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                         Structures for Dynamic Sets	


Many slides here are based on E. Demaine , D. Luebke slides	




•  Radix sort:	

Assumption: input has d digits ranging from 0 to k	

Basic idea: 	


Sort elements by digit starting with least significant	

Use a stable sort (like counting sort) for each stage	


Each pass over n numbers with d digits takes time O(n
+k), so total time O(dn+dk)	

When d is constant and k=O(n), takes O(n) time	


Fast!  Stable! Simple!	

Doesn’t sort in place	




•  Bucket sort	

Assumption: input is n reals from [0, 1)	

Basic idea: 	


Create n linked lists (buckets) to divide interval 
[0,1) into subintervals of size 1/n	


Add each input element to appropriate bucket and 
sort buckets with insertion sort	


Uniform input distribution  O(1) bucket size	

Therefore the expected total time is O(n)	


These ideas will return when we study hash tables	




•  The ith order statistic in a set of n elements is the ith 
smallest element	


•  The minimum is thus the 1st order statistic 	

•  The maximum is (duh) the nth order statistic	

•  The median is the n/2 order statistic	


If n is even, there are 2 medians	

•  Could calculate order statistics by sorting	


Time: O(n lg n) w/ comparison sort	

We can do better	




•  The selection problem: find the ith smallest element of 
a set 	


•  Two algorithms:	

A practical randomized algorithm with O(n) expected 

running time	

A cool algorithm of theoretical interest only with O(n) 

worst-case running time	




RandomizedSelect(A, p, r, i) 
    if (p == r) then return A[p]; 
    q = RandomizedPartition(A, p, r) 
    k = q - p + 1; 
    if (i == k) then return A[q];   // not in 
book 

    if (i < k) then 
        return RandomizedSelect(A, p, q-1, i); 
    else 
        return RandomizedSelect(A, q+1, r, i-
k); 

≤ A[q] ≥ A[q] 
k 

q p r 



•  Average case	

For upper bound, assume ith element always falls in 

larger side of partition:	


We then showed that T(n) = O(n) by substitution	




•  The algorithm in words:	

1. 	
 	
Divide n elements into groups of 5	

2. 	
 	
Find median of each group (How?  How long?)	

3. 	
 	
Use Select() recursively to find median x of the 
⎣n/5⎦ 	
medians	


4. 	
 	
Partition the n elements around x.  Let k = rank(x)	

5. 	
 	
if (i == k) then return x	

	
 	
if (i < k) then use Select() recursively to find ith smallest 
	
 	
element in first partition���
	
else (i > k) use Select() recursively to find (i-k)th smallest 
	
 	
element in last partition	




•  Given a “black box” O(n) median algorithm, what can 
we do?	


•  ith order statistic: 	

Find median x	

Partition input around x	

if (i ≤ (n+1)/2)  recursively find ith element of first 
half	


else find (i - (n+1)/2)th element in second half	

T(n) = T(n/2) + O(n) = O(n)	


Can you think of an application to sorting?	




•  Done with sorting and order statistics for now	


•  Next part of class will focus on data structures	


•  Many applications require dynamic set that supports	

   operations  Insert, Search, Delete 	

•  E.g. compiler symbol table – keys are the identifier 

strings	

•  One options static array A – size is the number of all 

possible keys (very large an 	




•  Motivation: symbol tables	

•  A compiler uses a symbol table to relate symbols to 

associated data	


•  Symbols: variable names, procedure names,	

•  Associated data: memory location, call graph, etc.	


•  For a symbol table (also called a dictionary), we care 
about search, insertion, and deletion	


•  We typically don’t care about sorted order	




•  More formally:	

•  Given a table T and a record x, with key (= symbol) 

and satellite data, we need to support:	

Insert (T, x)	

Delete (T, x)	

Search(T, x)	

We want these to be fast, but don’t care about 
sorting the records	


•  The structure we will use is a hash table	

Supports all the above in O(1) expected time!	






•  Example maintain 250 IP addresses of active 
customers of your web service	


•  Each IP 32-bit number 128.32.168.80	


•  How to organize the customers so we can retrieve , 
add, delete them fast	


•  Option 1: array indexed by IP address 	

•  Option 2: linked list of all addresses	




•  In the following discussions we will consider all keys 
to be (possibly large) natural numbers	


•  How can we convert floats to natural numbers for 
hashing purposes?	


•  How can we convert ASCII strings to natural numbers 
for hashing purposes? (radix notation)	




•  Suppose	

•  The range of keys is 0..m-1	

•  Keys are distinct	

•  The idea:	


Set up an array T[0..m-1] in which 	

T[i] = x 	
 	
if x ∈ T  and key[x] = i	

T[i] = NULL 	
otherwise	


This is called a direct-address table	

Operations take O(1) time!	

So what’s the problem?	




•  Direct addressing works well when the range m of keys 
is relatively small	


•  But what if the keys are 32-bit integers?	

Problem 1: direct-address table will have ���

232 entries,  more than 4 billion	

Problem 2: even if memory is not an issue, the time to 

initialize the elements to NULL  may be	

•  Solution: map keys to smaller range 0..m-1	

•  This mapping is called a hash function 	




•  Use hash function to map U into {0,1,…,m-1}	


T 
0 

m - 1 

h(k1) 
h(k4) 

h(k3) 

k4 

k2 k3 

k1 

k5 

U 
(universe of keys) 

K 
(actual 
keys) 



•  What happens when the slot is occupied – collision 	


T 
0 

m - 1 

h(k1) 
h(k4) 

h(k2) = h(k5) 

h(k3) 

k4 

k2 k3 

k1 

k5 

U 
(universe of keys) 

K 
(actual 
keys) 



•  How can we solve the problem of collisions?	

•  Solution 1: chaining	

•  Solution 2: open addressing	




•  Chaining puts elements that hash to the same slot in a 
linked list:	


—— 

—— 

—— 
—— 
—— 

-- 
T 

k4 

k2 k3 

k1 
k5 

U 
(universe of keys) 

K 
(actual 
keys) 

k6 k8 

k7 

k1 k4 —— 

k5 k2 

k3 
k8 k6 —— 
—— 

k7 —— 



•  How do we insert an element?	


—— 

—— 

—— 
—— 
—— 

—— 
T 

k4 

k2 k3 

k1 
k5 

U 
(universe of keys) 

K 
(actual 
keys) 

k6 k8 

k7 

k1 k4 —— 

k5 k2 

k3 
k8 k6 —— 
—— 

k7 —— 



•  How do we insert an element? Worst time O(1)	


—— 

—— 

—— 
—— 
—— 

—— 
T 

k4 

k2 k3 

k1 
k5 

U 
(universe of keys) 

K 
(actual 
keys) 

k6 k8 

k7 
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k5 k2 

k3 
k8 k6 —— 
—— 

k7 —— 



—— 

—— 

—— 
—— 
—— 

—— 
T 

k4 

k2 k3 

k1 
k5 

U 
(universe of keys) 

K 
(actual 
keys) 

k6 k8 

k7 

k1 k4 —— 

k5 k2 

k3 
k8 k6 —— 
—— 

k7 —— 

•  How do we delete an element?	

Do we need a doubly-linked list for efficient delete? (yes)	




•  How do we search for a element with a ���
given key?	


—— 

—— 

—— 
—— 
—— 

—— 
T 

k4 

k2 k3 

k1 
k5 

U 
(universe of keys) 

K 
(actual 
keys) 

k6 k8 

k7 

k1 k4 —— 

k5 k2 

k3 
k8 k6 —— 
—— 

k7 —— 



•  Assume simple uniform hashing: each key in table is 
equally likely to be hashed to any slot	


•  Given n keys and m slots in the table: the ���
load factor α = n/m = average # keys per slot	


•  What will be the average cost of an  unsuccessful 
search for a key?	




•  Assume simple uniform hashing: each key in table is 
equally likely to be hashed to any slot	


•  Given n keys and m slots in the table, the ���
load factor α = n/m = average # keys per slot	


•  What will be the average cost of an  unsuccessful 
search for a key?     A: O(1+α)	




•  Assume simple uniform hashing: each key in table is 
equally likely to be hashed to any slot	


•  Given n keys and m slots in the table, the ���
load factor α = n/m = average # keys per slot	


•  What will be the average cost of an  unsuccessful 
search for a key?     A: O(1+α)	


•  What will be the average cost of a successful search?    	




•  Assume simple uniform hashing: each key in table is 
equally likely to be hashed to any slot	


•  Given n keys and m slots in the table, the ���
load factor α = n/m = average # keys per slot	


•  What will be the average cost of an  unsuccessful 
search for a key?     A: O(1+α)	


•  Each list is equally likely be searched, α - average 
length of the list	


•  What will be the average cost of a successful search?    
A: O(1 + α/2) = O(1 + α)	


•  Slightly different analysis list to be searched is 
proportional to the expected number of elements in it – 
expected size to searched is  α/2	




•  So the cost of searching = O(1 + α)	

•  If the number of keys n is proportional to the number 

of slots in the table, what is α?	

•   A: α = O(1)	


In other words, we can make the expected cost of 
searching constant if we make α constant	




•  Basic idea (details in Section 12.4): 	

•  To insert: if slot is full, try another slot, …, until an 

open slot is found (probing)	

•   To search, follow same sequence of probes as would 

be used when inserting the element	

•  If reach element with correct key, return it	

•  If reach a NULL pointer, element is not in table	

•  Good for fixed sets (adding but no deletion)	


Example: spell checking	

•  Table needn’t be much bigger than n	

•  We will return to this later	






•  Clearly choosing the hash function well is crucial	

•  What will a worst-case hash function do?	

•  What will be the time to search in this case?	

•  What are desirable features of the hash function	


•  Should distribute keys uniformly into slots	

•  Should not depend on patterns in the data, i.e. 

regularity in the data should not affect its uniformity	

   (e.g. all even numbers)	


•  Three methods:  hashing by division, multiplication, 
universal hashing	




•  h(k) = k mod m	

•  In words: hash k into a table with m slots using the slot 

given by the remainder of k divided by m 	

•  What happens to elements with adjacent ���

values of k?	

•  What happens if m is a power of 2 (say 2P)?	

•  What if m is a power of 10 ?	

•  Upshot: pick table size m = prime number not too close 

to a power of 2 (or 10)	




•  h(k) = k mod m	

•  In words: hash k into a table with m slots using the slot 

given by the remainder of k divided by m 	

•  What happens to elements with adjacent ���

values of k?	

•  What happens if m is a power of 2 (say 2P) – hashing 

on p lower order bits ?	

•  What if m is a power of 10? – hashing on p least sign. 

Digits	

•  What if m is divisible by two and all numbers are 

even ?	




•  h(k) = k mod m	

•  Upshot: pick table size m = prime number not too close 

to a power of 2 (or 10), given some desirable load 
factor	


•  (e.g. 2000 elements, load factor around 3, 2000/3 	

•   701 is  a prime number which is close to 2000/3, but 

not near any power of 2)	




•  For a constant A, 0 < A < 1:	

•  h(k) = ⎣ m (kA - ⎣kA⎦) ⎦	


What does this term represent? 



•  For a constant A, 0 < A < 1:	

•  h(k) = ⎣ m (kA - ⎣kA⎦) ⎦	


•  h(k) = ⎣ m (k A mod 1) ⎦	


•  Value of m is not critical, Choose m = 2P	


•  Choose A not too close to 0 or 1	

•  Knuth: Good choice for A = (√5  - 1)/2	


•  Example	


Fractional part of kA 



•  Basic idea (details in Section 12.4): 	

•  To insert: if slot is full, try another slot, …, until an 

open slot is found (probing)	

•   To search, follow same sequence of probes as would 

be used when inserting the element	

•  If reach element with correct key, return it	

•  If reach a NULL pointer, element is not in table	

•  Good for fixed sets (adding but no deletion)	


Example: spell checking	

•  Table needn’t be much bigger than n	

•  We will return to this later	






•  Basic idea (details in Section 12.4): 	

•  To insert: if slot is full, try another slot, …, until an 

open slot is found (probing)	

•   Idea: for every key define a probe sequence	

•  h(k,0), h(k,1), h(k,2), h(k,3) ….	

•  Linear probing 	


•  Quadratic probing	


•  Double hashing	
€ 

h(k,i) = (h'(k) +i)modm

€ 

h(k,i) = (h'(k) + c1i + c2i
2)modm

€ 

h(k,i) = (h1(k) +ih2(k))modm



•  Scenario:	

You are given an assignment to implement hashing	

You will self-grade in pairs, testing and grading your 

partner’s implementation	

In a blatant violation of the honor code, your partner:	


Analyzes your hash function	

Picks a sequence of “worst-case” keys, causing 
your implementation to take O(n) time to search	


•  What’s an honest CS student to do?	




•  Choosing the hash function well is crucial	

Bad hash function puts all elements in same slot	

A good hash function:	


Should distribute keys uniformly into slots	

Should not depend on patterns in the data	


•  We discussed three methods:	

Division method	

Multiplication method	

Universal hashing	




•  h(k) = k mod m	

In words: hash k into a table with m slots using the slot 

given by the remainder of k divided by m 	

•  Elements with adjacent keys hashed to different slots: 

good	

•  If keys bear relation to m: bad	

•  Upshot: pick table size m = prime number not too close 

to a power of 2 (or 10)	




•  For a constant A, 0 < A < 1:	

•  h(k) = ⎣ m (kA - ⎣kA⎦) ⎦	


•  Upshot:	

Choose m = 2P	


Choose A not too close to 0 or 1	

Knuth: Good choice for A = (√5  - 1)/2	


Fractional part of kA 



•  As before, when attempting to foil an malicious 
adversary: randomize the algorithm	


•  Universal hashing: pick a hash function randomly in a 
way that is independent of the keys that are actually 
going to be stored	


•  Guarantees good performance on average, no matter 
what keys adversary chooses	




•  Let H  be a (finite) collection of hash functions 	

…that map a given universe U of keys…	

…into the range {0, 1, …, m - 1}.	


•  H  is said to be universal if:	

for each pair of distinct keys x, y ∈ U,���

the number of hash functions h ∈  H ���
for which h(x) = h(y) is |H |/m 	


In other words:	

With a random hash function from H, the chance 
of a collision between x and y is exactly 1/m    	


 (x ≠ y) 	




•  Theorem 11.3:	

Choose h from a universal family of hash functions	

Hash n keys into a table of m slots, n ≤ m	

Then the expected number of collisions involving a 

particular key x is less than 1 (is less then n/m)	

Proof:	


For each pair of keys y, z, let cyx = 1 if y and z collide, 0 
otherwise	


E[cyz] = 1/m (by definition)	

Let Cx be total number of collisions involving key x	


Since n ≤ m, we have E[Cx] < 1	




•  How to design an universal class of hash functions	

•  Choose table size m to be prime	

•  Decompose key x into r+1 digits, so that ���

x = {x0, x1, …, xr}	

Only requirement is that max value of digit < m	

(representation in terms of base of m)	

Let a = {a0, a1, …, ar} denote a sequence of r+1 

elements chosen randomly from {0, 1, …, m - 1}	

Define corresponding hash function ha ∈ H:���

With this definition, H  has mr+1 members	




•  H  is a universal collection of hash functions 
(Theorem 12.4)	


•  How to use:	

Pick r based on m and the range of keys in U	

Pick a hash function by (randomly) picking the a’s	

Use that hash function on all keys	






•  Another example of data structure 	

•  In particular, structures for dynamic sets	


Elements have a key and satellite data	

Dynamic sets support queries such as:	


Search(S, k), Minimum(S), Maximum(S), 
Successor(S, x), Predecessor(S, x)	


They may also support modifying operations like:	

Insert(S, x), Delete(S, x)	




•  Binary Search Trees (BSTs) are an important data 
structure for dynamic sets	


•  In addition to satellite data, elements have:	

key: an identifying field inducing a total ordering	

left: pointer to a left child (may be NULL)	

right: pointer to a right child (may be NULL)	

p: pointer to a parent node (NULL for root)	




•  BST property: ���
	
key[left(x)] ≤ key[x] ≤ key[right(x)]	


•  Example:	


F 

B H 

K D A 



•  What does the following code do?	

TreeWalk(x) 
    TreeWalk(left[x]); 
    print(x); 
    TreeWalk(right[x]); 

•  A: prints elements in sorted (increasing) order	

•  This is called an inorder tree walk	


Preorder tree walk: print root, then left, then right	

Postorder tree walk: print left, then right, then root	




•  Example:	


•  How long will a tree walk take?	

•  Prove that inorder walk prints in monotonically 

increasing order	


F 

B H 

K D A 



•  Given a key and a pointer to a node, returns an element 
with that key or NULL: 	


   TreeSearch(x, k) 
        if (x = NULL  or  k = key[x]) 
            return x; 
        if (k < key[x])  
            return TreeSearch(left[x], 
k); 

        else 
            return TreeSearch(right[x], 
k);	




•  Search for D and C:	


F 

B H 

K D A 



•  Search for D and C:	


F 

B H 

K D A 



•  Adds an element x to the tree so that the binary search 
tree property continues to hold	


•  The basic algorithm	

•  Like the search procedure above	

•  Insert x in place of NULL	


Use a “trailing pointer” to keep track of where you 
came from (like inserting into singly linked list)	




•  Example: Insert C	


F 

B H 

K D A 

C 



•  What is the running time of TreeSearch() or TreeInsert
()?	


•  A: O(h), where h = height of tree	

•  What is the height of a binary search tree?	

•  A: worst case: h = O(n)  when tree is just a linear string 

of left or right children	

We’ll keep all analysis in terms of h for now	

Later we’ll see how to maintain h = O(lg n)	





