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                         Structures for Dynamic Sets	



Many slides here are based on E. Demaine , D. Luebke slides	





•  Radix sort:	


Assumption: input has d digits ranging from 0 to k	


Basic idea: 	



Sort elements by digit starting with least significant	


Use a stable sort (like counting sort) for each stage	



Each pass over n numbers with d digits takes time O(n
+k), so total time O(dn+dk)	


When d is constant and k=O(n), takes O(n) time	



Fast!  Stable! Simple!	


Doesn’t sort in place	





•  Bucket sort	


Assumption: input is n reals from [0, 1)	


Basic idea: 	



Create n linked lists (buckets) to divide interval 
[0,1) into subintervals of size 1/n	



Add each input element to appropriate bucket and 
sort buckets with insertion sort	



Uniform input distribution  O(1) bucket size	


Therefore the expected total time is O(n)	



These ideas will return when we study hash tables	





•  The ith order statistic in a set of n elements is the ith 
smallest element	



•  The minimum is thus the 1st order statistic 	


•  The maximum is (duh) the nth order statistic	


•  The median is the n/2 order statistic	



If n is even, there are 2 medians	


•  Could calculate order statistics by sorting	



Time: O(n lg n) w/ comparison sort	


We can do better	





•  The selection problem: find the ith smallest element of 
a set 	



•  Two algorithms:	


A practical randomized algorithm with O(n) expected 

running time	


A cool algorithm of theoretical interest only with O(n) 

worst-case running time	





RandomizedSelect(A, p, r, i) 
    if (p == r) then return A[p]; 
    q = RandomizedPartition(A, p, r) 
    k = q - p + 1; 
    if (i == k) then return A[q];   // not in 
book 

    if (i < k) then 
        return RandomizedSelect(A, p, q-1, i); 
    else 
        return RandomizedSelect(A, q+1, r, i-
k); 

≤ A[q] ≥ A[q] 
k 

q p r 



•  Average case	


For upper bound, assume ith element always falls in 

larger side of partition:	



We then showed that T(n) = O(n) by substitution	





•  The algorithm in words:	


1. 	

 	

Divide n elements into groups of 5	


2. 	

 	

Find median of each group (How?  How long?)	


3. 	

 	

Use Select() recursively to find median x of the 
⎣n/5⎦ 	

medians	



4. 	

 	

Partition the n elements around x.  Let k = rank(x)	


5. 	

 	

if (i == k) then return x	


	

 	

if (i < k) then use Select() recursively to find ith smallest 
	

 	

element in first partition���
	

else (i > k) use Select() recursively to find (i-k)th smallest 
	

 	

element in last partition	





•  Given a “black box” O(n) median algorithm, what can 
we do?	



•  ith order statistic: 	


Find median x	


Partition input around x	


if (i ≤ (n+1)/2)  recursively find ith element of first 
half	



else find (i - (n+1)/2)th element in second half	


T(n) = T(n/2) + O(n) = O(n)	



Can you think of an application to sorting?	





•  Done with sorting and order statistics for now	



•  Next part of class will focus on data structures	



•  Many applications require dynamic set that supports	


   operations  Insert, Search, Delete 	


•  E.g. compiler symbol table – keys are the identifier 

strings	


•  One options static array A – size is the number of all 

possible keys (very large an 	





•  Motivation: symbol tables	


•  A compiler uses a symbol table to relate symbols to 

associated data	



•  Symbols: variable names, procedure names,	


•  Associated data: memory location, call graph, etc.	



•  For a symbol table (also called a dictionary), we care 
about search, insertion, and deletion	



•  We typically don’t care about sorted order	





•  More formally:	


•  Given a table T and a record x, with key (= symbol) 

and satellite data, we need to support:	


Insert (T, x)	


Delete (T, x)	


Search(T, x)	


We want these to be fast, but don’t care about 
sorting the records	



•  The structure we will use is a hash table	


Supports all the above in O(1) expected time!	







•  Example maintain 250 IP addresses of active 
customers of your web service	



•  Each IP 32-bit number 128.32.168.80	



•  How to organize the customers so we can retrieve , 
add, delete them fast	



•  Option 1: array indexed by IP address 	


•  Option 2: linked list of all addresses	





•  In the following discussions we will consider all keys 
to be (possibly large) natural numbers	



•  How can we convert floats to natural numbers for 
hashing purposes?	



•  How can we convert ASCII strings to natural numbers 
for hashing purposes? (radix notation)	





•  Suppose	


•  The range of keys is 0..m-1	


•  Keys are distinct	


•  The idea:	



Set up an array T[0..m-1] in which 	


T[i] = x 	

 	

if x ∈ T  and key[x] = i	


T[i] = NULL 	

otherwise	



This is called a direct-address table	


Operations take O(1) time!	


So what’s the problem?	





•  Direct addressing works well when the range m of keys 
is relatively small	



•  But what if the keys are 32-bit integers?	


Problem 1: direct-address table will have ���

232 entries,  more than 4 billion	


Problem 2: even if memory is not an issue, the time to 

initialize the elements to NULL  may be	


•  Solution: map keys to smaller range 0..m-1	


•  This mapping is called a hash function 	





•  Use hash function to map U into {0,1,…,m-1}	



T 
0 

m - 1 

h(k1) 
h(k4) 

h(k3) 

k4 

k2 k3 

k1 

k5 

U 
(universe of keys) 

K 
(actual 
keys) 



•  What happens when the slot is occupied – collision 	



T 
0 

m - 1 

h(k1) 
h(k4) 

h(k2) = h(k5) 

h(k3) 

k4 

k2 k3 

k1 

k5 

U 
(universe of keys) 

K 
(actual 
keys) 



•  How can we solve the problem of collisions?	


•  Solution 1: chaining	


•  Solution 2: open addressing	





•  Chaining puts elements that hash to the same slot in a 
linked list:	



—— 

—— 

—— 
—— 
—— 

-- 
T 

k4 

k2 k3 

k1 
k5 

U 
(universe of keys) 

K 
(actual 
keys) 

k6 k8 

k7 

k1 k4 —— 

k5 k2 

k3 
k8 k6 —— 
—— 

k7 —— 



•  How do we insert an element?	



—— 

—— 

—— 
—— 
—— 

—— 
T 

k4 

k2 k3 

k1 
k5 

U 
(universe of keys) 

K 
(actual 
keys) 

k6 k8 

k7 

k1 k4 —— 

k5 k2 

k3 
k8 k6 —— 
—— 

k7 —— 



•  How do we insert an element? Worst time O(1)	



—— 

—— 

—— 
—— 
—— 

—— 
T 

k4 

k2 k3 

k1 
k5 

U 
(universe of keys) 

K 
(actual 
keys) 

k6 k8 

k7 

k1 k4 —— 

k5 k2 

k3 
k8 k6 —— 
—— 

k7 —— 



—— 

—— 

—— 
—— 
—— 

—— 
T 

k4 

k2 k3 

k1 
k5 

U 
(universe of keys) 

K 
(actual 
keys) 

k6 k8 

k7 

k1 k4 —— 

k5 k2 

k3 
k8 k6 —— 
—— 

k7 —— 

•  How do we delete an element?	


Do we need a doubly-linked list for efficient delete? (yes)	





•  How do we search for a element with a ���
given key?	



—— 

—— 

—— 
—— 
—— 

—— 
T 

k4 

k2 k3 

k1 
k5 

U 
(universe of keys) 

K 
(actual 
keys) 

k6 k8 

k7 

k1 k4 —— 

k5 k2 

k3 
k8 k6 —— 
—— 

k7 —— 



•  Assume simple uniform hashing: each key in table is 
equally likely to be hashed to any slot	



•  Given n keys and m slots in the table: the ���
load factor α = n/m = average # keys per slot	



•  What will be the average cost of an  unsuccessful 
search for a key?	





•  Assume simple uniform hashing: each key in table is 
equally likely to be hashed to any slot	



•  Given n keys and m slots in the table, the ���
load factor α = n/m = average # keys per slot	



•  What will be the average cost of an  unsuccessful 
search for a key?     A: O(1+α)	





•  Assume simple uniform hashing: each key in table is 
equally likely to be hashed to any slot	



•  Given n keys and m slots in the table, the ���
load factor α = n/m = average # keys per slot	



•  What will be the average cost of an  unsuccessful 
search for a key?     A: O(1+α)	



•  What will be the average cost of a successful search?    	





•  Assume simple uniform hashing: each key in table is 
equally likely to be hashed to any slot	



•  Given n keys and m slots in the table, the ���
load factor α = n/m = average # keys per slot	



•  What will be the average cost of an  unsuccessful 
search for a key?     A: O(1+α)	



•  Each list is equally likely be searched, α - average 
length of the list	



•  What will be the average cost of a successful search?    
A: O(1 + α/2) = O(1 + α)	



•  Slightly different analysis list to be searched is 
proportional to the expected number of elements in it – 
expected size to searched is  α/2	





•  So the cost of searching = O(1 + α)	


•  If the number of keys n is proportional to the number 

of slots in the table, what is α?	


•   A: α = O(1)	



In other words, we can make the expected cost of 
searching constant if we make α constant	





•  Basic idea (details in Section 12.4): 	


•  To insert: if slot is full, try another slot, …, until an 

open slot is found (probing)	


•   To search, follow same sequence of probes as would 

be used when inserting the element	


•  If reach element with correct key, return it	


•  If reach a NULL pointer, element is not in table	


•  Good for fixed sets (adding but no deletion)	



Example: spell checking	


•  Table needn’t be much bigger than n	


•  We will return to this later	







•  Clearly choosing the hash function well is crucial	


•  What will a worst-case hash function do?	


•  What will be the time to search in this case?	


•  What are desirable features of the hash function	



•  Should distribute keys uniformly into slots	


•  Should not depend on patterns in the data, i.e. 

regularity in the data should not affect its uniformity	


   (e.g. all even numbers)	



•  Three methods:  hashing by division, multiplication, 
universal hashing	





•  h(k) = k mod m	


•  In words: hash k into a table with m slots using the slot 

given by the remainder of k divided by m 	


•  What happens to elements with adjacent ���

values of k?	


•  What happens if m is a power of 2 (say 2P)?	


•  What if m is a power of 10 ?	


•  Upshot: pick table size m = prime number not too close 

to a power of 2 (or 10)	





•  h(k) = k mod m	


•  In words: hash k into a table with m slots using the slot 

given by the remainder of k divided by m 	


•  What happens to elements with adjacent ���

values of k?	


•  What happens if m is a power of 2 (say 2P) – hashing 

on p lower order bits ?	


•  What if m is a power of 10? – hashing on p least sign. 

Digits	


•  What if m is divisible by two and all numbers are 

even ?	





•  h(k) = k mod m	


•  Upshot: pick table size m = prime number not too close 

to a power of 2 (or 10), given some desirable load 
factor	



•  (e.g. 2000 elements, load factor around 3, 2000/3 	


•   701 is  a prime number which is close to 2000/3, but 

not near any power of 2)	





•  For a constant A, 0 < A < 1:	


•  h(k) = ⎣ m (kA - ⎣kA⎦) ⎦	



What does this term represent? 



•  For a constant A, 0 < A < 1:	


•  h(k) = ⎣ m (kA - ⎣kA⎦) ⎦	



•  h(k) = ⎣ m (k A mod 1) ⎦	



•  Value of m is not critical, Choose m = 2P	



•  Choose A not too close to 0 or 1	


•  Knuth: Good choice for A = (√5  - 1)/2	



•  Example	



Fractional part of kA 



•  Basic idea (details in Section 12.4): 	


•  To insert: if slot is full, try another slot, …, until an 

open slot is found (probing)	


•   To search, follow same sequence of probes as would 

be used when inserting the element	


•  If reach element with correct key, return it	


•  If reach a NULL pointer, element is not in table	


•  Good for fixed sets (adding but no deletion)	



Example: spell checking	


•  Table needn’t be much bigger than n	


•  We will return to this later	







•  Basic idea (details in Section 12.4): 	


•  To insert: if slot is full, try another slot, …, until an 

open slot is found (probing)	


•   Idea: for every key define a probe sequence	


•  h(k,0), h(k,1), h(k,2), h(k,3) ….	


•  Linear probing 	



•  Quadratic probing	



•  Double hashing	

€ 

h(k,i) = (h'(k) +i)modm

€ 

h(k,i) = (h'(k) + c1i + c2i
2)modm

€ 

h(k,i) = (h1(k) +ih2(k))modm



•  Scenario:	


You are given an assignment to implement hashing	


You will self-grade in pairs, testing and grading your 

partner’s implementation	


In a blatant violation of the honor code, your partner:	



Analyzes your hash function	


Picks a sequence of “worst-case” keys, causing 
your implementation to take O(n) time to search	



•  What’s an honest CS student to do?	





•  Choosing the hash function well is crucial	


Bad hash function puts all elements in same slot	


A good hash function:	



Should distribute keys uniformly into slots	


Should not depend on patterns in the data	



•  We discussed three methods:	


Division method	


Multiplication method	


Universal hashing	





•  h(k) = k mod m	


In words: hash k into a table with m slots using the slot 

given by the remainder of k divided by m 	


•  Elements with adjacent keys hashed to different slots: 

good	


•  If keys bear relation to m: bad	


•  Upshot: pick table size m = prime number not too close 

to a power of 2 (or 10)	





•  For a constant A, 0 < A < 1:	


•  h(k) = ⎣ m (kA - ⎣kA⎦) ⎦	



•  Upshot:	


Choose m = 2P	



Choose A not too close to 0 or 1	


Knuth: Good choice for A = (√5  - 1)/2	



Fractional part of kA 



•  As before, when attempting to foil an malicious 
adversary: randomize the algorithm	



•  Universal hashing: pick a hash function randomly in a 
way that is independent of the keys that are actually 
going to be stored	



•  Guarantees good performance on average, no matter 
what keys adversary chooses	





•  Let H  be a (finite) collection of hash functions 	


…that map a given universe U of keys…	


…into the range {0, 1, …, m - 1}.	



•  H  is said to be universal if:	


for each pair of distinct keys x, y ∈ U,���

the number of hash functions h ∈  H ���
for which h(x) = h(y) is |H |/m 	



In other words:	


With a random hash function from H, the chance 
of a collision between x and y is exactly 1/m    	



 (x ≠ y) 	





•  Theorem 11.3:	


Choose h from a universal family of hash functions	


Hash n keys into a table of m slots, n ≤ m	


Then the expected number of collisions involving a 

particular key x is less than 1 (is less then n/m)	


Proof:	



For each pair of keys y, z, let cyx = 1 if y and z collide, 0 
otherwise	



E[cyz] = 1/m (by definition)	


Let Cx be total number of collisions involving key x	



Since n ≤ m, we have E[Cx] < 1	





•  How to design an universal class of hash functions	


•  Choose table size m to be prime	


•  Decompose key x into r+1 digits, so that ���

x = {x0, x1, …, xr}	


Only requirement is that max value of digit < m	


(representation in terms of base of m)	


Let a = {a0, a1, …, ar} denote a sequence of r+1 

elements chosen randomly from {0, 1, …, m - 1}	


Define corresponding hash function ha ∈ H:���

With this definition, H  has mr+1 members	





•  H  is a universal collection of hash functions 
(Theorem 12.4)	



•  How to use:	


Pick r based on m and the range of keys in U	


Pick a hash function by (randomly) picking the a’s	


Use that hash function on all keys	







•  Another example of data structure 	


•  In particular, structures for dynamic sets	



Elements have a key and satellite data	


Dynamic sets support queries such as:	



Search(S, k), Minimum(S), Maximum(S), 
Successor(S, x), Predecessor(S, x)	



They may also support modifying operations like:	


Insert(S, x), Delete(S, x)	





•  Binary Search Trees (BSTs) are an important data 
structure for dynamic sets	



•  In addition to satellite data, elements have:	


key: an identifying field inducing a total ordering	


left: pointer to a left child (may be NULL)	


right: pointer to a right child (may be NULL)	


p: pointer to a parent node (NULL for root)	





•  BST property: ���
	

key[left(x)] ≤ key[x] ≤ key[right(x)]	



•  Example:	



F 

B H 

K D A 



•  What does the following code do?	


TreeWalk(x) 
    TreeWalk(left[x]); 
    print(x); 
    TreeWalk(right[x]); 

•  A: prints elements in sorted (increasing) order	


•  This is called an inorder tree walk	



Preorder tree walk: print root, then left, then right	


Postorder tree walk: print left, then right, then root	





•  Example:	



•  How long will a tree walk take?	


•  Prove that inorder walk prints in monotonically 

increasing order	



F 

B H 

K D A 



•  Given a key and a pointer to a node, returns an element 
with that key or NULL: 	



   TreeSearch(x, k) 
        if (x = NULL  or  k = key[x]) 
            return x; 
        if (k < key[x])  
            return TreeSearch(left[x], 
k); 

        else 
            return TreeSearch(right[x], 
k);	





•  Search for D and C:	



F 

B H 

K D A 



•  Search for D and C:	



F 

B H 

K D A 



•  Adds an element x to the tree so that the binary search 
tree property continues to hold	



•  The basic algorithm	


•  Like the search procedure above	


•  Insert x in place of NULL	



Use a “trailing pointer” to keep track of where you 
came from (like inserting into singly linked list)	





•  Example: Insert C	



F 

B H 

K D A 

C 



•  What is the running time of TreeSearch() or TreeInsert
()?	



•  A: O(h), where h = height of tree	


•  What is the height of a binary search tree?	


•  A: worst case: h = O(n)  when tree is just a linear string 

of left or right children	


We’ll keep all analysis in terms of h for now	


Later we’ll see how to maintain h = O(lg n)	






