CS583 Lecture 08

Jana Kosecka

Red-Black Trees
Graph Algorithms

Many slides here are based on E. Demaine, D. Luebke slides

Review: Binary Search Trees

- Binary Search Trees (BSTs) are an important data structure for dynamic sets
- In addition to satellite data, eleements have: key: an identifying field inducing a total ordering left: pointer to a left child (may be NULL) right: pointer to a right child (may be NULL) p : pointer to a parent node (NULL for root)

Review: Binary Search Trees

- BST property:
$\operatorname{key}[\operatorname{left}(x)] \leq \operatorname{key}[x] \leq \operatorname{key}[\operatorname{right}(x)]$
- Example:

Review: Inorder Tree Walk

- An inorder walk prints the set in sorted order: TreeWalk(x)

TreeWalk(left[x]);
print(x) ;
TreeWalk (right[x]);
Easy to show by induction on the BST property Preorder tree walk: print root, then left, then right Postorder tree walk: print left, then right, then root

Review: BST Search

TreeSearch (x, k)

```
if (x = NULL or k = key[x])
    return x;
    if (k < key[x])
    return TreeSearch(left[x], k);
```

 else
 return TreeSearch (right[x], k);

Review: BST Search (Iterative)

IterativeTreeSearch (x, k)

$$
\begin{aligned}
& \text { while }(x \quad!=\operatorname{NULL} \text { and } k \quad!=\text { key }[x]) \\
& \text { if }(k<k e y[x]) \\
& x=\text { left }[x] ; \\
& \text { else } \\
& x=\text { right }[x] ; \\
& \text { return } x ;
\end{aligned}
$$

Review: BST Insert

- Adds an element x to the tree so that the binary search tree property continues to hold
- The basic algorithm

Like the search procedure above Insert x in place of NULL
Use a "trailing pointer" to keep track of where you came from (like inserting into singly linked list)

- Like search, takes time $\mathrm{O}(h), h=$ tree height

Review: Sorting With BSTs

- Basic algorithm:

Insert elements of unsorted array from 1..n
Do an inorder tree walk to print in sorted order

- Running time:

Best case: $\Omega(n \lg n)$ (it's a comparison sort)
Worst case: $\mathrm{O}\left(\mathrm{n}^{2}\right)$
Average case: $\mathrm{O}(n \lg n)$ (it's a quicksort!)

Review: Sorting With BSTs

- Average case analysis It's a form of quicksort!

for $i=1$ to n
TreeInsert(A[i]);
InorderTreeWalk (root);

Review: More BST Operations

- Minimum:

Find leftmost node in tree

- Successor:
x has a right subtree: successor is minimum node in right subtree
x has no right subtree: successor is first ancestor of x whose left child is also ancestor of x
Intuition: As long as you move to the left up the tree, you're visiting smaller nodes.
- Predecessor: similar to successor

Review: More BST Operations

- Delete:
x has no children:
Remove x x has one child:

Splice out x x has two children:

Swap x with successor

Perform case 1 or 2 to delete it

Red-Black Trees

- Red-black trees: Binary search trees augmented with node color Operations designed to guarantee that the height $h=\mathrm{O}(\lg n)$
- First: describe the properties of red-black trees
- Then: prove that these guarantee $h=\mathrm{O}(\lg n)$
- Finally: describe operations on red-black trees

Red-Black Properties

- The red-black properties:

1. Every node is either red or black
2. Every leaf (NULL pointer) is black

Note: this means every "real" node has children
3. If a node is red, both children are black

Note: can't have 2 consecutive reds on a path
4. Every path from node to descendent leaf contains the same number of black nodes
5. The root is always black

Review: Red-Black Trees

- Put example on board and verify properties:

1. Every node is either red or black
2. Every leaf (NULL pointer) is black
3. If a node is red, both children are black
4. Every path from node to descendent leaf contains the same number of black nodes
5. The root is always black

- black-height: \# black nodes on path to leaf

Label example with h and bh values

Review: Height of Red-Black Trees

- What is the minimum black-height of a node with height h?
- A: a height- h node has black-height $\geq h / 2$
- Theorem: A red-black tree with n internal nodes has height $h \leq 2 \lg (n+1)$

RB Trees: Proving Height Bound

- Thus at the root of the red-black tree:

$$
\begin{array}{ll}
n \quad \geq 2^{\text {bh }(r o o t)}-1 & \text { (Why?) } \\
n \quad \geq 2^{h / 2}-1 & \text { (Why?) } \\
\lg (n+1) \geq h / 2 & \text { (Why?) } \tag{Why?}\\
h \leq 2 \lg (n+1) & \text { (Why?) }
\end{array}
$$

Thus $h=\mathrm{O}(\lg n)$

Red-Black Trees: The Problem With Insertion

- Insert 10

Where does it go? What color?

Red-Black Trees: The Problem With Insertion

- Insert 10

Where does it go?
What color?
A: no color! Tree is too imbalanced Must change tree structure to allow recoloring
Goal: restructure tree in $\mathrm{O}(\lg n)$ time

Review: RB Trees: Rotation

- Our basic operation for changing tree structure is called rotation:
- Operation on BST which preserves BST property

- Does rotation preserve inorder key ordering?
- What would the code for rightRotate () actually do?

RB Trees: Rotation

- Answer: A lot of pointer manipulation x keeps its left child
y keeps its right child
x 's right child becomes y 's left child x 's and y 's parents change
- What is the running time?

Rotation Example

- Rotate left about 9:

Red-Black Trees: Insertion

- Insertion: the basic idea
- Insert x into tree, color x red
- Only r-b property 3 might be violated (if $\mathrm{p}[x]$ red)
- If so, move violation up tree until a place is found where it can be fixed
- Total time will be $\mathrm{O}(\lg n)$

```
rbInsert(x)
    treeInsert(x);
    x->color = RED;
    // Move violation of #3 up tree, maintaining #4 as invariant:
    while (x!=root && x->p->color == RED)
    if (x->p == x->p->p->left)
        y = x->p->p->right;
        if (y->color == RED)
            x->p->color = BLACK;
            y->color = BLACK;
            x->p->p->color = RED;
            x = x->p->p;
        else // y->color == BLACK
            if (x == x->p->right)
                    x = x->p;
                    leftRotate(x);
            x->p->color = BLACK;
            x->p->p->color = RED;
            rightRotate (x->p->p);
    else // x->p == x->p->p->right
        (same as above, but with
        "right" & "left" exchanged)
                                    Case 1
```


Case 2

```
rbInsert(x)
    treeInsert(x);
    x->color = RED;
    // Move violation of #3 up tree, maintaining #4 as invariant:
    while (x!=root && x->p->color == RED)
    if (x->p == x->p->p->left)
        y = x->p->p->right;
        if (y->color == RED)
            x->p->color = BLACK;
            y->color = BLACK;
            x->p->p->color = RED;
            x = x->p->p;
        else // y->color == BLACK
            if (x == x->p->right)
                    x = x->p;
                    leftRotate(x);
            x->p->color = BLACK;
            x->p->p->color = RED;
            rightRotate (x->p->p);
    else // x->p == x->p->p->right
        (same as above, but with
        "right" & "left" exchanged)
```

Case 1:uncle is RED

Case 2

RB Insert: Case 1

```
if (y->color == RED)
    x->p->color = BLACK;
    y->color = BLACK;
    x->p->p->color = RED;
    x = x->p->p;
```

- Case 1: "uncle" is red
- In figures below, all Δ 's are equal-black-height subtrees

Change colors of some nodes, preserving \#4:
all downward paths have equal b.h.
The while loop now continues with x 's grandparent as the new x

RB Insert: Case 1

$$
\text { if } \begin{aligned}
& (y->c o l o r==\text { RED }) \\
& x->p->c o l o r=B L A C K \\
& \\
& y^{->c o l o r ~}=B L A C K \\
& \\
& x->p->p->c o l o r=R E D ; \\
& \\
& x=x->p->p ;
\end{aligned}
$$

- Case 1: "uncle" is red
- In figures below, all Δ 's are equal-black-height subtrees

Same action whether x is a left or a right child

RB Insert: Case 2

```
if (x == x->p->right)
    x = x->p;
    leftRotate(x);
// continue with case 3 code
```

- Case 2:
"Uncle" is black Node x is a right child
- Transform to case 3 via a leftrotation

Transform case 2 into case 3 (x is left child) with a left rotation This preserves property 4 : all downward paths contain same number of black nodes

RB Insert: Case 3

$$
\begin{aligned}
& x->p->c o l o r=\text { BLACK ; } \\
& \text { x->p->p->color }=\text { RED ; } \\
& \text { rightRotate }(x->p->p) \text {; }
\end{aligned}
$$

- Case 3:
"Uncle" is black Node x is a left child
- Change colors; rotate right

Perform some color changes and do a right rotation Again, preserves property 4: all downward paths contain same number of black nodes

RB Insert: Cases 4-6

- Cases 1-3 hold if x 's parent is a left child
- If x 's parent is a right child, cases 4-6 are symmetric (swap left for right)

Red-Black Trees: Deletion

- And you thought insertion was tricky...
- We will not cover RB delete in class

You should read section 14.4 on your own Read for the overall picture, not the details

The End

- Coming up:

Graph Algorithms

CS 583: Lecture 08

Jana Kosecka

Graph Algorithms

Graphs

- A graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$
$\mathrm{V}=$ set of vertices
$\mathrm{E}=$ set of edges $=$ subset of $\mathrm{V} \times \mathrm{V}$
Thus $\mid \mathrm{El}=\mathrm{O}\left(\mid \mathrm{V}^{2}\right)$

Graph Variations

- Variations:

A connected graph has a path from every vertex to every other
In an undirected graph:
Edge (u, v) = edge (v, u)
No self-loops
In a directed graph:
Edge (u, v) goes from vertex u to vertex v, notated $u \rightarrow v$

Graph Variations

- More variations:

A weighted graph associates weights with either the edges or the vertices
E.g., a road map: edges might be weighted w/ distance A multigraph allows multiple edges between the same vertices
E.g., the call graph in a program (a function can get called from multiple points in another function)

Graphs

- We will typically express running times in terms of $\mid \mathrm{EI}$ and IVI (often dropping the l's) If $|E| \approx|\mathrm{V}|^{2}$ the graph is dense If $|\mathrm{E}| \approx|\mathrm{V}|$ the graph is sparse
- If you know you are dealing with dense or sparse graphs, different data structures may make sense

Representing Graphs

- Assume $\mathrm{V}=\{1,2, \ldots, n\}$
- An adjacency matrix represents the graph as a $n \times n$ matrix A:

$$
\begin{aligned}
\mathrm{A}[i, j] \quad & =1 \text { if edge }(i, j) \in \mathrm{E} \quad(\text { or weight of edge) } \\
& =0 \text { if edge }(i, j) \notin \mathrm{E}
\end{aligned}
$$

Graphs: Adjacency Matrix

- Example:

Graphs: Adjacency Matrix

- Example:

A	1	2	3	4
1	0	1	1	0
2	0	0	1	0
3	0	0	0	0
4	0	0	1	0

Graphs: Adjacency Matrix

- How much storage does the adjacency matrix require?
- $\mathrm{A}: \mathrm{O}\left(\mathrm{V}^{2}\right)$
- What is the minimum amount of storage needed by an adjacency matrix representation of an undirected graph with 4 vertices?
- A: 6 bits

Undirected graph \rightarrow matrix is symmetric No self-loops \rightarrow don't need diagonal

Graphs: Adjacency Matrix

- The adjacency matrix is a dense representation Usually too much storage for large graphs But can be very efficient for small graphs
- Most large interesting graphs are sparse
E.g., planar graphs, in which no edges cross, have IEI
= O(IVI) by Euler's formula
For this reason the adjacency list is often a more appropriate respresentation

Graphs: Adjacency List

- Adjacency list: for each vertex $v \in \mathrm{~V}$, store a list of vertices adjacent to v
- Example:
$\operatorname{Adj}[1]=\{2,3\}$
$\operatorname{Adj}[2]=\{3\}$
$\operatorname{Adj}[3]=\{ \}$
$\operatorname{Adj}[4]=\{3\}$
- Variation: can also keep
a list of edges coming into vertex

Graphs: Adjacency List

- How much storage is required?

The degree of a vertex $v=$ \# incident edges
Directed graphs have in-degree, out-degree
For directed graphs, \# of items in adjacency lists is
Σ out-degree $(v)=|E|$
takes $\Theta(\mathrm{V}+\mathrm{E})$ storage (Why?)
For undirected graphs, \# items in adj lists is
Σ degree $(\mathrm{v})=2 \mathrm{IEl} \quad$ (handshaking lemma)
also $\Theta(V+E)$ storage

- So: Adjacency lists take $\mathrm{O}(\mathrm{V}+\mathrm{E})$ storage

Graph Searching

- Given: a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, directed or undirected
- Goal: methodically explore every vertex and every edge
- Ultimately: build a tree on the graph Pick a vertex as the root
Choose certain edges to produce a tree
Note: might also build a forest if graph is not connected

Breadth-First Search

- "Explore" a graph, turning it into a tree

One vertex at a time Expand frontier of explored vertices across the breadth of the frontier

- Builds a tree over the graph

Pick a source vertex to be the root Find ("discover") its children, then their children, etc.

Breadth-First Search

- Again will associate vertex "colors" to guide the algorithm
White vertices have not been discovered
All vertices start out white
Grey vertices are discovered but not fully explored They may be adjacent to white vertices Black vertices are discovered and fully explored They are adjacent only to black and gray vertices
- Explore vertices by scanning adjacency list of grey vertices

Breadth-First Search

```
BFS(G, s) {
    initialize vertices;
    Q = {s}; // Q is a queue (duh); initialize
    to s
        while (Q not empty) {
        u = RemoveTop (Q);
        for each v G u->adj {
            if (v->color == WHITE)
                                    v->color = GREY;
                    v->d = u->d + 1;
                v->p =u; What does v->d represent?
                Enqueue (Q, v); What does v->p represent?
            }
            u->color = BLACK;
    }
}
```


Breadth-First Search: Example

Breadth-First Search: Example

Q: $\quad \mathrm{s}$

Breadth-First Search: Example

$\mathbf{Q :}$| \mathbf{w} | \mathbf{r} |
| :--- | :--- |

Breadth-First Search: Example

Q: | r | t | x |
| :--- | :--- | :--- |

Breadth-First Search: Example

Q: Ø

BFS: The Code Again

```
BFS(G, s) {
    initialize vertices: Touch every vertex: O(V)
    Q = {s};
    while (Q not empty) {
        u = RemoveTop(Q);
        for each v G u->adj {
            if(v->color == WHITE)
                            v->color = GREY;
    So v = every vertex
    v->d = u->d + 1;
that appears in some
    v->p = u;
other vert's adjacency Enqueue (Q, v);
    list }
        u->color = BLACK;
    }
}
What will be the running time?
Total running time: \(\mathbf{O}(\mathbf{V}+\mathbf{E})\)
```


BFS: The Code Again

```
BFS(G, s) {
    initialize vertices;
    Q = {s};
    while (Q not empty) {
        u = RemoveTop(Q);
        for each v G u->adj {
            if (v->color == WHITE)
                v->color = GREY;
            v->d = u->d + 1;
            v->p = u;
            Enqueue(Q, v);
        }
        u->color = BLACK; What will be the storage cost
    }
}
                                    in addition to storing the tree?
                                    Total space used:
                                    O(max(degree(v))) = O(E)
```


Breadth-First Search: Properties

- BFS calculates the shortest-path distance to the source node
- Shortest-path distance $\delta(\mathrm{s}, \mathrm{v})=$ minimum number of edges from s to v, or ∞ if v not reachable from s Proof given in the book (p. 472-5)
- BFS builds breadth-first tree, in which paths to root represent shortest paths in G
- Thus can use BFS to calculate shortest path from one vertex to another in $\mathrm{O}(\mathrm{V}+\mathrm{E})$ time

Depth-First Search

- Depth-first search is another strategy for exploring a graph
- Explore "deeper" in the graph whenever possible
- Edges are explored out of the most recently discovered vertex v that still has unexplored edges
- When all of v 's edges have been explored, backtrack to the vertex from which v was discovered

Depth-First Search

- Vertices initially colored white
- Then colored gray when discovered
- Then black when finished

DFS Example

DFS Example

source

vertex

Green in figure -> gray in code

DFS Example

DFS Example

DFS Example

DFS Example

source

Depth-First Search: The Code

```
DFS (G)
{
    for each vertex u \inG->V
    {
            u->color = WHITE;
    }
    time = 0;
    for each vertex u \inG->V
    {
            if (u->color ==
    WHITE)
        DFS_Visit(u);
    }
}
```

```
DFS_Visit(u)
{
    u->color = GREY;
    time = time+1;
    u->d = time;
    for each v G u->Adj[]
        {
            if (v->color ==
    WHITE)
                DFS_Visit(v);
    }
    u->Color = BLACK;
    time = time+1;
    u->f = time;
}
```


Depth-First Search: The Code

```
DFS (G)
{
    for each vertex u G G->V
        {
            u->color = WHITE;
    }
    time = 0;
    for each vertex u G G->V
        {
            if (u->color ==
    WHITE)
        DFS_Visit(u);
    }
}
```

```
DFS_Visit(u)
{
    u->color = GREY;
    time = time+1;
    u->d = time;
    for each v G u->Adj[]
    {
                if (v->color ==
    WHITE)
            DFS_Visit(v);
    }
    u->color = BLACK;
    time = time+1;
    u->f = time;
}
```

What does u->d represent?

Depth-First Search: The Code

```
DFS (G)
{
    for each vertex u \inG->V
        {
            u->color = WHITE;
        }
        time = 0;
        for each vertex u GG->V
        {
            if (u->color ==
    WHITE)
        DFS_Visit(u);
    }
}
```

```
DFS_Visit(u)
{
        u->color = GREY;
        time = time+1;
        u->d = time;
        for each v G u->Adj[]
        {
            if (v->color ==
    WHITE)
            DFS_Visit(v);
        }
    u->color = BLACK;
        time = time+1;
        u->f = time;
}
```

What does u->f represent?

Depth-First Search: The Code

```
DFS (G)
{
    for each vertex u \inG->V
        {
            u->color = WHITE;
        }
        time = 0;
        for each vertex u \inG->V
        {
            if (u->color ==
    WHITE)
            DFS_Visit(u);
    }
}
```

```
DFS_Visit(u)
{
        u->color = GREY;
        time = time+1;
        u->d = time;
        for each v G u->Adj[]
        {
            if (v->color ==
    WHITE)
            DFS_Visit(v);
        }
    u->color = BLACK;
        time = time+1;
        u->f = time;
}
```

Will all vertices eventually be colored black?

Depth-First Search: The Code

```
DFS (G)
{
    for each vertex u G G->V
        {
            u->color = WHITE;
        }
        time = 0;
        for each vertex u GG->V
        {
            if (u->color ==
    WHITE)
        DFS_Visit(u);
    }
}
```

```
DFS_Visit(u)
{
        u->color = GREY;
        time = time+1;
        u->d = time;
        for each v G u->Adj[]
        {
            if (v->color ==
    WHITE)
            DFS_Visit(v);
        }
        u->color = BLACK;
        time = time+1;
        u->f = time;
}
```

What will be the running time?

Depth-First Search: The Code

```
DFS (G)
{
    for each vertex u G G->V
    {
        u->color = WHITE;
    }
    time = 0;
    for each vertex u G G->V
    {
            if (u->color ==
    WHITE)
            DFS_Visit(u);
    }
}
```

```
DFS_Visit(u)
{
    u->color = GREY;
    time = time+1;
    u->d = time;
    for each v G u->Adj[]
        {
            if (v->color ==
    WHITE)
            DFS_Visit(v);
    }
    u->color = BLACK;
    time = time+1;
    u->f = time;
}
```

Running time: $\mathbf{O}\left(\mathrm{n}^{2}\right)$ because call DFS_Visit on each vertex, and the loop over Adj[l] can run as many as |V| times

Depth-First Search: The Code

```
DFS (G)
{
    for each vertex u \inG->V
    {
            u->color = WHITE;
    }
    time = 0;
        for each vertex u \inG->V
        {
            if (u->color ==
    WHITE)
            DFS_Visit(u);
    }
}
```

```
DFS_Visit(u)
{
        u->color = GREY;
        time = time+1;
        u->d = time;
    for each v G u->Adj[]
        {
            if (v->color ==
    WHITE)
        DFS_Visit(v);
        }
    u->color = BLACK;
    time = time+1;
    u->f = time;
}
```

BUT, there is actually a tighter bound.
How many times will DFS_Visit() actually be called?

Depth-First Search: The Code

```
DFS (G)
{
    for each vertex u G G->V
        {
            u->color = WHITE;
        }
        time = 0;
        for each vertex u GG->V
        {
            if (u->color ==
    WHITE)
        DFS_Visit(u);
    }
}
```

```
DFS_Visit(u)
{
        u->color = GREY;
        time = time+1;
        u->d = time;
        for each v G u->Adj[]
        {
            if (v->color ==
    WHITE)
            DFS_Visit(v);
        }
        u->color = BLACK;
        time = time+1;
        u->f = time;
}
```

So, running time of DFS $=\mathbf{O}(\mathbf{V}+\mathbf{E})$

Depth-First Sort Analysis

- This running time argument is an informal example of amortized analysis
- "Charge" the exploration of edge to the edge:
- Each loop in DFS_Visit can be attributed to an edge in the graph
- Runs once/edge if directed graph, twice if undirected
- Thus loop will run in $\mathrm{O}(\mathrm{E})$ time, algorithm $\mathrm{O}(\mathrm{V}+\mathrm{E})$
- Considered linear for graph, b/c adj list requires $\mathrm{O}(\mathrm{V}+\mathrm{E})$ storage
- Important to be comfortable with this kind of reasoning and analysis

DFS Example

DFS: Kinds of edges

- DFS introduces an important distinction among edges in the original graph:
- Tree edge: encounter new (white) vertex
- The tree edges form a spanning forest
- Can tree edges form cycles? Why or why not?

DFS Example

Tree edges

DFS: Kinds of edges

- DFS introduces an important distinction among edges in the original graph:
- Tree edge: encounter new (white) vertex
- Back edge: from descendent to ancestor

Encounter a grey vertex (grey to grey)

DFS Example

Tree edges Back edges

DFS: Kinds of edges

- DFS introduces an important distinction among edges in the original graph:
Tree edge: encounter new (white) vertex
Back edge: from descendent to ancestor
Forward edge: from ancestor to descendent
Not a tree edge, though
From grey node to black node

DFS Example

Tree edges Back edges Forward edges

DFS: Kinds of edges

- DFS introduces an important distinction among edges in the original graph:
Tree edge: encounter new (white) vertex
Back edge: from descendent to ancestor
Forward edge: from ancestor to descendent
Cross edge: between a tree or subtrees
From a grey node to a black node

DFS Example

Tree edges Back edges Forward edges Cross edges

DFS: Kinds of edges

- DFS introduces an important distinction among edges in the original graph:
Tree edge: encounter new (white) vertex
Back edge: from descendent to ancestor
Forward edge: from ancestor to descendent
Cross edge: between a tree or subtrees
- Note: tree \& back edges are important; most algorithms don't distinguish forward \& cross

DFS: Kinds Of Edges

- Thm 23.9 (22.10 - in $3^{\text {rd }}$ edition): If G is undirected, a DFS produces only tree and back edges
- Suppose you have $u . d<v . d$
- Then search discovered u before v, so first time v is discovered it is white - hence the edge (u, v) is a tree edge
- Otherwise the search already explored this edge in direction from v to u
- edge must actually be a back edge since
- u is still gray

DFS: Kinds Of Edges

- Thm 23.9: If G is undirected, a DFS produces only tree and back edges - cannot be a forward edge

DFS And Graph Cycles

- Thm: An undirected graph is acyclic iff a DFS yields no back edges
- If acyclic, no back edges (because a back edge implies a cycle
- If no back edges, acyclic

No back edges implies only tree edges (Why?)
Only tree edges implies we have a tree or a forest
Which by definition is acyclic

- Thus, can run DFS to find whether a graph has a cycle

DFS And Cycles

- How would you modify the code to detect cycles?

```
DFS (G)
{
    for each vertex u \inG->V
    {
        u->color = WHITE;
    }
    time = 0;
    for each vertex u \inG->V
    {
        if (u->color == WHITE)
        DFS_Visit(u);
    }
}
```

```
DFS_Visit(u)
{
    u->color = GREY;
    time = time+1;
    u->d = time;
    for each v \in u->Adj[]
    {
        if (v->color == WHITE)
                DFS_Visit(v);
    }
    u->color = BLACK;
    time = time+1;
    u->f = time;
}
```


DFS And Cycles

- What will be the running time ?

```
DFS (G)
{
    for each vertex u GG->V
    {
        u->color = WHITE;
    }
    time = 0;
    for each vertex u GG->V
    {
        if (u->color == WHITE)
        DFS_Visit(u);
    }
}
```

```
DFS_Visit(u)
{
    u->color = GREY;
    time = time+1;
    u->d = time;
    for each v G u->Adj[]
    {
        if (v->color == WHITE)
                DFS_Visit(v);
    }
    u->color = BLACK;
    time = time+1;
    u->f = time;
}
```


DFS And Cycles

- What will be the running time?
- $\mathrm{A}: \mathrm{O}(\mathrm{V}+\mathrm{E})$
- We can actually determine if cycles exist in $\mathrm{O}(\mathrm{V})$ time:

In an undirected acyclic forest, $|\mathrm{E}| \leq|\mathrm{V}|-1$
So count the edges: if ever see IVI distinct edges, must have seen a back edge along the way

Review: Kinds Of Edges

- Thm: If G is undirected, a DFS produces only tree and back edges
- Thm: An undirected graph is acyclic iff a DFS yields no back edges
- Thus, can run DFS to find cycles

Review: Kinds of Edges

Tree edges Back edges Forward edges Cross edges

