CS583 Lecture 04

Jana Kosecka

Structures for Dynamic Sets

Many slides here are based on E. Demaine, D. Luebke slides

Review: Radix Sort

- Radix sort:

Assumption: input has d digits ranging from 0 to k Basic idea:

Sort elements by digit starting with least significant Use a stable sort (like counting sort) for each stage Each pass over n numbers with d digits takes time $\mathrm{O}(n$
$+k$), so total time $\mathrm{O}(d n+d k)$
When d is constant and $k=\mathrm{O}(n)$, takes $\mathrm{O}(n)$ time
Fast! Stable! Simple!
Doesn't sort in place

Review: Bucket Sort

- Bucket sort

Assumption: input is n reals from $[0,1)$ Basic idea:

Create n linked lists (buckets) to divide interval $[0,1)$ into subintervals of size $1 / n$
Add each input element to appropriate bucket and sort buckets with insertion sort
Uniform input distribution $\rightarrow \mathrm{O}(1)$ bucket size
Therefore the expected total time is $\mathrm{O}(\mathrm{n})$
These ideas will return when we study hash tables

Review: Order Statistics

- The i th order statistic in a set of n elements is the i th smallest element
- The minimum is thus the 1 st order statistic
- The maximum is (duh) the nth order statistic
- The median is the $n / 2$ order statistic If n is even, there are 2 medians
- Could calculate order statistics by sorting Time: $\mathrm{O}(\mathrm{n} \lg \mathrm{n}) \mathrm{w} /$ comparison sort We can do better

Review: The Selection Problem

- The selection problem: find the i th smallest element of a set
- Two algorithms:

A practical randomized algorithm with $\mathrm{O}(\mathrm{n})$ expected running time
A cool algorithm of theoretical interest only with $\mathrm{O}(\mathrm{n})$ worst-case running time

Review: Randomized Selection

```
RandomizedSelect(A, p, r, i)
    if (p == r) then return A[p];
    q = RandomizedPartition(A, p, r)
    k = q - p + 1;
    if (i == k) then return A[q]; // not in
book
    if (i < k) then
        return RandomizedSelect(A, p, q-1, i);
    else
        return RandomizedSelect(A, q+1, r, i-
    k);
\[

\]
p
q

\section*{Review: Randomized Selection}
- Average case

For upper bound, assume \(i\) th element always falls in larger side of partition:
\[
T(n) \leq \frac{1}{n} \sum_{k=0}^{n-1} T(\max (k, n-k-1))+\Theta(n)
\]
\[
\leq \frac{2}{n} \sum_{k=n / 2}^{n-1} T(k)+\Theta(n)
\]

We then showed that \(\mathrm{T}(n)=\mathrm{O}(n)\) by substitution

\section*{Worst-Case Linear-Time Selection}
- The algorithm in words:
1.
2.
3.
4.
5.

Divide \(n\) elements into groups of 5
Find median of each group (How? How long?)
Use Select() recursively to find median \(x\) of the medians
Partition the \(n\) elements around \(x\). Let \(k=\operatorname{rank}(x)\) if ( \(\mathrm{i}==\mathrm{k}\) ) then return x
if \((\mathrm{i}<\mathrm{k})\) then use Select() recursively to find \(i\) th smallest element in first partition
else (i>k) use Select() recursively to find ( \(i-k\) )th smallest element in last partition

\section*{Linear-Time Median Selection}
- Given a "black box" \(\mathrm{O}(\mathrm{n})\) median algorithm, what can we do?
- \(i\) th order statistic:

Find median \(x\)
Partition input around \(x\)
if \((i \leq(\mathrm{n}+1) / 2)\) recursively find \(i\) th element of first half
else find \((i-(\mathrm{n}+1) / 2)\) th element in second half
\[
\mathrm{T}(\mathrm{n})=\mathrm{T}(\mathrm{n} / 2)+\mathrm{O}(\mathrm{n})=\mathrm{O}(\mathrm{n})
\]

Can you think of an application to sorting?

\section*{Structures...}
- Done with sorting and order statistics for now
- Next part of class will focus on data structures
- Many applications require dynamic set that supports operations Insert, Search, Delete
- E.g. compiler symbol table - keys are the identifier strings
- One options static array A - size is the number of all possible keys (very large an

\section*{Review: Hashing Tables}
- Motivation: symbol tables
- A compiler uses a symbol table to relate symbols to associated data
- Symbols: variable names, procedure names,
- Associated data: memory location, call graph, etc.
- For a symbol table (also called a dictionary), we care about search, insertion, and deletion
- We typically don't care about sorted order

\section*{Review: Hash Tables}
- More formally:
- Given a table \(T\) and a record \(x\), with key (= symbol) and satellite data, we need to support:

Insert ( \(T, x\) )
Delete ( \(T, x\) )
\(\operatorname{Search}(T, x)\)
We want these to be fast, but don't care about sorting the records
- The structure we will use is a hash table

Supports all the above in \(\mathrm{O}(1)\) expected time!

\section*{Review: Hash Tables}


Operations on \(S\) :
- Insert \((S, x)\)
- \(\operatorname{Delete}(S, x)\)
- \(\operatorname{Search}(S, k)\)

\section*{Review: Hash Tables}
- Example maintain 250 IP addresses of active customers of your web service
- Each IP 32-bit number 128.32.168.80
- How to organize the customers so we can retrieve , add, delete them fast
- Option 1: array indexed by IP address
- Option 2: linked list of all addresses

\section*{Hashing: Keys}
- In the following discussions we will consider all keys to be (possibly large) natural numbers
- How can we convert floats to natural numbers for hashing purposes?
- How can we convert ASCII strings to natural numbers for hashing purposes? (radix notation)

\section*{Review: Direct Addressing}
- Suppose
- The range of keys is \(0 . . m-1\)
- Keys are distinct
- The idea:

Set up an array T[0..m-1] in which
\(\mathrm{T}[i]=x \quad\) if \(x \in T\) and \(\operatorname{key}[x]=i\)
\(\mathrm{T}[i]=\) NULL \(\quad\) otherwise
This is called a direct-address table Operations take \(\mathrm{O}(1)\) time! So what's the problem?

\section*{The Problem With Direct Addressing}
- Direct addressing works well when the range \(m\) of keys is relatively small
- But what if the keys are 32-bit integers?

Problem 1: direct-address table will have \(2^{32}\) entries, more than 4 billion
Problem 2: even if memory is not an issue, the time to initialize the elements to NULL may be
- Solution: map keys to smaller range \(0 . . m-1\)
- This mapping is called a hash function

\section*{Hash Functions}
- Use hash function to map U into \(\{0,1, \ldots, \mathrm{~m}-1\}\)


\section*{Hash Functions}
- What happens when the slot is occupied - collision


\section*{Resolving Collisions}
- How can we solve the problem of collisions?
- Solution 1: chaining
- Solution 2: open addressing

\section*{Chaining}
- Chaining puts elements that hash to the same slot in a linked list:


\section*{Chaining}
- How do we insert an element?


\section*{Chaining}
- How do we insert an element? Worst time \(O(1)\)


\section*{Chaining}
- How do we delete an element? Do we need a doubly-linked list for efficient delete? (yes)


\section*{Chaining}
- How do we search for a element with a given key?


\section*{Analysis of Chaining}
- Assume simple uniform hashing: each key in table is equally likely to be hashed to any slot
- Given \(n\) keys and \(m\) slots in the table: the load factor \(\alpha=n / m=\) average \# keys per slot
- What will be the average cost of an unsuccessful search for a key?

\section*{Analysis of Chaining}
- Assume simple uniform hashing: each key in table is equally likely to be hashed to any slot
- Given \(n\) keys and \(m\) slots in the table, the load factor \(\alpha=n / m=\) average \# keys per slot
- What will be the average cost of an unsuccessful search for a key? A: \(\mathrm{O}(1+\alpha)\)

\section*{Analysis of Chaining}
- Assume simple uniform hashing: each key in table is equally likely to be hashed to any slot
- Given \(n\) keys and \(m\) slots in the table, the load factor \(\alpha=n / m=\) average \# keys per slot
- What will be the average cost of an unsuccessful search for a key? A: \(\mathrm{O}(1+\alpha)\)
- What will be the average cost of a successful search?

\section*{Analysis of Chaining}
- Assume simple uniform hashing: each key in table is equally likely to be hashed to any slot
- Given \(n\) keys and \(m\) slots in the table, the load factor \(\alpha=n / m=\) average \# keys per slot
- What will be the average cost of an unsuccessful search for a key? A: \(\mathrm{O}(1+\alpha)\)
- Each list is equally likely be searched, \(\alpha\)-average length of the list
- What will be the average cost of a successful search? \(\mathrm{A}: \mathrm{O}(1+\alpha / 2)=\mathrm{O}(1+\alpha)\)
- Slightly different analysis list to be searched is proportional to the expected number of elements in it expected size to searched is \(\alpha / 2\)

\section*{Analysis of Chaining Continued}
- So the cost of searching \(=\mathrm{O}(1+\alpha)\)
- If the number of keys \(n\) is proportional to the number of slots in the table, what is \(\alpha\) ?
- A: \(\alpha=\mathrm{O}(1)\)

In other words, we can make the expected cost of searching constant if we make \(\alpha\) constant

\section*{Open Addressing}
- Basic idea (details in Section 12.4):
- To insert: if slot is full, try another slot, ..., until an open slot is found (probing)
- To search, follow same sequence of probes as would be used when inserting the element
- If reach element with correct key, return it
- If reach a NULL pointer, element is not in table
- Good for fixed sets (adding but no deletion)

Example: spell checking
- Table needn't be much bigger than \(n\)
- We will return to this later

\section*{Open Addressing}

Insert key \(k=496\) :
0 . Probe \(h(496,0)\)
1. Probe \(h(496,1)\)
2. Probe \(h(496,2)\)

\section*{Choosing A Hash Function}
- Clearly choosing the hash function well is crucial
- What will a worst-case hash function do?
- What will be the time to search in this case?
- What are desirable features of the hash function
- Should distribute keys uniformly into slots
- Should not depend on patterns in the data, i.e. regularity in the data should not affect its uniformity (e.g. all even numbers)
- Three methods: hashing by division, multiplication, universal hashing

\section*{Hash Functions: The Division Method}
- \(h(k)=k \bmod m\)
- In words: hash \(k\) into a table with \(m\) slots using the slot given by the remainder of \(k\) divided by \(m\)
- What happens to elements with adjacent values of \(k\) ?
- What happens if \(m\) is a power of 2 (say \(\left.2^{P}\right)\) ?
- What if \(m\) is a power of 10 ?
- Upshot: pick table size \(m=\) prime number not too close to a power of 2 (or 10)

\section*{Hash Functions: The Division Method}
- \(h(k)=k \bmod m\)
- In words: hash \(k\) into a table with \(m\) slots using the slot given by the remainder of \(k\) divided by \(m\)
- What happens to elements with adjacent values of \(k\) ?
- What happens if \(m\) is a power of \(2\left(s a y 2^{P}\right)\) - hashing on p lower order bits?
- What if \(m\) is a power of 10? - hashing on p least sign. Digits
- What if \(m\) is divisible by two and all numbers are even?

\section*{Hash Functions: The Division Method}
- \(h(k)=k \bmod m\)
- Upshot: pick table size \(m=\) prime number not too close to a power of 2 (or 10), given some desirable load factor
- (e.g. 2000 elements, load factor around 3, 2000/3
- 701 is a prime number which is close to 2000/3, but not near any power of 2)

\section*{Hash Functions: The Multiplication Method}
- For a constant \(A, 0<A<1\) :
- \(\mathrm{h}(\mathrm{k})=\lfloor m(k A-\lfloor k A\rfloor)\rfloor\)

What does this term represent?

\section*{Hash Functions: The Multiplication Method}
- For a constant \(A, 0<A<1\) :
- \(\mathrm{h}(\mathrm{k})=\lfloor m(k A-\lfloor k A\rfloor)\rfloor\)

Fractional part of kA
- \(\mathrm{h}(\mathrm{k})=\lfloor m(k A \bmod 1)\rfloor\)
- Value of \(m\) is not critical, Choose \(m=2^{P}\)
- Choose \(A\) not too close to 0 or 1
- Knuth: Good choice for \(A=(\sqrt{5}-1) / 2\)
- Example

\section*{Open Addressing}
- Basic idea (details in Section 12.4):
- To insert: if slot is full, try another slot, ..., until an open slot is found (probing)
- To search, follow same sequence of probes as would be used when inserting the element
- If reach element with correct key, return it
- If reach a NULL pointer, element is not in table
- Good for fixed sets (adding but no deletion)

Example: spell checking
- Table needn't be much bigger than \(n\)
- We will return to this later

\section*{Open Addressing}

Insert key \(k=496\) :
0 . Probe \(h(496,0)\)
1. Probe \(h(496,1)\)
2. Probe \(h(496,2)\)

\section*{Open Addressing}
- Basic idea (details in Section 12.4):
- To insert: if slot is full, try another slot, ..., until an open slot is found (probing)
- Idea: for every key define a probe sequence
- h(k,0), h(k,1), h(k,2), h(k,3) ...
- Linear probing
\[
h(k, i)=\left(h^{\prime}(k)+i\right) \bmod m
\]
- Quadratic probing
\[
h(k, i)=\left(h^{\prime}(k)+c_{1} i+c_{2} i^{2}\right) \bmod m
\]
- Double hashing
\[
h(k, i)=\left(h_{1}(k)+i h_{2}(k)\right) \bmod m
\]

\section*{Hash Functions: Worst Case Scenario}
- Scenario:

You are given an assignment to implement hashing You will self-grade in pairs, testing and grading your partner's implementation
In a blatant violation of the honor code, your partner:
Analyzes your hash function
Picks a sequence of "worst-case" keys, causing your implementation to take \(\mathrm{O}(n)\) time to search
- What's an honest CS student to do?

\section*{Review: Choosing A Hash Function}
- Choosing the hash function well is crucial Bad hash function puts all elements in same slot A good hash function:

Should distribute keys uniformly into slots Should not depend on patterns in the data
- We discussed three methods:

Division method
Multiplication method
Universal hashing

\section*{Review: The Division Method}
- \(h(k)=k \bmod m\)

In words: hash \(k\) into a table with \(m\) slots using the slot given by the remainder of \(k\) divided by \(m\)
- Elements with adjacent keys hashed to different slots: good
- If keys bear relation to \(m\) : bad
- Upshot: pick table size \(m=\) prime number not too close to a power of 2 (or 10)

\section*{Review: The Multiplication Method}
- For a constant \(A, 0<A<1\) :
- \(\mathrm{h}(\mathrm{k})=\lfloor m(k A-\lfloor k A\rfloor)\rfloor\)

Fractional part of kA
- Upshot:

Choose \(m=2^{P}\)
Choose \(A\) not too close to 0 or 1 Knuth: Good choice for \(A=(\sqrt{5}-1) / 2\)

\section*{Hash Functions: Universal Hashing}
- As before, when attempting to foil an malicious adversary: randomize the algorithm
- Universal hashing: pick a hash function randomly in a way that is independent of the keys that are actually going to be stored
- Guarantees good performance on average, no matter what keys adversary chooses

\section*{Universal Hashing}
- Let \(\mathcal{H}\) be a (finite) collection of hash functions
...that map a given universe \(U\) of keys...
\(\ldots\)...into the range \(\{0,1, \ldots, m-1\}\).
- \(\mathcal{H}\) is said to be universal if: for each pair of distinct keys \(x, y \in U\),
the number of hash functions \(\mathrm{h} \in \mathcal{H}\)
for which \(h(x)=h(y)\) is \(\mid \mathcal{H} \mathrm{I} / m\)
In other words:
With a random hash function from \(\mathcal{H}\), the chance of a collision between \(x\) and \(y\) is exactly \(1 / m\) \((x \neq y)\)

\section*{Universal Hashing}
- Theorem 11.3:

Choose \(h\) from a universal family of hash functions Hash \(n\) keys into a table of \(m\) slots, \(n \leq m\)
Then the expected number of collisions involving a particular key \(x\) is less than 1 (is less then \(\mathrm{n} / \mathrm{m}\) ) Proof:

For each pair of keys \(y, z\), let \(c_{y x}=1\) if \(y\) and \(z\) collide, 0 otherwise
\(\mathrm{E}\left[c_{y z}\right]=1 / m\) (by definition)
Let \(\mathrm{C}_{x}\) be total number of collisions involving key \(x\)
\[
\mathrm{E}\left[C_{x}\right]=\sum_{\substack{y \in T \\ y \neq x}} \mathrm{E}\left[c_{x y}\right]=\frac{n-1}{m}
\]

Since \(n \leq m\), we have \(E\left[\mathrm{C}_{x}\right]<1\)

\section*{A Universal Hash Function}
- How to design an universal class of hash functions
- Choose table size \(m\) to be prime
- Decompose key \(x\) into \(r+1\) digits, so that \(x=\left\{x_{0}, x_{1}, \ldots, x_{r}\right\}\)
Only requirement is that max value of digit \(<m\) (representation in terms of base of \(m\) )
Let \(a=\left\{a_{0}, a_{1}, \ldots, a_{r}\right\}\) denote a sequence of \(r+1\) elements chosen randomly from \(\{0,1, \ldots, m-1\}\)
Define corresponding hash function \(h_{a} \in \mathcal{H}:\)
\[
h_{a}(x)=\sum_{i=0}^{r} a_{i} x_{i} \bmod m
\]

With this definition, \(\mathcal{H}\) has \(m^{r+1}\) members

\section*{A Universal Hash Function}
- \(\mathscr{H}\) is a universal collection of hash functions (Theorem 12.4)
- How to use:

Pick \(r\) based on \(m\) and the range of keys in \(U\) Pick a hash function by (randomly) picking the \(a\) 's Use that hash function on all keys

The end

\section*{Dynamic Sets}
- Another example of data structure
- In particular, structures for dynamic sets Elements have a key and satellite data Dynamic sets support queries such as:
\(\operatorname{Search}(S, k), \operatorname{Minimum}(S), \operatorname{Maximum}(S)\), Successor(S, x), Predecessor(S, x)
They may also support modifying operations like:
Insert(S, x), Delete(S, x)

\section*{Binary Search Trees}
- Binary Search Trees (BSTs) are an important data structure for dynamic sets
- In addition to satellite data, elements have: key: an identifying field inducing a total ordering left: pointer to a left child (may be NULL) right: pointer to a right child (may be NULL) \(p\) : pointer to a parent node (NULL for root)

\section*{Binary Search Trees}
- BST property:
\(\operatorname{key}[\operatorname{left}(x)] \leq \operatorname{key}[x] \leq \operatorname{key}[\operatorname{right}(x)]\)
- Example:


\section*{Inorder Tree Walk}
- What does the following code do?

TreeWalk(x)
TreeWalk(left[x]);
print(x) ;
TreeWalk (right[x]);
- A: prints elements in sorted (increasing) order
- This is called an inorder tree walk

Preorder tree walk: print root, then left, then right Postorder tree walk: print left, then right, then root

\section*{Inorder Tree Walk}
- Example:

A
- How long will a tree walk take?
- Prove that inorder walk prints in monotonically increasing order

\section*{Operations on BSTs: Search}
- Given a key and a pointer to a node, returns an element with that key or NULL:

TreeSearch (x, k)
\[
\begin{aligned}
& \text { if }(x=\text { NULL or } k=\text { key }[x]) \\
& \text { return } x ; \\
& \text { if }(k<k e y[x]) \\
& \quad \text { return TreeSearch (left }[x],
\end{aligned}
\]
k);
else
return TreeSearch (right[x],
k) ;

\section*{BST Search: Example}
- Search for \(D\) and \(C\) :


\section*{BST Search: Example}
- Search for \(D\) and \(C\) :


\section*{Operations of BSTs: Insert}
- Adds an element x to the tree so that the binary search tree property continues to hold
- The basic algorithm
- Like the search procedure above
- Insert \(x\) in place of NULL

Use a "trailing pointer" to keep track of where you came from (like inserting into singly linked list)

\section*{BST Insert: Example}
- Example: Insert \(C\)


\section*{BST Search/Insert: Running Time}
- What is the running time of TreeSearch() or TreeInsert ()?
- A: \(\mathrm{O}(h)\), where \(h=\) height of tree
- What is the height of a binary search tree?
- A: worst case: \(h=\mathrm{O}(n)\) when tree is just a linear string of left or right children
We'll keep all analysis in terms of \(h\) for now Later we'll see how to maintain \(h=\mathrm{O}(\lg n)\)

To be continued ...```

