
 Jana Kosecka	

 Structures for Dynamic Sets	

Many slides here are based on E. Demaine , D. Luebke slides	

•  Radix sort:	

Assumption: input has d digits ranging from 0 to k	

Basic idea: 	

Sort elements by digit starting with least significant	

Use a stable sort (like counting sort) for each stage	

Each pass over n numbers with d digits takes time O(n
+k), so total time O(dn+dk)	

When d is constant and k=O(n), takes O(n) time	

Fast! Stable! Simple!	

Doesn’t sort in place	

•  Bucket sort	

Assumption: input is n reals from [0, 1)	

Basic idea: 	

Create n linked lists (buckets) to divide interval
[0,1) into subintervals of size 1/n	

Add each input element to appropriate bucket and
sort buckets with insertion sort	

Uniform input distribution  O(1) bucket size	

Therefore the expected total time is O(n)	

These ideas will return when we study hash tables	

•  The ith order statistic in a set of n elements is the ith
smallest element	

•  The minimum is thus the 1st order statistic 	

•  The maximum is (duh) the nth order statistic	

•  The median is the n/2 order statistic	

If n is even, there are 2 medians	

•  Could calculate order statistics by sorting	

Time: O(n lg n) w/ comparison sort	

We can do better	

•  The selection problem: find the ith smallest element of
a set 	

•  Two algorithms:	

A practical randomized algorithm with O(n) expected

running time	

A cool algorithm of theoretical interest only with O(n)

worst-case running time	

RandomizedSelect(A, p, r, i)
 if (p == r) then return A[p];
 q = RandomizedPartition(A, p, r)
 k = q - p + 1;
 if (i == k) then return A[q]; // not in
book

 if (i < k) then
 return RandomizedSelect(A, p, q-1, i);
 else
 return RandomizedSelect(A, q+1, r, i-
k);

≤ A[q] ≥ A[q]
k

q p r

•  Average case	

For upper bound, assume ith element always falls in

larger side of partition:	

We then showed that T(n) = O(n) by substitution	

•  The algorithm in words:	

1. 	

 	

Divide n elements into groups of 5	

2. 	

 	

Find median of each group (How? How long?)	

3. 	

 	

Use Select() recursively to find median x of the
⎣n/5⎦ 	

medians	

4. 	

 	

Partition the n elements around x. Let k = rank(x)	

5. 	

 	

if (i == k) then return x	

	

 	

if (i < k) then use Select() recursively to find ith smallest
	

 	

element in first partition���
	

else (i > k) use Select() recursively to find (i-k)th smallest
	

 	

element in last partition	

•  Given a “black box” O(n) median algorithm, what can
we do?	

•  ith order statistic: 	

Find median x	

Partition input around x	

if (i ≤ (n+1)/2) recursively find ith element of first
half	

else find (i - (n+1)/2)th element in second half	

T(n) = T(n/2) + O(n) = O(n)	

Can you think of an application to sorting?	

•  Done with sorting and order statistics for now	

•  Next part of class will focus on data structures	

•  Many applications require dynamic set that supports	

 operations Insert, Search, Delete 	

•  E.g. compiler symbol table – keys are the identifier

strings	

•  One options static array A – size is the number of all

possible keys (very large an 	

•  Motivation: symbol tables	

•  A compiler uses a symbol table to relate symbols to

associated data	

•  Symbols: variable names, procedure names,	

•  Associated data: memory location, call graph, etc.	

•  For a symbol table (also called a dictionary), we care
about search, insertion, and deletion	

•  We typically don’t care about sorted order	

•  More formally:	

•  Given a table T and a record x, with key (= symbol)

and satellite data, we need to support:	

Insert (T, x)	

Delete (T, x)	

Search(T, x)	

We want these to be fast, but don’t care about
sorting the records	

•  The structure we will use is a hash table	

Supports all the above in O(1) expected time!	

•  Example maintain 250 IP addresses of active
customers of your web service	

•  Each IP 32-bit number 128.32.168.80	

•  How to organize the customers so we can retrieve ,
add, delete them fast	

•  Option 1: array indexed by IP address 	

•  Option 2: linked list of all addresses	

•  In the following discussions we will consider all keys
to be (possibly large) natural numbers	

•  How can we convert floats to natural numbers for
hashing purposes?	

•  How can we convert ASCII strings to natural numbers
for hashing purposes? (radix notation)	

•  Suppose	

•  The range of keys is 0..m-1	

•  Keys are distinct	

•  The idea:	

Set up an array T[0..m-1] in which 	

T[i] = x 	

 	

if x ∈ T and key[x] = i	

T[i] = NULL 	

otherwise	

This is called a direct-address table	

Operations take O(1) time!	

So what’s the problem?	

•  Direct addressing works well when the range m of keys
is relatively small	

•  But what if the keys are 32-bit integers?	

Problem 1: direct-address table will have ���

232 entries, more than 4 billion	

Problem 2: even if memory is not an issue, the time to

initialize the elements to NULL may be	

•  Solution: map keys to smaller range 0..m-1	

•  This mapping is called a hash function 	

•  Use hash function to map U into {0,1,…,m-1}	

T
0

m - 1

h(k1)
h(k4)

h(k3)

k4

k2 k3

k1

k5

U
(universe of keys)

K
(actual
keys)

•  What happens when the slot is occupied – collision 	

T
0

m - 1

h(k1)
h(k4)

h(k2) = h(k5)

h(k3)

k4

k2 k3

k1

k5

U
(universe of keys)

K
(actual
keys)

•  How can we solve the problem of collisions?	

•  Solution 1: chaining	

•  Solution 2: open addressing	

•  Chaining puts elements that hash to the same slot in a
linked list:	

——

——

——
——
——

--
T

k4

k2 k3

k1
k5

U
(universe of keys)

K
(actual
keys)

k6 k8

k7

k1 k4 ——

k5 k2

k3
k8 k6 ——
——

k7 ——

•  How do we insert an element?	

——

——

——
——
——

——
T

k4

k2 k3

k1
k5

U
(universe of keys)

K
(actual
keys)

k6 k8

k7

k1 k4 ——

k5 k2

k3
k8 k6 ——
——

k7 ——

•  How do we insert an element? Worst time O(1)	

——

——

——
——
——

——
T

k4

k2 k3

k1
k5

U
(universe of keys)

K
(actual
keys)

k6 k8

k7

k1 k4 ——

k5 k2

k3
k8 k6 ——
——

k7 ——

——

——

——
——
——

——
T

k4

k2 k3

k1
k5

U
(universe of keys)

K
(actual
keys)

k6 k8

k7

k1 k4 ——

k5 k2

k3
k8 k6 ——
——

k7 ——

•  How do we delete an element?	

Do we need a doubly-linked list for efficient delete? (yes)	

•  How do we search for a element with a ���
given key?	

——

——

——
——
——

——
T

k4

k2 k3

k1
k5

U
(universe of keys)

K
(actual
keys)

k6 k8

k7

k1 k4 ——

k5 k2

k3
k8 k6 ——
——

k7 ——

•  Assume simple uniform hashing: each key in table is
equally likely to be hashed to any slot	

•  Given n keys and m slots in the table: the ���
load factor α = n/m = average # keys per slot	

•  What will be the average cost of an unsuccessful
search for a key?	

•  Assume simple uniform hashing: each key in table is
equally likely to be hashed to any slot	

•  Given n keys and m slots in the table, the ���
load factor α = n/m = average # keys per slot	

•  What will be the average cost of an unsuccessful
search for a key? A: O(1+α)	

•  Assume simple uniform hashing: each key in table is
equally likely to be hashed to any slot	

•  Given n keys and m slots in the table, the ���
load factor α = n/m = average # keys per slot	

•  What will be the average cost of an unsuccessful
search for a key? A: O(1+α)	

•  What will be the average cost of a successful search? 	

•  Assume simple uniform hashing: each key in table is
equally likely to be hashed to any slot	

•  Given n keys and m slots in the table, the ���
load factor α = n/m = average # keys per slot	

•  What will be the average cost of an unsuccessful
search for a key? A: O(1+α)	

•  Each list is equally likely be searched, α - average
length of the list	

•  What will be the average cost of a successful search?
A: O(1 + α/2) = O(1 + α)	

•  Slightly different analysis list to be searched is
proportional to the expected number of elements in it –
expected size to searched is α/2	

•  So the cost of searching = O(1 + α)	

•  If the number of keys n is proportional to the number

of slots in the table, what is α?	

•  A: α = O(1)	

In other words, we can make the expected cost of
searching constant if we make α constant	

•  Basic idea (details in Section 12.4): 	

•  To insert: if slot is full, try another slot, …, until an

open slot is found (probing)	

•  To search, follow same sequence of probes as would

be used when inserting the element	

•  If reach element with correct key, return it	

•  If reach a NULL pointer, element is not in table	

•  Good for fixed sets (adding but no deletion)	

Example: spell checking	

•  Table needn’t be much bigger than n	

•  We will return to this later	

•  Clearly choosing the hash function well is crucial	

•  What will a worst-case hash function do?	

•  What will be the time to search in this case?	

•  What are desirable features of the hash function	

•  Should distribute keys uniformly into slots	

•  Should not depend on patterns in the data, i.e.

regularity in the data should not affect its uniformity	

 (e.g. all even numbers)	

•  Three methods: hashing by division, multiplication,
universal hashing	

•  h(k) = k mod m	

•  In words: hash k into a table with m slots using the slot

given by the remainder of k divided by m 	

•  What happens to elements with adjacent ���

values of k?	

•  What happens if m is a power of 2 (say 2P)?	

•  What if m is a power of 10 ?	

•  Upshot: pick table size m = prime number not too close

to a power of 2 (or 10)	

•  h(k) = k mod m	

•  In words: hash k into a table with m slots using the slot

given by the remainder of k divided by m 	

•  What happens to elements with adjacent ���

values of k?	

•  What happens if m is a power of 2 (say 2P) – hashing

on p lower order bits ?	

•  What if m is a power of 10? – hashing on p least sign.

Digits	

•  What if m is divisible by two and all numbers are

even ?	

•  h(k) = k mod m	

•  Upshot: pick table size m = prime number not too close

to a power of 2 (or 10), given some desirable load
factor	

•  (e.g. 2000 elements, load factor around 3, 2000/3 	

•  701 is a prime number which is close to 2000/3, but

not near any power of 2)	

•  For a constant A, 0 < A < 1:	

•  h(k) = ⎣ m (kA - ⎣kA⎦) ⎦	

What does this term represent?

•  For a constant A, 0 < A < 1:	

•  h(k) = ⎣ m (kA - ⎣kA⎦) ⎦	

•  h(k) = ⎣ m (k A mod 1) ⎦	

•  Value of m is not critical, Choose m = 2P	

•  Choose A not too close to 0 or 1	

•  Knuth: Good choice for A = (√5 - 1)/2	

•  Example	

Fractional part of kA

•  Basic idea (details in Section 12.4): 	

•  To insert: if slot is full, try another slot, …, until an

open slot is found (probing)	

•  To search, follow same sequence of probes as would

be used when inserting the element	

•  If reach element with correct key, return it	

•  If reach a NULL pointer, element is not in table	

•  Good for fixed sets (adding but no deletion)	

Example: spell checking	

•  Table needn’t be much bigger than n	

•  We will return to this later	

•  Basic idea (details in Section 12.4): 	

•  To insert: if slot is full, try another slot, …, until an

open slot is found (probing)	

•  Idea: for every key define a probe sequence	

•  h(k,0), h(k,1), h(k,2), h(k,3) ….	

•  Linear probing 	

•  Quadratic probing	

•  Double hashing	

€

h(k,i) = (h'(k) +i)modm

€

h(k,i) = (h'(k) + c1i + c2i
2)modm

€

h(k,i) = (h1(k) +ih2(k))modm

•  Scenario:	

You are given an assignment to implement hashing	

You will self-grade in pairs, testing and grading your

partner’s implementation	

In a blatant violation of the honor code, your partner:	

Analyzes your hash function	

Picks a sequence of “worst-case” keys, causing
your implementation to take O(n) time to search	

•  What’s an honest CS student to do?	

•  Choosing the hash function well is crucial	

Bad hash function puts all elements in same slot	

A good hash function:	

Should distribute keys uniformly into slots	

Should not depend on patterns in the data	

•  We discussed three methods:	

Division method	

Multiplication method	

Universal hashing	

•  h(k) = k mod m	

In words: hash k into a table with m slots using the slot

given by the remainder of k divided by m 	

•  Elements with adjacent keys hashed to different slots:

good	

•  If keys bear relation to m: bad	

•  Upshot: pick table size m = prime number not too close

to a power of 2 (or 10)	

•  For a constant A, 0 < A < 1:	

•  h(k) = ⎣ m (kA - ⎣kA⎦) ⎦	

•  Upshot:	

Choose m = 2P	

Choose A not too close to 0 or 1	

Knuth: Good choice for A = (√5 - 1)/2	

Fractional part of kA

•  As before, when attempting to foil an malicious
adversary: randomize the algorithm	

•  Universal hashing: pick a hash function randomly in a
way that is independent of the keys that are actually
going to be stored	

•  Guarantees good performance on average, no matter
what keys adversary chooses	

•  Let H be a (finite) collection of hash functions 	

…that map a given universe U of keys…	

…into the range {0, 1, …, m - 1}.	

•  H is said to be universal if:	

for each pair of distinct keys x, y ∈ U,���

the number of hash functions h ∈ H ���
for which h(x) = h(y) is |H |/m 	

In other words:	

With a random hash function from H, the chance
of a collision between x and y is exactly 1/m 	

 (x ≠ y) 	

•  Theorem 11.3:	

Choose h from a universal family of hash functions	

Hash n keys into a table of m slots, n ≤ m	

Then the expected number of collisions involving a

particular key x is less than 1 (is less then n/m)	

Proof:	

For each pair of keys y, z, let cyx = 1 if y and z collide, 0
otherwise	

E[cyz] = 1/m (by definition)	

Let Cx be total number of collisions involving key x	

Since n ≤ m, we have E[Cx] < 1	

•  How to design an universal class of hash functions	

•  Choose table size m to be prime	

•  Decompose key x into r+1 digits, so that ���

x = {x0, x1, …, xr}	

Only requirement is that max value of digit < m	

(representation in terms of base of m)	

Let a = {a0, a1, …, ar} denote a sequence of r+1

elements chosen randomly from {0, 1, …, m - 1}	

Define corresponding hash function ha ∈ H:���

With this definition, H has mr+1 members	

•  H is a universal collection of hash functions
(Theorem 12.4)	

•  How to use:	

Pick r based on m and the range of keys in U	

Pick a hash function by (randomly) picking the a’s	

Use that hash function on all keys	

•  Another example of data structure 	

•  In particular, structures for dynamic sets	

Elements have a key and satellite data	

Dynamic sets support queries such as:	

Search(S, k), Minimum(S), Maximum(S),
Successor(S, x), Predecessor(S, x)	

They may also support modifying operations like:	

Insert(S, x), Delete(S, x)	

•  Binary Search Trees (BSTs) are an important data
structure for dynamic sets	

•  In addition to satellite data, elements have:	

key: an identifying field inducing a total ordering	

left: pointer to a left child (may be NULL)	

right: pointer to a right child (may be NULL)	

p: pointer to a parent node (NULL for root)	

•  BST property: ���
	

key[left(x)] ≤ key[x] ≤ key[right(x)]	

•  Example:	

F

B H

K D A

•  What does the following code do?	

TreeWalk(x)
 TreeWalk(left[x]);
 print(x);
 TreeWalk(right[x]);

•  A: prints elements in sorted (increasing) order	

•  This is called an inorder tree walk	

Preorder tree walk: print root, then left, then right	

Postorder tree walk: print left, then right, then root	

•  Example:	

•  How long will a tree walk take?	

•  Prove that inorder walk prints in monotonically

increasing order	

F

B H

K D A

•  Given a key and a pointer to a node, returns an element
with that key or NULL: 	

 TreeSearch(x, k)
 if (x = NULL or k = key[x])
 return x;
 if (k < key[x])
 return TreeSearch(left[x],
k);

 else
 return TreeSearch(right[x],
k);	

•  Search for D and C:	

F

B H

K D A

•  Search for D and C:	

F

B H

K D A

•  Adds an element x to the tree so that the binary search
tree property continues to hold	

•  The basic algorithm	

•  Like the search procedure above	

•  Insert x in place of NULL	

Use a “trailing pointer” to keep track of where you
came from (like inserting into singly linked list)	

•  Example: Insert C	

F

B H

K D A

C

•  What is the running time of TreeSearch() or TreeInsert
()?	

•  A: O(h), where h = height of tree	

•  What is the height of a binary search tree?	

•  A: worst case: h = O(n) when tree is just a linear string

of left or right children	

We’ll keep all analysis in terms of h for now	

Later we’ll see how to maintain h = O(lg n)	

