
 Jana Kosecka	

 Red-Black Trees	

 Graph Algorithms	

Many slides here are based on E. Demaine , D. Luebke slides	

•  Binary Search Trees (BSTs) are an important data
structure for dynamic sets	

•  In addition to satellite data, eleements have:	

key: an identifying field inducing a total ordering	

left: pointer to a left child (may be NULL)	

right: pointer to a right child (may be NULL)	

p: pointer to a parent node (NULL for root)	

•  BST property: ���
	
key[left(x)] ≤ key[x] ≤ key[right(x)]	

•  Example:	

F

B H

K D A

•  An inorder walk prints the set in sorted order:	

TreeWalk(x)
 TreeWalk(left[x]);
 print(x);
 TreeWalk(right[x]);
Easy to show by induction on the BST property	

Preorder tree walk: print root, then left, then right	

Postorder tree walk: print left, then right, then root	

 TreeSearch(x, k)
 if (x = NULL or k = key[x])
 return x;
 if (k < key[x])
 return TreeSearch(left[x], k);
 else
 return TreeSearch(right[x], k);	

 IterativeTreeSearch(x, k)
 while (x != NULL and k != key[x])
 if (k < key[x])
 x = left[x];
 else
 x = right[x];
 return x;

•  Adds an element x to the tree so that the binary search
tree property continues to hold	

•  The basic algorithm	

Like the search procedure above	

Insert x in place of NULL	

Use a “trailing pointer” to keep track of where you

came from (like inserting into singly linked list)	

•  Like search, takes time O(h), h = tree height	

•  Basic algorithm:	

Insert elements of unsorted array from 1..n	

Do an inorder tree walk to print in sorted order	

•  Running time: 	

Best case: Ω(n lg n) (it’s a comparison sort)	

Worst case: O(n2)	

Average case: O(n lg n) (it’s a quicksort!)	

•  Average case analysis	

It’s a form of quicksort!	

for i=1 to n
 TreeInsert(A[i]);
InorderTreeWalk(root);

3 1 8 2 6 7 5

5 7

1 2 8 6 7 5

2 6 7 5

3

1 8

2 6

5 7

•  Minimum: 	

Find leftmost node in tree	

•  Successor: 	

x has a right subtree: successor is minimum node in

right subtree	

x has no right subtree: successor is first ancestor of x

whose left child is also ancestor of x	

Intuition: As long as you move to the left up the
tree, you’re visiting smaller nodes. 	

•  Predecessor: similar to successor	

•  Delete: 	

x has no children: 	

Remove x	

x has one child: 	

Splice out x	

x has two children: 	

Swap x with successor	

Perform case 1 or 2 to delete it	

F

B H

K D A

C
Example: delete K

or H or B

•  Red-black trees:	

Binary search trees augmented with node color 	

Operations designed to guarantee that the height���

h = O(lg n)	

•  First: describe the properties of red-black trees	

•  Then: prove that these guarantee h = O(lg n)	

•  Finally: describe operations on red-black trees	

•  The red-black properties:	

1. 	
Every node is either red or black	

2. 	
	
Every leaf (NULL pointer) is black	

Note: this means every “real” node has children	

3. 	
	
If a node is red, both children are black	

Note: can’t have 2 consecutive reds on a path	

4. 	
	
Every path from node to descendent leaf contains

the same number of black nodes	

5. 	
The root is always black	

•  Put example on board and verify properties:	

1. 	
Every node is either red or black	

2. 	
Every leaf (NULL pointer) is black	

3. 	
If a node is red, both children are black	

4. 	
Every path from node to descendent leaf contains

the same number of black nodes	

5. 	
The root is always black	

•  black-height: # black nodes on path to leaf	

Label example with h and bh values	

•  What is the minimum black-height of a node with
height h?	

•  A: a height-h node has black-height ≥ h/2	

•  Theorem: A red-black tree with n internal nodes has

height h ≤ 2 lg(n + 1)	

•  Thus at the root of the red-black tree:	

n 	
≥ 2bh(root) - 1 	
 	
 	
 	
(Why?)	

n 	
≥ 2h/2 - 1 	
 	
 	
 	
(Why?)	

lg(n+1) ≥ h/2 	
 	
 	
 	
(Why?)	

h ≤ 2 lg(n + 1) 	
 	
 	
 	
(Why?)	

Thus h = O(lg n) 	
 	
 	
	

•  Insert 10	

Where does it go?	

What color?	

1. Every node is either red or black
2. Every leaf (NULL pointer) is black
3. If a node is red, both children are black
4. Every path from node to descendent leaf

 contains the same number of black nodes
5. The root is always black

12

5 9

7

8

11

10

•  Insert 10	

Where does it go?	

What color?	

A: no color! Tree 	

is too imbalanced	

Must change tree structure	

to allow recoloring	

Goal: restructure tree in O(lg n) time	

12

5 9

7

8

11

10

•  Our basic operation for changing tree structure is
called rotation:	

•  Operation on BST which preserves BST property	

•  Does rotation preserve inorder key ordering?	

•  What would the code for rightRotate() actually

do?	

y

x C

A B

x

A y

B C

rightRotate(y)

leftRotate(x)

rightRotate(y)

•  Answer: A lot of pointer manipulation	

x keeps its left child	

y keeps its right child	

x’s right child becomes y’s left child	

x’s and y’s parents change	

•  What is the running time?	

y
x C

A B

x
A y

B C

•  Rotate left about 9:	

12

5 9

7

8

11

5 12

7

9

11 8

•  Insertion: the basic idea	

•  Insert x into tree, color x red	

•  Only r-b property 3 might be violated (if p[x] red)	

•  If so, move violation up tree until a place is found
where it can be fixed	

•  Total time will be O(lg n)	

rbInsert(x)
 treeInsert(x);
 x->color = RED;
 // Move violation of #3 up tree, maintaining #4 as invariant:
 while (x!=root && x->p->color == RED)
 if (x->p == x->p->p->left)
 y = x->p->p->right;
 if (y->color == RED)
 x->p->color = BLACK;
 y->color = BLACK;
 x->p->p->color = RED;
 x = x->p->p;
 else // y->color == BLACK
 if (x == x->p->right)
 x = x->p;
 leftRotate(x);
 x->p->color = BLACK;
 x->p->p->color = RED;
 rightRotate(x->p->p);
 else // x->p == x->p->p->right
 (same as above, but with
 “right” & “left” exchanged)

Case 1

 Case 2

Case 3

rbInsert(x)
 treeInsert(x);
 x->color = RED;
 // Move violation of #3 up tree, maintaining #4 as invariant:
 while (x!=root && x->p->color == RED)
 if (x->p == x->p->p->left)
 y = x->p->p->right;
 if (y->color == RED)
 x->p->color = BLACK;
 y->color = BLACK;
 x->p->p->color = RED;
 x = x->p->p;
 else // y->color == BLACK
 if (x == x->p->right)
 x = x->p;
 leftRotate(x);
 x->p->color = BLACK;
 x->p->p->color = RED;
 rightRotate(x->p->p);
 else // x->p == x->p->p->right
 (same as above, but with
 “right” & “left” exchanged)

Case 1:uncle is RED

Case 2

Case 3

if (y->color == RED)
 x->p->color = BLACK;
 y->color = BLACK;
 x->p->p->color = RED;
 x = x->p->p;	

•  Case 1: “uncle” is red	

•  In figures below, all Δ’s are

equal-black-height subtrees	

C
A D

Δ B

Δ Δ

Δ Δ

C
A D

Δ B

Δ Δ

Δ Δ x
y

new x

Change colors of some nodes, preserving #4:
all downward paths have equal b.h.
The while loop now continues with x’s grandparent as the new x

case 1

B

Δ Δ
x

if (y->color == RED)
 x->p->color = BLACK;
 y->color = BLACK;
 x->p->p->color = RED;
 x = x->p->p;	

•  Case 1: “uncle” is red	

•  In figures below, all Δ’s are

equal-black-height subtrees	

C
A D

Δ Δ Δ

C
A D

Δ Δ

new x

Same action whether x is a left or a right child

B

Δ Δ

x Δ

case 1
y

B

Δ Δ

x

if (x == x->p->right)
 x = x->p;
 leftRotate(x);
// continue with case 3 code

•  Case 2:	

“Uncle” is black	

Node x is a right child	

•  Transform to case 3 via a left-
rotation	

C
A Δ

C
B y

A

Δ Δ

x Δ

case 2

Δ

y Δ

Transform case 2 into case 3 (x is left child) with a left rotation
This preserves property 4: all downward paths contain same number
of black nodes

x->p->color = BLACK;
x->p->p->color = RED;
rightRotate(x->p->p);

•  Case 3:	

“Uncle” is black	

Node x is a left child	

•  Change colors; rotate right	

B
A x
Δ

case 3 C
B

A

Δ Δ

x Δ

y Δ C

Δ Δ Δ

Perform some color changes and do a right rotation
Again, preserves property 4: all downward paths contain same
number of black nodes

•  Cases 1-3 hold if x’s parent is a left child	

•  If x’s parent is a right child, cases 4-6 are symmetric

(swap left for right)	

•  And you thought insertion was tricky… 	

•  We will not cover RB delete in class	

You should read section 14.4 on your own	

Read for the overall picture, not the details	

•  Coming up: 	

Graph Algorithms	

Graph Algorithms ���

 Jana Kosecka	

•  A graph G = (V, E)	

V = set of vertices	

E = set of edges = subset of V × V	

Thus |E| = O(|V|2)	

•  Variations:	

A connected graph has a path from every vertex to

every other	

In an undirected graph:	

Edge (u,v) = edge (v,u)	

No self-loops	

In a directed graph:	

Edge (u,v) goes from vertex u to vertex v, notated
u→v	

•  More variations:	

A weighted graph associates weights with either the	

edges or the vertices	

E.g., a road map: edges might be weighted w/ distance	

A multigraph allows multiple edges between the same	

vertices	

E.g., the call graph in a program (a function can get
called from multiple points in another function)	

•  We will typically express running times in terms of |E|
and |V| (often dropping the |’s)	

If |E| ≈ |V|2 the graph is dense	

If |E| ≈ |V| the graph is sparse	

•  If you know you are dealing with dense or sparse
graphs, different data structures may make sense	

•  Assume V = {1, 2, …, n}	

•  An adjacency matrix represents the graph as a n x n

matrix A:	

A[i, j] 	
= 1 if edge (i, j) ∈ E (or weight of edge)���

	
 	
= 0 if edge (i, j) ∉ E	

•  Example:	

1

2 4

3

a

d

b c

A 1 2 3 4

1

2

3 ??
4

•  Example:	

1

2 4

3

a

d

b c

A 1 2 3 4

1 0 1 1 0

2 0 0 1 0

3 0 0 0 0

4 0 0 1 0

•  How much storage does the adjacency matrix require?	

•  A: O(V2)	

•  What is the minimum amount of storage needed by an

adjacency matrix representation of an undirected
graph with 4 vertices?	

•  A: 6 bits	

Undirected graph → matrix is symmetric	

No self-loops → don’t need diagonal	

•  The adjacency matrix is a dense representation	

Usually too much storage for large graphs	

But can be very efficient for small graphs	

•  Most large interesting graphs are sparse	

E.g., planar graphs, in which no edges cross, have |E|

= O(|V|) by Euler’s formula	

For this reason the adjacency list is often a more

appropriate respresentation	

•  Adjacency list: for each vertex v ∈ V, store a list of
vertices adjacent to v	

•  Example:	

Adj[1] = {2,3}	

Adj[2] = {3}	

Adj[3] = {}	

Adj[4] = {3}	

•  Variation: can also keep ���
a list of edges coming into vertex	

1

2 4

3

•  How much storage is required?	

The degree of a vertex v = # incident edges	

Directed graphs have in-degree, out-degree	

For directed graphs, # of items in adjacency lists is	

Σ out-degree(v) = |E| ���

takes Θ(V + E) storage (Why?)	

For undirected graphs, # items in adj lists is	

Σ degree(v) = 2 |E| (handshaking lemma)���

also Θ(V + E) storage	

•  So: Adjacency lists take O(V+E) storage	

•  Given: a graph G = (V, E), directed or undirected	

•  Goal: methodically explore every vertex and every edge	

•  Ultimately: build a tree on the graph	

Pick a vertex as the root	

Choose certain edges to produce a tree	

Note: might also build a forest if graph is not connected	

•  “Explore” a graph, turning it into a tree	

One vertex at a time	

Expand frontier of explored vertices across the

breadth of the frontier	

•  Builds a tree over the graph	

Pick a source vertex to be the root	

Find (“discover”) its children, then their children, etc.	

•  Again will associate vertex “colors” to guide the
algorithm	

White vertices have not been discovered	

All vertices start out white	

Grey vertices are discovered but not fully explored	

They may be adjacent to white vertices	

Black vertices are discovered and fully explored	

They are adjacent only to black and gray vertices	

•  Explore vertices by scanning adjacency list of grey
vertices	

BFS(G, s) {
 initialize vertices;
 Q = {s}; // Q is a queue (duh); initialize
to s

 while (Q not empty) {
 u = RemoveTop(Q);
 for each v ∈ u->adj {
 if (v->color == WHITE)
 v->color = GREY;
 v->d = u->d + 1;
 v->p = u;
 Enqueue(Q, v);
 }
 u->color = BLACK;
 }
}

What does v->p represent?
What does v->d represent?

∞

∞

∞

∞

∞

∞

∞

∞

r s t u

v w x y

∞

∞

0

∞

∞

∞

∞

∞

r s t u

v w x y

s Q:

1

∞

0

1

∞

∞

∞

∞

r s t u

v w x y

w Q: r

1

∞

0

1

2

2

∞

∞

r s t u

v w x y

r Q: t x

1

2

0

1

2

2

∞

∞

r s t u

v w x y

Q: t x v

1

2

0

1

2

2

3

∞

r s t u

v w x y

Q: x v u

1

2

0

1

2

2

3

3

r s t u

v w x y

Q: v u y

1

2

0

1

2

2

3

3

r s t u

v w x y

Q: u y

1

2

0

1

2

2

3

3

r s t u

v w x y

Q: y

1

2

0

1

2

2

3

3

r s t u

v w x y

Q: Ø

BFS(G, s) {
 initialize vertices;
 Q = {s};
 while (Q not empty) {
 u = RemoveTop(Q);
 for each v ∈ u->adj {
 if (v->color == WHITE)
 v->color = GREY;
 v->d = u->d + 1;
 v->p = u;
 Enqueue(Q, v);
 }
 u->color = BLACK;
 }
} What will be the running time?

Touch every vertex: O(V)

u = every vertex, but only once
 (Why?)

So v = every vertex
that appears in some

other vert’s adjacency
list

Total running time: O(V+E)

BFS(G, s) {
 initialize vertices;
 Q = {s};
 while (Q not empty) {
 u = RemoveTop(Q);
 for each v ∈ u->adj {
 if (v->color == WHITE)
 v->color = GREY;
 v->d = u->d + 1;
 v->p = u;
 Enqueue(Q, v);
 }
 u->color = BLACK;
 }
}

What will be the storage cost
in addition to storing the tree?

Total space used:
O(max(degree(v))) = O(E)

•  BFS calculates the shortest-path distance to the source node	

•  Shortest-path distance δ(s,v) = minimum number of	

edges from s to v, or ∞ if v not reachable from s	

Proof given in the book (p. 472-5)	

•  BFS builds breadth-first tree, in which paths to root represent
shortest paths in G	

•  Thus can use BFS to calculate shortest path from one vertex to
another in O(V+E) time	

•  Depth-first search is another strategy for exploring a
graph	

•  Explore “deeper” in the graph whenever possible	

•  Edges are explored out of the most recently discovered
vertex v that still has unexplored edges	

•  When all of v’s edges have been explored, backtrack to
the vertex from which v was discovered	

•  Vertices initially colored white	

•  Then colored gray when discovered	

•  Then black when finished	

source
vertex

source
vertex

1 | | |

 | | |

 | |

d f

Green in figure -> gray in code	

1 | | |

 | | |

2 | |

source
vertex

d f

source
vertex

1 | | |

 | | 3 |

2 | |

d f

1 | | |

 | | 3 | 4

2 | |

source
vertex

d f

1 | | |

 | 5 | 3 | 4

2 | |

source
vertex

d f

DFS(G)
{
 for each vertex u ∈ G->V
 {
 u->color = WHITE;
 }
 time = 0;
 for each vertex u ∈ G->V
 {
 if (u->color ==
WHITE)

 DFS_Visit(u);
 }
}

DFS_Visit(u)
{
 u->color = GREY;
 time = time+1;
 u->d = time;
 for each v ∈ u->Adj[]
 {
 if (v->color ==
WHITE)

 DFS_Visit(v);
 }
 u->color = BLACK;
 time = time+1;
 u->f = time;
}

DFS(G)
{
 for each vertex u ∈ G->V
 {
 u->color = WHITE;
 }
 time = 0;
 for each vertex u ∈ G->V
 {
 if (u->color ==
WHITE)

 DFS_Visit(u);
 }
}

DFS_Visit(u)
{
 u->color = GREY;
 time = time+1;
 u->d = time;
 for each v ∈ u->Adj[]
 {
 if (v->color ==
WHITE)

 DFS_Visit(v);
 }
 u->color = BLACK;
 time = time+1;
 u->f = time;
}

What does u->d represent?

DFS(G)
{
 for each vertex u ∈ G->V
 {
 u->color = WHITE;
 }
 time = 0;
 for each vertex u ∈ G->V
 {
 if (u->color ==
WHITE)

 DFS_Visit(u);
 }
}

DFS_Visit(u)
{
 u->color = GREY;
 time = time+1;
 u->d = time;
 for each v ∈ u->Adj[]
 {
 if (v->color ==
WHITE)

 DFS_Visit(v);
 }
 u->color = BLACK;
 time = time+1;
 u->f = time;
}

What does u->f represent?

DFS(G)
{
 for each vertex u ∈ G->V
 {
 u->color = WHITE;
 }
 time = 0;
 for each vertex u ∈ G->V
 {
 if (u->color ==
WHITE)

 DFS_Visit(u);
 }
}

DFS_Visit(u)
{
 u->color = GREY;
 time = time+1;
 u->d = time;
 for each v ∈ u->Adj[]
 {
 if (v->color ==
WHITE)

 DFS_Visit(v);
 }
 u->color = BLACK;
 time = time+1;
 u->f = time;
}

Will all vertices eventually be colored black?

DFS(G)
{
 for each vertex u ∈ G->V
 {
 u->color = WHITE;
 }
 time = 0;
 for each vertex u ∈ G->V
 {
 if (u->color ==
WHITE)

 DFS_Visit(u);
 }
}

DFS_Visit(u)
{
 u->color = GREY;
 time = time+1;
 u->d = time;
 for each v ∈ u->Adj[]
 {
 if (v->color ==
WHITE)

 DFS_Visit(v);
 }
 u->color = BLACK;
 time = time+1;
 u->f = time;
}

What will be the running time?

DFS(G)
{
 for each vertex u ∈ G->V
 {
 u->color = WHITE;
 }
 time = 0;
 for each vertex u ∈ G->V
 {
 if (u->color ==
WHITE)

 DFS_Visit(u);
 }
}

DFS_Visit(u)
{
 u->color = GREY;
 time = time+1;
 u->d = time;
 for each v ∈ u->Adj[]
 {
 if (v->color ==
WHITE)

 DFS_Visit(v);
 }
 u->color = BLACK;
 time = time+1;
 u->f = time;
}

Running time: O(n2) because call DFS_Visit on each vertex,
and the loop over Adj[] can run as many as |V| times

DFS(G)
{
 for each vertex u ∈ G->V
 {
 u->color = WHITE;
 }
 time = 0;
 for each vertex u ∈ G->V
 {
 if (u->color ==
WHITE)

 DFS_Visit(u);
 }
}

DFS_Visit(u)
{
 u->color = GREY;
 time = time+1;
 u->d = time;
 for each v ∈ u->Adj[]
 {
 if (v->color ==
WHITE)

 DFS_Visit(v);
 }
 u->color = BLACK;
 time = time+1;
 u->f = time;
}

BUT, there is actually a tighter bound.
How many times will DFS_Visit() actually be called?

DFS(G)
{
 for each vertex u ∈ G->V
 {
 u->color = WHITE;
 }
 time = 0;
 for each vertex u ∈ G->V
 {
 if (u->color ==
WHITE)

 DFS_Visit(u);
 }
}

DFS_Visit(u)
{
 u->color = GREY;
 time = time+1;
 u->d = time;
 for each v ∈ u->Adj[]
 {
 if (v->color ==
WHITE)

 DFS_Visit(v);
 }
 u->color = BLACK;
 time = time+1;
 u->f = time;
}

So, running time of DFS = O(V+E)

•  This running time argument is an informal example of
amortized analysis	

•  “Charge” the exploration of edge to the edge:	

•  Each loop in DFS_Visit can be attributed to an edge in the

graph 	

•  Runs once/edge if directed graph, twice if undirected	

•  Thus loop will run in O(E) time, algorithm O(V+E)	

•  Considered linear for graph, b/c adj list requires O(V+E)

storage	

•  Important to be comfortable with this kind of reasoning and

analysis	

source
vertex

1 | | |

 | | |

 | |

source
vertex

d f

1 | | |

 | | |

2 | |

source
vertex

d f

1 | | |

 | | 3 |

2 | |

source
vertex

d f

1 | | |

 | | 3 | 4

2 | |

source
vertex

d f

1 | | |

 | 5 | 3 | 4

2 | |

source
vertex

d f

1 | | |

 | 5 | 6 3 | 4

2 | |

source
vertex

d f

1 | 8 | |

 | 5 | 6 3 | 4

2 | 7 |

source
vertex

d f

source
vertex

1 | 8 | |

 | 5 | 6 3 | 4

2 | 7 |

d f

source
vertex

1 | 8 | |

 | 5 | 6 3 | 4

2 | 7 9 |

d f

What is the structure of the green vertices?
What do they represent?

source
vertex

1 | 8 | |

 | 5 | 6 3 | 4

2 | 7 9 |10

d f

1 | 8 |11 |

 | 5 | 6 3 | 4

2 | 7 9 |10

source
vertex

d f

source
vertex

1 |12 8 |11 |

 | 5 | 6 3 | 4

2 | 7 9 |10

d f

1 |12 8 |11 13|

 | 5 | 6 3 | 4

2 | 7 9 |10

source
vertex

d f

source
vertex

1 |12 8 |11 13|

14| 5 | 6 3 | 4

2 | 7 9 |10

d f

1 |12 8 |11 13|

14|15 5 | 6 3 | 4

2 | 7 9 |10

source
vertex

d f

1 |12 8 |11 13|16

14|15 5 | 6 3 | 4

2 | 7 9 |10

source
vertex

d f

•  DFS introduces an important distinction among edges
in the original graph:	

•  Tree edge: encounter new (white) vertex 	

•  The tree edges form a spanning forest	

•  Can tree edges form cycles? Why or why not?	

1 |12 8 |11 13|16

14|15 5 | 6 3 | 4

2 | 7 9 |10

source
vertex

d f

Tree edges

•  DFS introduces an important distinction among edges
in the original graph:	

•  Tree edge: encounter new (white) vertex 	

•  Back edge: from descendent to ancestor	

Encounter a grey vertex (grey to grey)	

1 |12 8 |11 13|16

14|15 5 | 6 3 | 4

2 | 7 9 |10

source
vertex

d f

Tree edges Back edges

•  DFS introduces an important distinction among edges
in the original graph:	

Tree edge: encounter new (white) vertex 	

Back edge: from descendent to ancestor	

Forward edge: from ancestor to descendent	

Not a tree edge, though	

From grey node to black node	

Tree edges Back edges Forward edges

1 |12 8 |11 13|16

14|15 5 | 6 3 | 4

2 | 7 9 |10

source
vertex

d f

•  DFS introduces an important distinction among edges
in the original graph:	

Tree edge: encounter new (white) vertex 	

Back edge: from descendent to ancestor	

Forward edge: from ancestor to descendent	

Cross edge: between a tree or subtrees	

From a grey node to a black node	

source
vertex

d f

Tree edges Back edges Forward edges

1 |12 8 |11 13|16

14|15 5 | 6 3 | 4

2 | 7 9 |10

Cross edges

•  DFS introduces an important distinction among edges
in the original graph:	

Tree edge: encounter new (white) vertex 	

Back edge: from descendent to ancestor	

Forward edge: from ancestor to descendent	

Cross edge: between a tree or subtrees	

•  Note: tree & back edges are important; most
algorithms don’t distinguish forward & cross	

•  Thm 23.9 (22.10 – in 3rd edition): If G is undirected, a
DFS produces only tree and back edges	

•  Suppose you have u.d < v.d	

•  Then search discovered u before v, so first time v is

discovered it is white – hence the edge 	

 (u,v) is a tree edge	

•  Otherwise the search already explored this 	

 edge in direction from v to u	

•  edge must actually be a back edge since	

•  u is still gray	

•  Thm 23.9: If G is undirected, a DFS produces only tree
and back edges – cannot be a forward edge	

source

C?

source

F?

•  Thm: An undirected graph is acyclic iff a DFS yields
no back edges	

•  If acyclic, no back edges (because a back edge implies
a cycle	

•  If no back edges, acyclic	

No back edges implies only tree edges (Why?)	

Only tree edges implies we have a tree or a forest	

Which by definition is acyclic	

•  Thus, can run DFS to find whether a graph has a cycle	

• How would you modify the code to detect cycles?	

DFS(G)
{
 for each vertex u ∈ G->V
 {
 u->color = WHITE;
 }
 time = 0;
 for each vertex u ∈ G->V
 {
 if (u->color == WHITE)
 DFS_Visit(u);
 }
}

DFS_Visit(u)
{
 u->color = GREY;
 time = time+1;
 u->d = time;

 for each v ∈ u->Adj[]
 {
 if (v->color == WHITE)
 DFS_Visit(v);
 }
 u->color = BLACK;
 time = time+1;
 u->f = time;
}

• What will be the running time ?	

DFS(G)
{
 for each vertex u ∈ G->V
 {
 u->color = WHITE;
 }
 time = 0;
 for each vertex u ∈ G->V
 {
 if (u->color == WHITE)
 DFS_Visit(u);
 }
}

DFS_Visit(u)
{
 u->color = GREY;
 time = time+1;
 u->d = time;

 for each v ∈ u->Adj[]
 {
 if (v->color == WHITE)
 DFS_Visit(v);
 }
 u->color = BLACK;
 time = time+1;
 u->f = time;
}

•  What will be the running time?	

•  A: O(V+E)	

•  We can actually determine if cycles exist in O(V) time:	

In an undirected acyclic forest, |E| ≤ |V| - 1 	

So count the edges: if ever see |V| distinct edges, must	

have seen a back edge along the way	

•  Thm: If G is undirected, a DFS produces only tree and
back edges	

•  Thm: An undirected graph is acyclic iff a DFS yields
no back edges	

•  Thus, can run DFS to find cycles	

source
vertex

d f

Tree edges Back edges Forward edges

1 |12 8 |11 13|16

14|15 5 | 6 3 | 4

2 | 7 9 |10

Cross edges

