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            Linear Time Sorting, Median, Order Statistics


Many slides here are based on E. Demaine , D. Luebke slides




•  Insertion sort:

•  Easy to code


Fast on small inputs (less than ~50 elements)

Fast on nearly-sorted inputs

O(n2) worst case

O(n2) average (equally-likely inputs) case

O(n2) reverse-sorted case




•  Merge sort:

•  Divide-and-conquer:

      Split array in half

      Recursively sort subarrays

      Linear-time merge step

•  O(n lg n) worst case

•  Doesn’t sort in place




•  Heap sort:

•  Uses the very useful heap data structure

•  Complete binary tree

•  Heap property: parent key > children’s keys

•  O(n lg n) worst case

•  Sorts in place

•  Fair amount of shuffling memory around




•  Quick sort:

•  Divide-and-conquer:

•  Partition array into two subarrays, recursively sort

   All of first subarray < all of second subarray

   No merge step needed!

•  O(n lg n) average case, fast in practice

•  O(n2) worst case

•  Naïve implementation: worst case on sorted input

•  Address this with randomized quicksort




•  We will provide a lower bound, then beat it

How do you suppose we’ll beat it?


•  First, an observation: all of the sorting algorithms so 
far are comparison sorts


•  The only operation used to gain ordering information 
about a sequence is the pairwise comparison of two 
elements


•  We have seen sorting algorithms O(n lg n) 

•  Can we do better ?

•  Theorem: all comparison sorts are Ω(n lg n)




•  Decision trees provide an abstraction of comparison 
sorts


•  A decision tree represents the comparisons made by a 
comparison sort.  Every thing else ignored

(Draw examples on board)


•  What do the leaves represent?

•  How many leaves must there be?




•  Decision trees can model comparison sorts.  For a 
given algorithm:


•  One tree for each n

•  Tree paths are all possible execution traces

   What’s the longest path in a decision tree for insertion 

sort?  For merge sort?

•  What is the asymptotic height of any decision tree for 

sorting n elements?

•  Answer: Ω(n lg n)    (now let’s prove it…)




•  Thm: Any decision tree that sorts n elements has 
height Ω(n lg n)


•  What’s the minimum # of leaves?

•  What’s the maximum # of leaves of a binary tree of 

height h?

•  Clearly the minimum # of leaves is less than or equal 

to the maximum # of leaves




•  So we have…    �
n! ≤ 2h


•  Taking logarithms:    �
lg (n!) ≤ h


•  Stirling’s approximation tells us:


•  Thus:




•  So we have


•  Thus the minimum height of a decision tree is Ω(n lg n) 


€ 

h ≥ lg n
e
 

 
 
 

 
 
n

= n lgn − n lge
= Ω n lgn( )



•  Thus the time to comparison sort n elements is Ω(n lg n)

•  Corollary: Heapsort and Mergesort are asymptotically 

optimal comparison sorts

•  But the name of this lecture is “Sorting in linear time”!


How can we do better than Ω(n lg n)?




•  Counting sort

•  No comparisons between elements!

•  But…depends on assumption about the numbers being 

sorted

•  We assume numbers are in the range 1.. k


The algorithm:


Input: A[1..n], where A[j] ∈ {1, 2, 3, …, k}

Output: B[1..n], sorted (notice: not sorting in place)

Also: Array C[1..k] for auxiliary storage




1  CountingSort(A, B, k) 
2   for i=1 to k 
3    C[i]= 0; 
4   for j=1 to n 
5    C[A[j]] += 1; 
6   for i=2 to k 
7    C[i] = C[i] + C[i-1]; 
8   for j=n downto 1 
9    B[C[A[j]]] = A[j]; 
10     C[A[j]] -= 1; 

Work through example: A={4 1 3 4 3}, k = 4 



1  CountingSort(A, B, k) 
2   for i=1 to k 
3    C[i]= 0; 
4   for j=1 to n 
5    C[A[j]] += 1; 
6   for i=2 to k 
7    C[i] = C[i] + C[i-1]; 
8   for j=n downto 1 
9    B[C[A[j]]] = A[j]; 
10     C[A[j]] -= 1; 

What will be the running time? 

Takes time O(k) 

Takes time O(n) 



•  Loop 1                                        Array C


4   1  3   4   3                                 0   0   0   0




•  Loop 2                                        Array C


4   1  3   4   3                                 0   0   0   0




•  Loop 3                 Array C                 Array C’


4   1  3   4   3          1  0  2  2




•  Loop 4                 Array C                 Array B


4   1  3   4   3          1  1  3  5




•  Total time: O(n + k)

Usually, k = O(n)

Thus counting sort runs in O(n) time


•  But sorting is Ω(n lg n)!

•  No contradiction--this is not a comparison sort (in

   fact, there are no comparisons at all!)

•  Stable algorithm – the numbers with the same value 

appear in the same order in the output array as they 

   to in the input array


Notice that this algorithm is stable 




•  Cool!  Why don’t we always use counting sort?

•  Because it depends on range k of elements

•  Could we use counting sort to sort 32 bit integers?  

Why or why not?

•  Answer: no, k too large (232 = 4,294,967,296)


•  How to sort n integers in range              in O(n) time ?

•  Counting Sort  
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•  How did IBM get rich originally?

•  Answer: punched card readers for census tabulation in 

early 1900’s.  

•  In particular, a card sorter that could sort cards into 

different bins

•  Each column can be punched in 12 places

•  Decimal digits use 10 places

•  Problem: only one column can be sorted on at a time




•  Intuitively, you might sort on the most significant digit, 
then the second msd, etc.


•  Problem: lots of intermediate piles of cards (read: 
scratch arrays) to keep track of


•  Key idea: sort the least significant digit first

    RadixSort(A, d) 
       for i=1 to d 
          StableSort(A) on digit i

Example: Fig 9.3




329       720      720       329

458       355      329       355

659       436      436       436 

839      457      839       457

436      657      355       657

720      329      457       720 

355      839      657       839




•  Can we prove it will work?

•  Sketch of an inductive argument (induction on the 

number of passes):

•  Assume lower-order digits {j: j<i}are sorted

•  Show that sorting next digit i leaves array correctly 

sorted 

•  If two digits at position i are different, ordering 

numbers by that digit is correct (lower-order digits 
irrelevant)


•  If they are the same, numbers are already sorted on the 
lower-order digits.  Since we use a stable sort, the 
numbers stay in the right order




329       720      720       329

458       355      329       355

659       436      436       436 

839      457      839       457

436      657      355       657

720      329      457       720 

355      839      657       839


•  Two digits are the same

•  Two digits are different




•  What sort will we use to sort on digits?

•  Counting sort is obvious choice: 


Sort n numbers on digits that range from 1..k

Time: O(n + k)


•  Each pass over n numbers with d digits takes time O(n
+k), so total time O(dn+dk)


•  When d is constant and k=O(n), takes O(n) time

•  Here the analysis is done on digits ? What about bits ?


•  How many bits in a computer word?




•  Given n b-bit numbers how long will it take ? 


•  Suppose each digit is r-bits long


•  Each pass takes


•  There are d-passes


•  How to choose r to be able to sort in linear time ?   
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•  How to choose r so the running time is still linear


•  If              then using 

•  Radix sort is a good idea

•  Since the running time is linear 


•  Hidden constant factors in the notation can influence

•  the choice 
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•  Given n b-bit numbers how long will it take ? 


•  Problem: Sort 1 million 64-bit numbers

Treat as four-16-digit numbers radix 216 numbers

Can sort in just four passes with radix sort!


•  Compares well with typical O(n lg n) comparison sort 

Requires approx lg n = 20 operations per number

being sorted


•  So why would we ever use anything but radix sort?




•  In general, radix sort based on counting sort is

Fast

Asymptotically fast (i.e., O(n))

Simple to code

A good choice


•  To think about: Can radix sort be used on floating-
point numbers?




•  Comparison sorts: O(n lg n) at best

•  Model sort with decision tree

•  Path down tree = execution trace of algorithm

•  Leaves of tree = possible permutations of input

•  Tree must have n! leaves, so O(n lg n) height




•  Counting sort: 

Assumption: input is in the range 1..k

• Basic idea: 


Count number of elements k ≤ each element i

Use that number to place i in position k of sorted 
array 


• No comparisons! Runs in time O(n + k)

Stable sort

Does not sort in place:


O(n) array to hold sorted output

O(k) array for scratch storage




1  CountingSort(A, B, k) 
2   for i=1 to k 
3    C[i]= 0; 
4   for j=1 to n 
5    C[A[j]] += 1; 
6   for i=2 to k 
7    C[i] = C[i] + C[i-1]; 
8   for j=n downto 1 
9    B[C[A[j]]] = A[j]; 
10     C[A[j]] -= 1; 



•  Radix sort:

Assumption: input has d digits ranging from 0 to k

• Basic idea: 


Sort elements by digit starting with least significant

Use a stable sort (like counting sort) for each stage


• Each pass over n numbers with d digits takes time 
O(n+k), so total time O(dn+dk)

• When d is constant and k=O(n), takes O(n) time

Fast!  Stable! Simple!

Doesn’t sort in place




•  Bucket sort

Assumption: input is n reals from [0, 1)

• Basic idea: 

  Create n linked lists (buckets) to divide interval [0,1) 

into subintervals of size 1/n

• Add each input element to appropriate bucket and 

sort buckets with insertion sort

• Uniform input distribution  O(1) bucket size

• Therefore the expected total time is O(n)

These ideas will return when we study hash tables




•  The ith order statistic in a set of n elements is the ith 
smallest element


•  The minimum is thus the 1st order statistic 

•  The maximum is (duh) the nth order statistic

•  The median is the n/2 order statistic


If n is even, there are 2 medians

•  How can we calculate order statistics?

•  What is the running time?




•  How many comparisons are needed to find the 
minimum element in a set?  The maximum?


•  Can we find the minimum and maximum with less than 
twice the cost?


•  Yes:

Walk through elements by pairs

Compare each element in pair to the other

Compare the largest to maximum, smallest to

Minimum

Total cost: 3 comparisons per 2 elements = O(3n/2)




•  A more interesting problem is selection: finding the ith 
smallest element of a set 


•  We will show:


• A practical randomized algorithm with O(n) 
expected running time

• A cool algorithm of theoretical interest only with 

O(n) worst-case running time




•  Key idea: use partition() from quicksort

But, only need to examine one subarray

This savings shows up in running time: O(n)


•  We will again use a slightly different partition than the 
book:

q = RandomizedPartition(A, p, r)


≤ A[q] ≥ A[q] 
q p r 



RandomizedSelect(A, p, r, i) 
    if (p == r) then return A[p]; 
    q = RandomizedPartition(A, p, r) 
    k = q - p + 1; 
    if (i == k) then return A[q];   // not in 
book 

    if (i < k) then 
        return RandomizedSelect(A, p, q-1, i); 
    else 
        return RandomizedSelect(A, q+1, r, i-k); 

≤ A[q] ≥ A[q] 

k

q p r 



6   10   13   5   8   3   2  11
 i=7 looking for i-th largest


2   5   3   6  8  13  10  11  
 i=3 looking for i-th largest 


7-4 = 3 




•  Analyzing RandomizedSelect()

Worst case: partition always 0:n-1


T(n) 
= T(n-1) + O(n) 
= ???

 
 
= O(n2) 
(arithmetic series)

No better than sorting!


“Best” case: suppose a 9:1 partition

T(n) 
= T(9n/10) + O(n) 
= ???

 
 
= O(n)
 
(Master Theorem, case 3)

Better than sorting!

What if this had been a 99:1 split?




• For upper bound, assume ith element always falls in 
larger side of partition:


€ 

T n( ) ≤
1
n

T max k,n − k −1( )( ) +Θ n( )
k= 0

n−1

∑



•  Average case

•  For upper bound, assume ith element always falls in 

larger side of partition:


Let’s show that T(n) = O(n) by substitution


What happened here? 



What happened here? “Split” the recurrence 

What happened here? 

What happened here? 

What happened here? 

•  Assume T(n) ≤ cn for sufficiently large c:


The recurrence we started with 

Substitute T(n) ≤ cn  for T(k)  

Expand arithmetic series 

Multiply it out 



What happened here? Subtract c/2    

What happened here? 

What happened here? 

What happened here? 

•  Assume T(n) ≤ cn for sufficiently large c:


The recurrence so far 

Multiply it out    

Rearrange the arithmetic   

What we set out to 
prove 
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•  Randomized algorithm works well in practice

•  What follows is a worst-case linear time algorithm, 

really of theoretical interest only

•  Basic idea: 


Generate a good partitioning element

Call this element x




•  The algorithm in words:

1. 
Divide n elements into groups of 5

2. 
Find median of each group ( How?  How long?)

3. 
Use Select() recursively to find median x of the n/5 


medians

4. 
Partition the n elements around x.  Let k = rank(x)

5.     if (i == k) then return x


 
if (i < k) then use Select() recursively to find ith smallest 


element in first partition�

else (i > k) use Select() recursively to find (i-k)th smallest 


element in last partition












•  (Sketch situation on the board)

•  How many of the 5-element medians are ≤ x?


At least 1/2 of the medians = n/5 / 2 = n/10

•  How many elements are ≤ x?


At least 3 n/10  elements

•  For large n,    3 n/10  ≥ n/4 
(How large?)

•  So at least n/4 elements ≤ x

•  Similarly: at least n/4 elements ≥ x






•  Thus after partitioning around x, step 5 will call 
Select() on at most 3n/4 elements


•  The recurrence is therefore: 


??? 

??? 

??? 

??? 

??? 

 n/5   ≤ n/5 

Substitute T(n) = cn 

Combine fractions  

Express in desired form 

What we set out to prove 



•  Given a “black box” O(n) median algorithm, what can 
we do?


•  ith order statistic: 

Find median x

Partition input around x

if (i ≤ (n+1)/2)  recursively find ith element of first 
half


else find (i - (n+1)/2)th element in second half

T(n) = T(n/2) + O(n) = O(n)


Can you think of an application to sorting?




•  Worst-case O(n lg n) quicksort

Find median x and partition around it

Recursively quicksort two halves

T(n) = 2T(n/2) + O(n) = O(n lg n)




•  Worst-case O(n lg n) quicksort

Find median x and partition around it

Recursively quicksort two halves

T(n) = 2T(n/2) + O(n) = O(n lg n)





