CS583 Lecture 06

Jana Kosecka

Structures for Dynamic Sets

Many slides here are based on E. Demaine , D. Luebke slides

Review: Radix Sort

 Radix sort:
Assumption: input has d digits ranging from O to k
Basic idea:
Sort elements by digit starting with least significant
Use a stable sort (like counting sort) for each stage
Each pass over n numbers with d digits takes time O(n
+k), so total time O(dn+dk)
When d is constant and k=0(n), takes O(n) time
Fast! Stable! Simple!
Doesn’t sort in place

3/1/11

Review: Bucket Sort

* Bucket sort
Assumption: input is n reals from [0, 1)
Basic idea:
Create n linked lists (buckets) to divide interval
[0,1) into subintervals of size 1/n
Add each input element to appropriate bucket and
sort buckets with insertion sort
Uniform input distribution = O(1) bucket size
Therefore the expected total time is O(n)
These ideas will return when we study hash tables

Review: Order Statistics

* The ith order statistic in a set of n elements is the ith
smallest element
* The minimum is thus the 1st order statistic
* The maximum is (duh) the nth order statistic
* The median is the n/2 order statistic
If n is even, there are 2 medians
* Could calculate order statistics by sorting
Time: O(n 1g n) w/ comparison sort
We can do better

3/1/11

Review: The Selection Problem

* The selection problem: find the ith smallest element of

a set

* Two algorithms:
A practical randomized algorithm with O(n) expected

running time
A cool algorithm of theoretical interest only with O(n)

worst-case running time

Review: Randomized Selection

RandomizedSelect(A, p, r, i)
if (p == r) then return A[p];

q = RandomizedPartition(A, p, r)
k=q-p+1;
if (i == k) then return A[q]; // not in
book

if (i < k) then

return RandomizedSelect(A, p, g-1, i);

else
return RandomizedSelect(A, g+1, r, i-

k)

k

=Alq] = Alq]

3/1/11

3/1/11

Review: Randomized Selection

» Average case
For upper bound, assume ith element always falls in
larger side of partition:

T(n) = %E)T(max(k,n—k—l)ﬁ@(n)

< 2571()+ o)

n 52

We then showed that T(n) = O(n) by substitution

Worst-Case Linear-Time Selection

* The algorithm in words:

1. Divide n elements into groups of 5

2. Find median of each group (How? How long?)

3. Use Select() recursively to find median x of the |n/5]
medians

4. Partition the n elements around x. Let k = rank(x)

5. if (i == k) then return x

if (i < k) then use Select() recursively to find ith smallest
element in first partition
else (i > k) use Select() recursively to find (i-k)th smallest
element in last partition

3/1/11

Worst-Case Linear-Time Selection

®
® o 0

At least half the group medians are < x, which
is at least | | n/5]/2]=|7/10] group medians.

* Therefore, at least 3 | n/10 elements are < x.
« Similarly, at least 3| 7/10] elements are > x.

Worst-Case Linear-Time Selection

* (Sketch situation on the board)
* How many of the 5-element medians are < x?

At least 1/2 of the medians = ||n/5]| /2| = [n/10]
* How many elements are < x?

At least 3 |n/10 | elements
* For large n, 3 [n/10 | =n/4 (How large?)
* So at least n/4 elements < x
* Similarly: at least n/4 elements = x

Worst-Case Linear-Time Selection

T(n) SELECT(i, n)
1. Divide the » elements into groups of 5. Find
O(n) the median of each 5-element group by rote.
2. Recursively SELECT the median x of the | #/5 |
I(n/3) { group medians to be the pivot.
®(n) 3. Partition around the pivot x. Let k£ = rank(x).
(4.if i =k then return x
elseif i </k
then recursively SELECT the ith
T(3n/4) 3 smallest e{ement in the lower part
else recursively SELECT the (i—k)th
\ smallest element in the upper part

Worst-Case Linear-Time Selection

* Thus after partitioning around x, step 5 will call
Select() on at most 3n/4 elements
* The recurrence is therefore:

T(n) = T(|n/5|)+ T(3n/4)+ ©(n)
< T(n/5)+ T(3n/4)+O(n)
< cn/5 +3cn/4 + O(n)
= 19¢n/20 + O(n)
= cn—(en/20-0(n))

< cn 1if cis big enough

[n/5] =n/5
Substitute T(n) = cn

Combine fractions

Express in desired form

c has to be 20 times larger

What we set out to prove
then constant associated Theta(n) p

3/1/11

Worst case linear time seletion

* Why not to use groups of 3 —instead of 5 ?

Linear-Time Median Selection

* Given a “black box” O(n) median algorithm, what can
we do?
* ith order statistic:
Find median x
Partition input around x
if (i = (n+1)/2) recursively find ith element of first
half
else find (i - (n+1)/2)th element in second half
T(n) = T(n/2) + O(n) = O(n)

Can you think of an application to sorting?

3/1/11

Structures...
* Done with sorting and order statistics for now
 Next part of class will focus on data structures

* Many applications require dynamic set that supports
operations Insert, Search, Delete

* E.g. compiler symbol table — keys are the identifier
strings

* One options static array A — size is the number of all
possible keys (very large an

Review: Hashing Tables
* Motivation: symbol tables
* A compiler uses a symbol table to relate symbols to

associated data

* Symbols: variable names, procedure names,
» Associated data: memory location, call graph, etc.

» For a symbol table (also called a dictionary), we care
about search, insertion, and deletion

* We typically don’t care about sorted order

3/1/11

Review: Hash Tables

* More formally:
» Given a table T and a record x, with key (= symbol)
and satellite data, we need to support:
Insert (7', x)
Delete (T, x)
Search(T, x)
We want these to be fast, but don’t care about
sorting the records
* The structure we will use is a hash table
Supports all the above in O(1) expected time!

Review: Hash Tables

record
X Operations on S:

ki

eylx] * INSERT(S, x)
* DELETE(S, x)
* SEARCH(S, k)

Other fields
- containing
satellite data

3/1/11

Review: Hash Tables

* Example maintain 250 IP addresses of active
customers of your web service
* Each IP 32-bit number 128.32.168.80

* How to organize the customers so we can retrieve ,
add, delete them fast

* Option 1: array indexed by IP address

* Option 2: linked list of all addresses

Hashing: Keys

* In the following discussions we will consider all keys
to be (possibly large) natural numbers

* How can we convert floats to natural numbers for
hashing purposes?

* How can we convert ASCII strings to natural numbers
for hashing purposes? (radix notation)

3/1/11

Review: Direct Addressing

* Suppose
* The range of keys is 0..m-1
* Keys are distinct

* The idea:
Set up an array T[0..m-1] in which
T[] =x if x€T and key[x] =i

T[i]=NULL otherwise
This is called a direct-address table
Operations take O(1) time!
So what’s the problem?

The Problem With
Direct Addressing

* Direct addressing works well when the range m of keys
is relatively small
* But what if the keys are 32-bit integers?
Problem 1: direct-address table will have
232 entries, more than 4 billion
Problem 2: even if memory is not an issue, the time to
initialize the elements to NULL may be
* Solution: map keys to smaller range 0..m-1
 This mapping is called a hash function

3/1/11

Hash Functions

* Use hash function to map U into {0,1,...,m-1}

h(k,)
hk,)

Hash Functions

* What happens when the slot is occupied — collision

T

0

h(k,)
hk,)

h(k,) = h(ks

h(k;)

m-1

3/1/11

Resolving Collisions

* How can we solve the problem of collisions?
* Solution 1: chaining
 Solution 2: open addressing

Chaining

* Chaining puts elements that hash to the same slot in a
linked list:

T

3/1/11

Chaining
* How do we insert an element?
T
—+[k k |
i] [i]
k,
kel ki |
Chaining
e How do we insert an element? Worst time O(1)
T
—+[k k |
i,] [i]
k,
ke __.mé-l—l

3/1/11

Chaining

* How do we delete an element?

Do we need a doubly-linked list for efficient delete? (yes)

T
—+[k k |
—1k k k
| ka
k] k] |

Chaining

* How do we search for a element with a

given key?
T
k k1
k k k
| ka
k] k|

3/1/11

Analysis of Chaining

» Assume simple uniform hashing: each key in table is
equally likely to be hashed to any slot

* Given n keys and m slots in the table: the
load factor oo = n/m = average # keys per slot

* What will be the average cost of an unsuccessful
search for a key?

Analysis of Chaining

* Assume simple uniform hashing: each key in table is
equally likely to be hashed to any slot

* Given n keys and m slots in the table, the
load factor o= n/m = average # keys per slot

* What will be the average cost of an unsuccessful
search for a key? A: O(1+a)

3/1/11

Analysis of Chaining

» Assume simple uniform hashing: each key in table is
equally likely to be hashed to any slot

* Given n keys and m slots in the table, the
load factor oo = n/m = average # keys per slot

* What will be the average cost of an unsuccessful
search for a key? A: O(1+a)

* What will be the average cost of a successful search?

Analysis of Chaining

* Assume simple uniform hashing: each key in table is
equally likely to be hashed to any slot

* Given n keys and m slots in the table, the
load factor o= n/m = average # keys per slot

* What will be the average cost of an unsuccessful
search for a key? A: O(1+a)

 Each list is equally likely be searched, o - average
length of the list

* What will be the average cost of a successful search?
A:O(1+a2)=0(1 + o)

« Slightly different analysis list to be searched is
proportional to the expected number of elements in it —
expected size to searched is /2

3/1/11

Analysis of Chaining Continued

* So the cost of searching = O(1 + o)
* If the number of keys n is proportional to the number
of slots in the table, what is a?
* A:a=0(1)
In other words, we can make the expected cost of
searching constant if we make « constant

Open Addressing

* Basic idea (details in Section 12 .4):

* To insert: if slot is full, try another slot, ..., until an
open slot is found (probing)

» To search, follow same sequence of probes as would
be used when inserting the element

* If reach element with correct key, return it

* If reach a NULL pointer, element is not in table

* Good for fixed sets (adding but no deletion)
Example: spell checking

» Table needn’t be much bigger than n

» We will return to this later

3/1/11

Open Addressing
Insert key & = 496: T
0. Probe /(496,0) :
1. Probe /4(496,1) 220
2. Probe /(496,2)
04
\ 42;96 insertion
481
m—1

Choosing A Hash Function

Clearly choosing the hash function well is crucial
What will a worst-case hash function do?

What will be the time to search in this case?
What are desirable features of the hash function

Should distribute keys uniformly into slots

 Should not depend on patterns in the data, i.e.
regularity in the data should not affect its uniformity
(e.g. all even numbers)

* Three methods: hashing by division, multiplication,
universal hashing

3/1/11

Hash Functions:
The Division Method

h(k) = k mod m

In words: hash & into a table with m slots using the slot
given by the remainder of k divided by m

What happens to elements with adjacent

values of k?

What happens if m is a power of 2 (say 2°)?

What if m is a power of 10 ?

Upshot: pick table size m = prime number not too close
to a power of 2 (or 10)

Hash Functions:
The Division Method

h(k) = k mod m

In words: hash & into a table with m slots using the slot
given by the remainder of k divided by m

What happens to elements with adjacent

values of k?

What happens if m is a power of 2 (say 2F) — hashing
on p lower order bits ?

What if m is a power of 10? — hashing on p least sign.
Digits

What if m is divisible by two and all numbers are
even ?

3/1/11

20

Hash Functions:
The Division Method

* (k) =k mod m

» Upshot: pick table size m = prime number not too close
to a power of 2 (or 10), given some desirable load
factor

* (e.g. 2000 elements, load factor around 3, 2000/3

* 701 is a prime number which is close to 2000/3, but
not near any power of 2)

Hash Functions:
The Multiplication Method

* Foraconstant A,0 <A< I:
* h(k) = m (kA - [kA]) |

What does this term represent?

3/1/11

21

Hash Functions:
The Multiplication Method
* Foraconstant A,0 <A< I:
* h(k)=| m (kA - |kA]) |

H_J
Fractional part of kA

*h(k)=| m(kAmod 1) |
* Value of m is not critical, Choose m = 2*
* Choose A not too close to 0 or 1

 Knuth: Good choice for A = (V5 - 1)/2

» Example

Hash Functions:
The Multiplication Method

* Foraconstant A,0 <A< I:
sh(k)y=|mFA-|kA]) | h&)=|m(kAmod]l) |
——

Fractional part of kA
* h(k) = (A kmod s) rsh(w — p) where s =2¥, m = 2F

3/1/11

22

Open Addressing

* Basic idea (details in Section 12 .4):

* To insert: if slot is full, try another slot, ..., until an
open slot is found (probing)

* To search, follow same sequence of probes as would
be used when inserting the element

* If reach element with correct key, return it

* If reach a NULL pointer, element is not in table

* Good for fixed sets (adding but no deletion)
Example: spell checking

» Table needn’t be much bigger than n

» We will return to this later

Open Addressing
Insert key £ = 496: T
0. Probe /(496,0) 0
1. Probe /(496,1) 220
2. Probe /(496,2)
204
\ 496 || insertion
481
m—1

3/1/11

23

Open Addressing

* Basic idea (details in Section 12 .4):
* To insert: if slot is full, try another slot, ..., until an
open slot is found (probing)
* Idea: for every key define a probe sequence
* h(k,0), h(k,1), h(k,2), h(k,3)
* Linear probing
h(k,i) = (h'(k) +i))modm
* Quadratic probing

h(k,i) = (h'(k)+ c i+ c,i’)modm
* Double hashing
h(k,i) = (h,(k) +ih,(k))modm

Hash Functions:
Worst Case Scenario

* Scenario:
You are given an assignment to implement hashing
You will self-grade in pairs, testing and grading your
partner’s implementation
In a blatant violation of the honor code, your partner:
Analyzes your hash function
Picks a sequence of “worst-case” keys, causing
your implementation to take O(n) time to search
* What’s an honest CS student to do?

3/1/11

24

Review: Choosing A Hash
Function

* Choosing the hash function well is crucial
Bad hash function puts all elements in same slot
A good hash function:
Should distribute keys uniformly into slots
Should not depend on patterns in the data
* We discussed three methods:
Division method
Multiplication method
Universal hashing

Review: The Division Method

* (k) =k mod m

In words: hash & into a table with m slots using the slot

given by the remainder of k divided by m

* Elements with adjacent keys hashed to different slots:

good
* If keys bear relation to m: bad

» Upshot: pick table size m = prime number not too close

to a power of 2 (or 10)

3/1/11

25

Review: The Multiplication
Method

* Foraconstant A,0 <A< I:
* h(k) = m (kA - [kA]) |

H_J
Fractional part of kA

* Upshot:
Choose m = 2°

Choose A not too close to O or 1
Knuth: Good choice for A = (V5 - 1)/2

Hash Functions:
Universal Hashing

* As before, when attempting to foil an malicious
adversary: randomize the algorithm

* Universal hashing: pick a hash function randomly in a
way that is independent of the keys that are actually
going to be stored

* Guarantees good performance on average, no matter
what keys adversary chooses

3/1/11

26

Universal Hashing

* Let #/ be a (finite) collection of hash functions
...that map a given universe U of keys...
...into the range {0, 1, ...,m - 1}.
« # is said to be universal if:
for each pair of distinct keys x, y € U,
the number of hash functionsh € A"
for which h(x) = h(y) is | H1/m
In other words:
With a random hash function from %, the chance
of a collision between x and y is exactly 1/m

(x=y)

Universal Hashing
* Theorem 11.3:

Choose h from a universal family of hash functions

Hash n keys into a table of m slots, n <m

Then the expected number of collisions involving a
particular key x is less than 1 (is less then n/m)

Proof:
For each pair of keys y, z, let ¢,, = 1 if y and z collide, 0
otherwise
Elc,,] = 1/m (by definition)
Let C, be total number of collisions involving key x

n-1

E[C,] = YElc,] =

X Xy
yer m

y=X

Since n = m, we have E[C,] < 1

3/1/11

27

A Universal Hash Function

* How to design an universal class of hash functions
* Choose table size m to be prime
* Decompose key x into r+1 digits, so that
x=A{x) x;, ..., X,}
Only requirement is that max value of digit < m
(representation in terms of base of m)
Leta={ay, a,, ..., a,} denote a sequence of r+1
elements chosen randomly from {0, 1, ...,m -1}
Define corresponding hash function h, € 7

h, (x) = 2 a,x, mod m

With this definition, %/ has m"*! members

A Universal Hash Function

« # is a universal collection of hash functions
(Theorem 12.4)

* How to use:
Pick r based on m and the range of keys in U
Pick a hash function by (randomly) picking the a’s
Use that hash function on all keys

3/1/11

28

The end

Dynamic Sets

* Another example of data structure
* In particular, structures for dynamic sets
Elements have a key and satellite data
Dynamic sets support gueries such as:
Search(S, k), Minimum(S), Maximum(S),
Successor(S, x), Predecessor(S, x)

They may also support modifying operations like:

Insert(S, x), Delete(S, x)

3/1/11

29

Binary Search Trees

* Binary Search Trees (BSTs) are an important data
structure for dynamic sets

* In addition to satellite data, elements have:
key: an identifying field inducing a total ordering
left: pointer to a left child (may be NULL)
right: pointer to a right child (may be NULL)
p: pointer to a parent node (NULL for root)

Binary Search Trees

* BST property:
key[left(x)] < key[x] =< key[right(x)]
* Example:

3/1/11

30

Inorder Tree Walk

» What does the following code do?
TreeWalk (x)
TreeWalk (left[x]) ;
print(x) ;
TreeWalk (right[x]) ;
 A: prints elements in sorted (increasing) order
 This is called an inorder tree walk
Preorder tree walk: print root, then left, then right
Postorder tree walk: print left, then right, then root

Inorder Tree Walk

* How long will a tree walk take?
* Prove that inorder walk prints in monotonically
increasing order

3/1/11

31

Operations on BSTs: Search

* Given a key and a pointer to a node, returns an element
with that key or NULL.:

TreeSearch (x, k)
if (x = NULL or k = keyl[x])
return x;
if (k < key[x])
return TreeSearch(left[x],
k),
else
return TreeSearch (right[x],
k) ;

BST Search: Example

* Search for D and C:

3/1/11

32

BST Search: Example

* Search for D and C:

Operations of BSTs: Insert

* Adds an element x to the tree so that the binary search
tree property continues to hold
* The basic algorithm
* Like the search procedure above
* Insert x in place of NULL
Use a “trailing pointer” to keep track of where you
came from (like inserting into singly linked list)

3/1/11

33

BST Insert: Example

* Example: Insert C

BST Search/Insert: Running Time

* What is the running time of TreeSearch() or
Treelnsert()?

* A: O(h), where h = height of tree

* What is the height of a binary search tree?

* A: worst case: h = O(n) when tree is just a linear string
of left or right children
We’ll keep all analysis in terms of 4 for now
Later we’ll see how to maintain 4 = O(lg n)

3/1/11

34

Sorting With Binary Search Trees

* Informal code for sorting array A of length n:
BSTSort (4)
for i=1 to n
TreeInsert (A[i]) ;
InorderTreeWalk (root) ;
 Argue that this is £(n lg n)
» What will be the running time in the
Worst case?
Average case? (hint: remind you of anything?)

Sorting With BSTs

for i=1 to n
Treelnsert (A[i]);
InorderTreeWalk (root) ;

* Average case analysis
It’s a form of quicksort!

3182675 (3)
<:>///////// \\\;éi\\ Q) 9
2 675
AN e

@ 7.5 2 (g

@ & @

3/1/11

35

Sorting with BST's

» Same partitions are done as with quicksort, but in a

different order

In previous example
Everything was compared to 3 once
Then those items < 3 were compared to 1 once
Etc.

Same comparisons as quicksort, different order!
Example: consider inserting 5

Sorting with BST's

* Since run time is proportional to the number of
comparisons, same time as quicksort: O(n Ig n)

» Which do you think is better, quicksort or BSTsort?
Why?

3/1/11

36

Sorting with BST's

* Since run time is proportional to the number of
comparisons, same time as quicksort: O(n Ig n)
* Which do you think is better, quicksort or BSTSort?

Why?

* A: quicksort
Better constants
Sorts in place

Doesn’t need to build data structure

More BST Operations

* BSTs are good for more than sorting. For example,
can implement a priority queue
» What operations must a priority queue have?

Insert
Minimum

Extract-Min

3/1/11

37

BST Operations: Minimum

* How can we implement a Minimum() query?
e What is the running time?

BST Operations: Successor

* For deletion, we will need a Successor() operation

* Draw Fig 13.2

* What is the successor of node 3? Node 15? Node 13?

» What are the general rules for finding the successor of
node x? (hint: two cases)

3/1/11

38

BST Operations: Successor

* Two cases:
x has a right subtree: successor is minimum node in
right subtree
x has no right subtree: successor is first ancestor of x
whose left child is also ancestor of x

Intuition: As long as you move to the left up the tree,
you’re visiting smaller nodes.
* Predecessor: similar algorithm

BST Operations: Delete

* Deletion is a bit tricky
* 3 cases:
x has no children:
Remove x
x has one child:
Splice out x
x has two children: xample: delete K
Swap x with successor or H or B
Perform case 1 or 2 to delete it

3/1/11

39

BST Operations: Delete

* Why will case 2 always go to case 0 or case 1?

* A: because when x has 2 children, its successor is the
minimum in its right subtree

e Could we swap x with predecessor instead of
successor?

* A:yes. Would it be a good idea?

* A: might be good to alternate

The End

* Up next: guaranteeing a O(lg n) height tree

3/1/11

40

