

9/13/11	

9	

Heap Operations: Heapify()	

Heapify(A, i)
{
 l = Left(i); r = Right(i);
 if (l <= heap_size(A) && A[l] > A[i])
 largest = l;
 else
 largest = i;
 if (r <= heap_size(A) && A[r] > A[largest])
 largest = r;
 if (largest != i)
 Swap(A, i, largest);
 Heapify(A, largest);

}

Heapify(A,2) Example	

16	

4	
 10	

14	
 7	
 9	
 3	

2	
 8	
 1	

16	
 10	
14	
 7	
 9	
 3	
 2	
 8	
 1	
A =	
 4	

9/13/11	

10	

Heapify(A,2) Example	

16	

4	
 10	

14	
 7	
 9	
 3	

2	
 8	
 1	

16	
 10	
 7	
 9	
 3	
 2	
 8	
 1	
A =	
 4	
 14	

Heapify(A,2) Example	

16	

14	
 10	

4	
 7	
 9	
 3	

2	
 8	
 1	

16	
14	
10	
 4	
 7	
 9	
 3	
 2	
 8	
 1	
A =	

9/13/11	

11	

Heapify(A,2) Example	

16	

14	
 10	

4	
 7	
 9	
 3	

2	
 8	
 1	

16	
14	
10	
 7	
 9	
 3	
 2	
 8	
 1	
A =	
 4	

Heapify(A,4) Example	

16	

14	
 10	

4	
 7	
 9	
 3	

2	
 8	
 1	

16	
14	
10	
 7	
 9	
 3	
 2	
 1	
A =	
 4	
 8	

9/13/11	

12	

Heapify(A,4) Example	

16	

14	
 10	

8	
 7	
 9	
 3	

2	
 4	
 1	

16	
14	
10	
 8	
 7	
 9	
 3	
 2	
 4	
 1	
A =	

Heapify(A,4) Example	

16	

14	
 10	

8	
 7	
 9	
 3	

2	
 4	
 1	

16	
14	
10	
 8	
 7	
 9	
 3	
 2	
 1	
A =	
 4	

9/13/11	

13	

Heapify(A,9) Example	

16	

14	
 10	

8	
 7	
 9	
 3	

2	
 4	
 1	

16	
14	
10	
 8	
 7	
 9	
 3	
 2	
 4	
 1	
A =	

Analyzing Heapify(): Informal	

•  Aside from the recursive call, what is the
running time of Heapify()?

•  How many times can Heapify()
recursively call itself?	

•  What is the worst-case running time of
Heapify() on a heap of size n?	

9/13/11	

14	

Analyzing Heapify(): Formal	

•  Fixing up relationships between i, l, and r
takes Θ(1) time	

•  If the heap at i has n elements, how many
elements can the subtrees at l or r have? 	

-  Draw it	

•  Answer: 2n/3 (worst case: bottom row 1/2
full)	

•  So time taken by Heapify() is given by	

	
T(n) ≤ T(2n/3) + Θ(1) 	

Analyzing Heapify(): Formal	

•  So we have 	

	
 	
T(n) ≤ T(2n/3) + Θ(1) 	

•  By case 2 of the Master Theorem,	

	
 	
T(n) = O(lg n)	

•  Thus, Heapify() takes logarithmic time	

9/13/11	

15	

Heap Operations: BuildHeap()	

•  We can build a heap in a bottom-up manner by

running Heapify() on successive subarrays	

-  Fact: for array of length n, all elements in range ���

A[⎣n/2⎦ + 1 .. n] are heaps (Why?)	

-  So: 	

‣  Walk backwards through the array from n/2

to 1, calling Heapify() on each node.	

‣  Order of processing guarantees that the

children of node i are heaps when i is
processed	

BuildHeap()	

// given an unsorted array A, make A a
heap

BuildHeap(A)
{
 heap_size(A) = length(A);
 for (i = ⎣length[A]/2⎦ downto 1)
 Heapify(A, i);

}

9/13/11	

16	

BuildHeap() Example	

•  Work through example���
A = {4, 1, 3, 2, 16, 9, 10, 14, 8, 7}	

4	

1	
 3	

2	
 16	
 9	
 10	

14	
 8	
 7	

9/13/11	

17	

Analyzing BuildHeap()	

•  Each call to Heapify() takes O(lg n) time	

•  There are O(n) such calls (specifically, ⎣n/

2⎦)	

•  Thus the running time is O(n lg n)	

-  Is this a correct asymptotic upper bound?	

-  Is this an asymptotically tight bound?	

•  A tighter bound is O(n) 	

-  How can this be? Is there a flaw in the

above reasoning?	

Analyzing BuildHeap(): Tight	

•  To Heapify() a subtree takes O(h) time
where h is the height of the subtree	

-  h = O(lg m), m = # nodes in subtree	

-  The height of most subtrees is small	

•  Fact: an n-element heap has at most ⎡n/2h

+1⎤ nodes of height h	

•  CLR 7.3 uses this fact to prove that
BuildHeap() takes O(n) time 	

9/13/11	

18	

Heapsort	

•  Given BuildHeap(), an in-place sorting
algorithm is easily constructed:	

- Maximum element is at A[1]	

-  Discard by swapping with element at A[n]	

‣  Decrement heap_size[A]	

‣  A[n] now contains correct value	

-  Restore heap property at A[1] by calling
Heapify()

-  Repeat, always swapping A[1] for A[heap_size
(A)]	

Heapsort	

Heapsort(A)
{
 BuildHeap(A);
 for (i = length(A) downto 2)
 {
 Swap(A[1], A[i]);
 heap_size(A) -= 1;
 Heapify(A, 1);
 }

}

9/13/11	

19	

Analyzing Heapsort	

•  The call to BuildHeap() takes O(n)
time 	

•  Each of the n - 1 calls to Heapify()
takes O(lg n) time	

•  Thus the total time taken by HeapSort() ���
= O(n) + (n - 1) O(lg n)���
= O(n) + O(n lg n)���
= O(n lg n)	

Priority Queues	

•  Heapsort is a nice algorithm, but in practice
Quicksort (coming up) usually wins	

•  But the heap data structure is incredibly useful
for implementing priority queues	

-  A data structure for maintaining a set S of

elements, each with an associated value or
key	

-  Supports the operations Insert(),
Maximum(), and ExtractMax()

-  What might a priority queue be useful for?	

9/13/11	

20	

Priority Queue Operations	

•  Insert(S, x) inserts the element x
into set S	

•  Maximum(S) returns the element of S
with the maximum key	

•  ExtractMax(S) removes and returns
the element of S with the maximum key	

•  How could we implement these operations
using a heap?	

Quicksort	

•  Sorts in place	

•  Sorts O(n lg n) in the average case	

•  Sorts O(n2) in the worst case	

•  So why would people use it instead of
merge sort?	

9/13/11	

21	

Review: Quicksort	

•  Sorts in place	

•  Sorts O(n lg n) in the average case	

•  Sorts O(n2) in the worst case	

-  But in practice, it’s quick	

-  And the worst case doesn’t happen often

(but more on this later…)	

Quicksort	

•  Another divide-and-conquer algorithm	

-  The array A[p..r] is partitioned into two

non-empty subarrays A[p..q] and A[q
+1..r] 	

‣  Invariant: All elements in A[p..q] are

less than all elements in A[q+1..r]	

-  The subarrays are recursively sorted by

calls to quicksort	

-  Unlike merge sort, no combining step:

two subarrays form an already-sorted
array	

9/13/11	

22	

Quicksort Code	

Quicksort(A, p, r)
{
 if (p < r)
 {
 q = Partition(A, p, r);
 Quicksort(A, p, q);
 Quicksort(A, q+1, r);
 }
}

Partition	

•  Clearly, all the action takes place in the
partition() function	

-  Rearranges the subarray in place	

-  End result: 	

‣  Two subarrays	

‣  All values in first subarray ≤ all values

in second	

-  Returns the index of the “pivot” element

separating the two subarrays	

•  How do you suppose we implement this?	

9/13/11	

23	

Partition procedure	

Partition Example	

A = {6,10,13,5,8,3,2,11}

9/13/11	

24	

Quicksort Code	

Quicksort(A, p, r)
{
 if (p < r)
 {
 q = Partition(A, p, r);
 Quicksort(A, p, q);
 Quicksort(A, q+1, r);
 }
}

Analyzing Quicksort	

•  What will be the worst case for the

algorithm?	

-  Partition is always unbalanced	

•  What will be the best case for the
algorithm?	

-  Partition is perfectly balanced	

•  Which is more likely?	

-  The latter, by far, except...	

•  Will any particular input elicit the worst
case?	

-  Yes: Already-sorted input	

9/13/11	

25	

Analyzing Quicksort	

•  In the worst case, input sorted or reverse
sorted. One side of partion has no elemets	

T(1) = Θ(1)	

T(n) = T(n - 1) + Θ(n)	

•  Works out to (via aritmetic series)	

	
T(n) = Θ(n2)	

Worst case recursion tree	

9/13/11	

26	

Worst case recursion tree	

 Analyzing Quicksort	

•  In the best case:	

T(n) = 2T(n/2) + Θ(n)	

•  What does this work out to?	

T(n) = Θ(n lg n) 	

9/13/11	

27	

 Analyzing Quicksort	

•  What is we split	

T(n) = T(9n/10) + T(n/10) + cn	

 Improving Quicksort	

•  The real liability of quicksort is that it runs
in O(n2) on already-sorted input	

•  Book discusses two solutions:	

-  Randomize the input array, OR	

-  Pick a random pivot element	

•  How will these solve the problem?	

-  By insuring that no particular input can

be chosen to make quicksort run in O(n2)
time	

9/13/11	

28	

Analyzing Quicksort: Average Case	

•  Assuming random input, average-case
running time is much closer to O(n lg n)
than O(n2)	

•  First, a more intuitive explanation/example:	

-  Suppose that partition() always produces

a 9-to-1 split. This looks quite
unbalanced!	

-  The recurrence is thus:	

	
T(n) = T(9n/10) + T(n/10) + n 	
	

- 	
 How deep will the recursion go? (draw
it)	

Use n instead of O(n)
for convenience (how?)

Using Recurrence tree	

9/13/11	

29	

Using Recurrence tree	

Analyzing Quicksort: Average Case	

•  Intuitively, a real-life run of quicksort will
produce a mix of “bad” and “good” splits	

-  Randomly distributed among the

recursion tree	

-  Pretend for intuition that they alternate

between best-case (n/2 : n/2) and worst-
case (n-1 : 1)	

-  What happens if we bad-split root node,
then good-split the resulting size (n-1)
node?	

9/13/11	

30	

Analyzing Quicksort: Average Case	

•  Intuitively, a real-life run of quicksort will produce a

mix of “bad” and “good” splits	

-  Randomly distributed among the recursion tree	

-  Pretend for intuition that they alternate between

best-case (n/2 : n/2) and worst-case (n-1 : 1)	

•  What happens if we bad-split root node, then good-

split the resulting size (n-1) node?	

- We end up with three subarrays, size 1, (n-1)/2,

(n-1)/2 	

-  No worse than if we had good-split the root node!	

€

T(n) = 2(T(n /2 −1) +Θ(n /2)) +Θ(n) =Θ(n lgn)

Analyzing Quicksort: Average Case	

•  Intuitively, the O(n) cost of a bad split ���

(or 2 or 3 bad splits) can be absorbed ���
into the O(n) cost of each good split	

•  Thus running time of alternating bad and good
splits is still O(n lg n), with slightly higher
constants	

•  How can we be more rigorous?	

9/13/11	

31	

Analyzing Quicksort: Average Case	

•  Idean partition around random element	

•  Running time is independent of inout order	

•  No assumptions made about input distribution	

•  No specific case gives worst case behavior	

•  Worst case is determined only by the output of
random number generator	

•  Idea: let T(n) = random variable for running
time of quicksort	

Analyzing Quicksort: Average Case	

•  For simplicity, assume:	

-  All inputs distinct (no repeats)	

-  Slightly different partition()

procedure	

‣  partition around a random element,

which is not included in subarrays	

‣  all splits (0:n-1, 1:n-2, 2:n-3, … ,

n-1:0) equally likely	

•  What is the probability of a particular split

happening?	

•  Answer: 1/n, 	

9/13/11	

32	

Analysis	

Analysis	

9/13/11	

33	

Analysis	

Analysis	

Use substitution method	

9/13/11	

34	

Analysis	

If a is large enough such that 	

an/4 dominates 	

€

Θ(n)

Quicksort summary	

•  Great general purpose sorting algorithm	

•  Typically twice as fast as merge sort	

•  Can benefit from code tuning 	
	

9/13/11	

35	

Analyzing Quicksort: Average Case	

•  So partition generates splits ���

	
(0:n-1, 1:n-2, 2:n-3, … , n-2:1, n-1:0) ���
each with probability 1/n	

•  If T(n) is the expected running time,	

•  What is each term under the summation for?	

•  What is the Θ(n) term for? 	

Alternative Analysis	

Without formal expectations E[.]	

9/13/11	

36	

Analyzing Quicksort: Average Case	

•  So…	

-  Note: this is just like the book’s
recurrence (p166), except that the
summation starts with k=0	

- We’ll take care of that in a second 	

Write it on
the board

Analyzing Quicksort: Average Case	

•  We can solve this recurrence using the
dreaded substitution method	

-  Guess the answer	

-  Assume that the inductive hypothesis

holds	

-  Substitute it in for some value < n	

-  Prove that it follows for n	

9/13/11	

37	

Analyzing Quicksort: Average Case	

•  We can solve this recurrence using the
substitution method	

-  Guess the answer	

‣  What’s the answer?	

-  Assume that the inductive hypothesis
holds	

-  Substitute it in for some value < n	

-  Prove that it follows for n	

Analyzing Quicksort: Average Case	

•  We can solve this recurrence using the
dreaded substitution method	

-  Guess the answer	

‣  T(n) = O(n lg n)	

-  Assume that the inductive hypothesis
holds	

-  Substitute it in for some value < n	

-  Prove that it follows for n	

9/13/11	

38	

Analyzing Quicksort: Average Case	

•  We can solve this recurrence using the
dreaded substitution method	

-  Guess the answer	

‣  T(n) = O(n lg n)	

-  Assume that the inductive hypothesis
holds	

‣  T(n) ≤ an lg n + b for some constants

a and b	

-  Substitute it in for some value < n	

-  Prove that it follows for n	

Analyzing Quicksort: Average Case	

•  We can solve this recurrence using the
dreaded substitution method	

-  Guess the answer	

‣  T(n) = O(n lg n)	

-  Assume that the inductive hypothesis
holds	

‣  T(n) ≤ an lg n + b for some constants

a and b	

-  Substitute it in for some value < n	

‣  What value?	

-  Prove that it follows for n	

9/13/11	

39	

Note: leaving the same
recurrence as the book

What are we doing
here?

Analyzing Quicksort: Average Case	

The recurrence to be

solved

What are we doing
here?

What are we doing
here?

Plug in inductive
hypothesis

Expand out the k=0
 case

2b/n is just a constant,
so fold it into Θ(n)

What are we doing
here?

What are we doing
here?

Evaluate the summation:
b+b+…+b = b (n-1)

The recurrence to be
solved

Since n-1<n, 2b(n-1)/n <
2b

Analyzing Quicksort: Average Case	

What are we doing
here?

Distribute the
summation

This summation gets its own set of slides later

9/13/11	

40	

How did we do this? Pick a large enough that
an/4 dominates Θ(n)+b

What are we doing
here?

Remember, our goal is
to get T(n) ≤ an lg n + b

What the hell? We’ll prove this later

What are we doing
here?

Distribute the (2a/n)
term

The recurrence to be
solved

Analyzing Quicksort: Average Case	

Analyzing Quicksort: Average Case	

•  So T(n) ≤ an lg n + b for certain a and b	

-  Thus the induction holds	

-  Thus T(n) = O(n lg n)	

-  Thus quicksort runs in O(n lg n) time on
average 	

•  Oh yeah, the summation… 	

9/13/11	

41	

What are we doing
here?

The lg k in the second
term is bounded by lg n

Tightly Bounding ���
The Key Summation	

What are we doing
here?

Move the lg n outside
the summation

What are we doing
here?

Split the summation for
a tighter bound

The summation bound
so far

Tightly Bounding���
The Key Summation	

What are we doing
here?

The lg k in the first term
is bounded by lg n/2

What are we doing
here?

lg n/2 = lg n – 1

What are we doing
here?

Move (lg n - 1) outside
the summation

9/13/11	

42	

The summation bound
so far

Tightly Bounding���
The Key Summation	

What are we doing
here? Distribute the (lg n - 1)

What are we doing
here?

The summations overlap
in range; combine them

What are we doing
here? The Gaussian series

The summation bound
so far

Tightly Bounding ���
The Key Summation	

What are we doing
here?

Rearrange first term,
place upper bound on

second

What are we doing? Gaussian series

What are we doing? Multiply it
all out

9/13/11	

43	

Tightly Bounding ���
The Key Summation	

