CS583 Lecture 09

Jana Kosecka

Graph Algorithms
Topological Sort
Strongly Connected Component
Minimum Spanning Tree

Many slides here are based on E. Demaine, D. Luebke, Kleinberg-Tardos slides

Graph Algs. Contìnued

- Review BFS
- Application of BSF - check bipartiteness
- Review DFS
- Check for cycles

World Wide Web

-Web graph.
Node: web page.
Edge: hyperlink from one page to another.

9-11 Terrorist Network

- Social network graph.

Node: people.
Edge: relationship betwe

Rooted Trees

-Rooted tree. Given a tree T, choose a root node r and orient each edge away from r.
-Importance. Models hierarchical structure.

the same tree, rooted at I

Phylogeny Trees

-Phylogeny trees. Describe evolutionary history of species.

GUI Containment Hierarchy

-GUI containment hierarchy. Describe organization of GUI widgets.

Breadth-First Search

- Again will associate vertex "colors" to guide the algorithm
White vertices have not been discovered
All vertices start out white
Grey vertices are discovered but not fully explored
They may be adjacent to white vertices
Black vertices are discovered and fully explored
They are adjacent only to black and gray vertices
- Explore vertices by scanning adjacency list of grey vertices

Breadth-First Search

$\operatorname{BFS}(G, s)\{$ initialize vertices; $Q=\{s\} ; \quad / / Q$ is a queue (duh); initialize to s while (Q not empty) \{
u = RemoveTop (Q) ;
for each $v \in u->a d j$ \{ if ($\mathrm{v}->\mathrm{color}==$ WHITE)
v->color = GREY;
$\mathrm{v}->\mathrm{d}=\mathrm{u}->\mathrm{d}+1$;
$v->p=u$; What does $v->d$ represent?
Enqueue (Q, v); What does $v->p$ represent?
\}
u->color $=$ BLACK; \}
\}

Breadth-First Search: Example

BSF

- Check for bi-partite graphs
- Graphs representing relationships
- All nodes can belong to two subsets
- There are no edges between subsets

Depth-First Search

- Depth-first search is another strategy for exploring a graph
- Explore "deeper" in the graph whenever possible
- Edges are explored out of the most recently discovered vertex v that still has unexplored edges
- When all of v 's edges have been explored, backtrack to the vertex from which v was discovered

Depth-First Search

- Vertices initially colored white
- Then colored gray when discovered
- Then black when finished

Depth-First Sort Analysis

- This running time argument is an informal example of amortized analysis
- "Charge" the exploration of edge to the edge:
- Each loop in DFS_Visit can be attributed to an edge in the graph
- Runs once/edge if directed graph, twice if undirected
- Thus loop will run in $\mathrm{O}(\mathrm{E})$ time, algorithm $\mathrm{O}(\mathrm{V}+\mathrm{E})$
- Considered linear for graph, b / c adj list requires $\mathrm{O}(\mathrm{V}+\mathrm{E})$ storage
- Important to be comfortable with this kind of reasoning and analysis

DFS: Kinds of edges

- DFS introduces an important distinction among edges in the original graph:
- Tree edge: encounter new (white) vertex
- Back edge: from descendent to ancestor Encounter a grey vertex (grey to grey)

DFS Example

Tree edges Back edges

DFS: Kinds of edges

- DFS introduces an important distinction among edges in the original graph:
Tree edge: encounter new (white) vertex
Back edge: from descendent to ancestor
Forward edge: from ancestor to descendent
Not a tree edge, though
From grey node to black node

DFS Example

Tree edges Back edges Forward edges

DFS: Kinds of edges

- DFS introduces an important distinction among edges in the original graph:
Tree edge: encounter new (white) vertex
Back edge: from descendent to ancestor
Forward edge: from ancestor to descendent
Cross edge: between a tree or subtrees
From a grey node to a black node

DFS Example

Tree edges Back edges Forward edges Cross edges

DFS: Kinds of edges

- DFS introduces an important distinction among edges in the original graph:
Tree edge: encounter new (white) vertex
Back edge: from descendent to ancestor Forward edge: from ancestor to descendent Cross edge: between a tree or subtrees
- Note: tree \& back edges are important; most algorithms don't distinguish forward \& cross

DFS: Kinds Of Edges

- Thm 23.9 (22.10 - in $3^{\text {rd }}$ edition): If G is undirected, a DFS produces only tree and back edges
- Suppose you have $u . d<v . d$
- Then search discovered u before v, so first time v is discovered it is white - hence the edge (u, v) is a tree edge
- Otherwise the search already explored this edge in direction from v to u
- edge must actually be a back edge since
- u is still gray

DFS And Graph Cycles

- Thm: An undirected graph is acyclic iff a DFS yields no back edges
- If acyclic, no back edges (because a back edge implies a cycle
- If no back edges, acyclic

No back edges implies only tree edges (Why?)
Only tree edges implies we have a tree or a forest
Which by definition is acyclic

- Thus, can run DFS to find whether a graph has a cycle

DFS And Cycles

- How would you modify the code to detect cycles?

DFS (G)
\{

\{
u->color $=$ WHITE;
\}
time $=0$;
for each vertex $u \in G->V$
\{
if (u->color == WHITE) DFS_Visit(u);
\}
\}

DFS_Visit(u)
\mathfrak{i}
u->color = GREY;
time = time+1;
u->d = time;
for each $v \in u->A d j[]$
\{
if (v ->color $==$ WHITE)
DFS_Visit(v) ;
\}
u->color = BLACK;
time $=$ time +1 ;
u->f = time;
\}

DFS And Cycles

- What will be the running time ?

DFS (G)
\{
for each vertex $u \in G->V$
\{
u->color $=$ WHITE;
\}
time $=0$;
for each vertex $u \in G->V$
\{
if (u->color == WHITE)
DFS_Visit(u);
\}
\}

```
DFS_Visit(u)
{
    u->Color = GREY;
    time = time+1;
    u->d = time;
    for each v G u->Adj[]
    {
        if (v->color == WHITE)
                DFS_Visit(v);
    }
    u->color = BLACK;
    time = time+1;
    u->f = time;
}
```


DFS And Cycles

- What will be the running time?
- A: O(V+E)
- We can actually determine if cycles exist in $\mathrm{O}(\mathrm{V})$ time:

In an undirected acyclic forest, $|\mathrm{E}| \leq|\mathrm{V}|-1$
So count the edges: if ever see IVI distinct edges, must have seen a back edge along the way

Review: Kinds Of Edges

- Thm: If G is undirected, a DFS produces only tree and back edges
- Thm: An undirected graph is acyclic iff a DFS yields no back edges
- Thus, can run DFS to find cycles

Review: Kinds of Edges

DFS And Cycles

- Running time: $\mathrm{O}(\mathrm{V}+\mathrm{E})$
- We can actually determine if cycles exist in $\mathrm{O}(\mathrm{V})$ time: In an undirected acyclic forest, $|\mathrm{E}| \leq|\mathrm{V}|-1$
So count the edges: if ever see IVI distinct edges, must have seen a back edge along the way
Why not just test if $|E|<|V|$ and answer the question in constant time?

We can have some isolated component nodes not connected by any edges to the rest of the graph

Directed Acyclic Graphs

- A directed acyclic graph or $D A G$ is a directed graph with no directed cycles:

DFS and DAGs

- Argue that a directed graph G is acyclic iff a DFS of G yields no back edges:
- Forward: if G is acyclic, will be no back edges

Trivial: a back edge implies a cycle

- Backward: if no back edges, G is acyclic
- Argue contrapositive: Suppose G has a cycle \Rightarrow we will show that DFS will produce a back edge
- Let v be the vertex on the cycle first discovered, and u be the predecessor of v on the cycle
- When v discovered, whole cycle is white
- Must visit everything reachable from v before returning from DFS-Visit()
- So path from $u \rightarrow v$ is descendant of v hence (gray \rightarrow gray), thus (u, v) is a back edge

Topological Sort

- Topological sort of a DAG:

Linear ordering of all vertices in graph G such that vertex u comes before vertex v if edge $(u, v) \in \mathrm{G}$

- Real-world example: getting dressed

Getting Dressed

Topological Sort Algorithm

```
Topological-Sort()
{
    Run DFS
    When a vertex is finished, output it
    On the front of linked list
    Vertices are output in reverse
        topological order
}
- Time: \(\mathrm{O}(\mathrm{V}+\mathrm{E})\)
- Correctness: Want to prove that
\[
(u, v) \in \mathrm{G} \Rightarrow u \rightarrow \mathrm{f}>v \rightarrow \mathrm{f}
\]
```


Topological Sort

- Ordering of activities in the presence of constraints
- Process scheduling

Correctness of Topological Sort

- Claim: $(u, v) \in \mathrm{G} \Rightarrow u \rightarrow \mathrm{f}>v \rightarrow \mathrm{f}$
- Show that if there is an edge from u to v, finishing time of u is greater then v
- When (u, v) is explored, u is gray
$v=$ gray $\Rightarrow(u, v)$ is back edge. Contradiction (Why?)
hence v cannot be gray - since there are no cycles $v=$ white $\Rightarrow v$ becomes descendent of $u \Rightarrow v \rightarrow \mathrm{f}<u \rightarrow \mathrm{f}$ (since must finish v before backtracking and finishing u) $v=$ black $\Rightarrow v$ already finished $\Rightarrow v \rightarrow \mathrm{f}<u \rightarrow \mathrm{f}$

Connected components

- Undirected graph is connected: there is a path from $u->v$

For all u and v

- Directed graph is strongly connected if there is a path from $u->v$ for all u and v
- How can we find strongly connected components of a directed graph

Strongly Connected components

- SSC algorithm will induce component graph which is a DAG

Strongly Connected component

- How to use DFS to find strongly connected component
- When running DFS_visit recursively it will stop once all nodes reachable from start are visited - as a result you will have one DFS tree.
- Observation DFS tree will contain one of more strongly connected components
- How to run DFS so it will break (finish DFS_visit) just after finishing only one SCC

Strongly Connected Components

- Call DFS to compute finishing times $f[u]$ of each vertex
- Create transpose graph (directions of edges reversed)
- Call DFS on the transpose, but in the main loop of DFS, consider vertices in the decreasing order of $f[u]$
- Output the vertices of each tree in the depth-first forest formed in line 3 as a separate strongly connected component

Strongly connected components

- Property: Suppose you have two SCC's C and C'. If there is an edge between C and C^{\prime}, then vertex of C visited first has the highest finishing number: $f(C)>f\left(C^{t}\right)$ suppose there is an edge $u->v$ from C to C'
- If DFS is started at C it visits all vertices in C and C^{\prime} before it gets "stuck".

Minimum Spanning Tree

- Minimum spanning tree. Given a connected graph $\mathrm{G}=$ (V, E) with real-valued edge weights c_{e}, an MST is a subset of the edges $\mathrm{T} \subseteq \mathrm{E}$ such that T is a spanning tree whose sum of edge weights is minimized.

- Cayley's Theorem. There are $\mathrm{n}^{\mathrm{n}-2}$ spanning trees of K_{n} complete graph

Applications

- MST is fundamental problem with diverse applications.

Network design. telephone, electrical, hydraulic, TV cable, computer, road

Approximation algorithms for NP-hard problems.
traveling salesperson problem, Steiner tree
Indirect applications.

- max bottleneck paths
- LDPC codes for error correction
- image registration with Renyi entropy
- learning salient features for real-time face verification
- reducing data storage in sequencing amino acids in a protein
- model locality of particle interactions in turbulent fluid flows
- autoconfig protocol for Ethernet bridging to avoid cycles in a network

Cluster analysis.

MST Algorithms

\bullet Kruskal's algorithm. Start with $T=\phi$. Consider edges in ascending order of cost. Insert edge e in T unless doing so would create a cycle.
-Reverse-Delete algorithm. Start with T = E. Consider edges in descending order of cost. Delete edge e from T unless doing so would disconnect T .
-Prim's algorithm. Start with some root node s and greedily grow a tree T from s outward. At each step, add the cheapest edge e to T that has exactly one endpoint in T.

Minimum Spanning Tree

- Problem: given a connected, undirected, weighted graph:

Minimum Spanning Tree

- Problem: given a connected, undirected, weighted graph, find a spanning tree using edges that minimize the total weight

Minimum Spanning Tree

- Which edges form the minimum spanning tree (MST) of the below graph?

Minimum Spanning Tree

- Answer:

Minimum Spanning Tree

- MSTs satisfy the optimal substructure property: an optimal tree is composed of optimal subtrees
- Let T be an MST of G with an edge (u, v) in the middle Removing (u, v) partitions T into two trees T_{1} and T_{2}
- Claim: T_{1} is an MST of $\mathrm{G}_{1}=\left(\mathrm{V}_{1}, \mathrm{E}_{1}\right)$, and T_{2} is an MST of $\mathrm{G}_{2}=\left(\mathrm{V}_{2}, \mathrm{E}_{2}\right) \quad$ (Do V_{1} and V_{2} share vertices? Why?)
- Proof: $\mathrm{w}(\mathrm{T})=\mathrm{w}(u, v)+\mathrm{w}\left(\mathrm{T}_{1}\right)+\mathrm{w}\left(\mathrm{T}_{2}\right)$
(There can't be a better tree than T_{1} or T_{2}, or T would be suboptimal)

Minimum Spanning Tree

- Thm:

Let T be MST of G , and let $\mathrm{A} \subseteq \mathrm{T}$ be subtree of T
Let (u, v) be min-weight edge connecting A to V-A
Then $(u, v) \in \mathrm{T}$

Minimum Spanning Tree

- Thm:

Let T be MST of G , and let $\mathrm{A} \subseteq \mathrm{T}$ be subtree of T Let (u, v) be min-weight edge connecting A to V-A Then $(u, v) \in T$

- Proof: in book (see Thm 23.1)

Prim's Algorithm

```
MST-Prim(G, w, r)
    Q = V[G];
    for each u G Q
    key[u] = \infty;
    key[r] = 0;
    p[r] = NULL;
    while (Q not empty)
        u = ExtractMin(Q);
        for each v}\in\operatorname{Adj[u]
            if (v G Q and w(u,v) < key[v])
            p[v] = u;
            key[v] = w(u,v);
```


Prim's Algorithm

Prim's Algorithm

```
MST-Prim(G, w, r)
```

 \(\mathrm{Q}=\mathrm{V}[\mathrm{G}]\);
 for each \(u \in Q\)
 key \([u]=\infty ;\)
 key [r] = 0;
 \(\mathrm{p}[\mathrm{r}]=\mathrm{NULL}\);
 while (\(Q\) not empty)
 \(\mathrm{u}=\) ExtractMin (Q);
 for each \(v \in \operatorname{Adj}[u]\)
 if (\(v \in Q\) and \(w(u, v)<k e y[v])\)
 \(\mathrm{p}[\mathrm{v}]=\mathrm{u}\);
 key[v] = w(u,v);

Prim's Algorithm

$\operatorname{MST}-\operatorname{Prim}(G, w, r)$
Q = V[G];
for each $u \in Q$
key[u] $=\infty$;
key $[r]=0$;
$\mathrm{p}[\mathrm{r}]=\mathrm{NULL} ;$
while (Q not empty)
$\mathrm{u}=$ ExtractMin (Q);
for each $v \in \operatorname{Adj}[u]$
Pick a start vertex r
if $(v \in Q$ and $w(u, v)<k e y[v])$
$\mathrm{p}[\mathrm{v}]=\mathrm{u}$;
key[v] = w (u,v);

Prim's Algorithm

```
MST-Prim(G, w, r)
    Q = V[G];
    for each u G Q
        key[u] = \infty;
    key[r] = 0;
    p[r] = NULL;
    while (Q not empty)
        u = ExtractMin (Q) ; Red vertices have been removed from Q
        for each v}\in\operatorname{Adj[u]
            if (v & Q and w(u,v) < key[v])
                p[v] = u;
                key[v] = w(u,v);
```


Prim's Algorithm

```
MST-Prim(G, w, r)
    Q = V[G];
    for each u \in Q
    key[u] = \infty;
    key[r] = 0;
    p[r] = NULL;
    while (Q not empty)
        u = ExtractMin(Q);
        for each v}\in\operatorname{Adj[u] Red arrows indicate parent pointers
            if (v }\inQ\mathrm{ and w(u,v) < key[v])
                p[v] = u;
                key[v] = w(u,v);
```


Prim's Algorithm

```
MST-Prim(G, w, r)
    Q = V[G];
    for each u G Q
        key[u] = \infty;
        key[r] = 0;
        p[r] = NULL;
    while (Q not empty)
        u = ExtractMin(Q);
        for each v }\in\mathrm{ Adj[u]
            if (v }\inQ\mathrm{ and w(u,v) < key[v])
                p[v] = u;
                    key[v] = w(u,v);
```


Prim's Algorithm

```
MST-Prim(G, w, r)
```

 \(\mathrm{Q}=\mathrm{V}[\mathrm{G}]\);
 for each \(u \in Q\)
 key \([u]=\infty\);
 key \([\mathrm{r}]=0\);
 \(\mathrm{p}[\mathrm{r}]=\mathrm{NULL} ;\)
 while (\(Q\) not empty)
 u = ExtractMin (Q) ;
 for each \(v \in \operatorname{Adj}[u] u\)
 if (\(v \in Q\) and \(w(u, v)<k e y[v])\)
 \(\mathrm{p}[\mathrm{v}]=\mathrm{u}\);
 \(\operatorname{key}[\mathrm{v}]=\mathrm{w}(\mathrm{u}, \mathrm{v})\);

Prim's Algorithm

```
MST-Prim(G, w, r)
```

 \(\mathrm{Q}=\mathrm{V}[\mathrm{G}]\);
 for each \(u \in Q\)
 key[u] \(=\infty\);
 \(\operatorname{key}[\mathrm{r}]=0\);
 \(\mathrm{p}[\mathrm{r}]=\mathrm{NULL} ;\)
 while (Q not empty)
 \(\mathrm{u}=\) ExtractMin (Q) ;
 for each \(v \in \operatorname{Adj}[u]\)
 if (\(v \in Q\) and \(w(u, v)<k e y[v])\)
 \(\mathrm{p}[\mathrm{v}]=\mathrm{u}\);
 key[v] = w(u,v);

Prim's Algorithm

Prim's Algorithm

```
MST-Prim(G, w, r)
```

 \(Q=V[G] ;\)
 for each \(u \in Q\)
 key[u] \(=\infty\);
 key \([r]=0\);
 \(\mathrm{p}[\mathrm{r}]=\mathrm{NULL}\);
 while (Q not empty)
 \(\mathrm{u}=\) ExtractMin(Q);
 for each \(v \in \operatorname{Adj}[u]\)
 if \((v \in Q\) and \(w(u, v)<k e y[v])\)
 \(\mathrm{p}[\mathrm{v}]=\mathrm{u}\);
 key[v] = w(u,v);

Prim's Algorithm

$\operatorname{MST}-\operatorname{Prim}(G, w, r)$
$\mathrm{Q}=\mathrm{V}[\mathrm{G}]$;
for each $u \in Q$
key $[u]=\infty ;$
key[r] = 0;
$\mathrm{p}[\mathrm{r}]=\mathrm{NULL} ;$
while (Q not empty)
$u=$ ExtractMin(Q);

Prim's Algorithm

MST-Prim (G, w, r)
$\mathrm{Q}=\mathrm{V}[\mathrm{G}] ;$
for each $u \in Q$
key[u] $=\infty$;
key $[r]=0$;
$\mathrm{p}[\mathrm{r}]=\mathrm{NULL}$;
while (Q not empty)
$u=$ ExtractMin (Q) ;
for each $v \in \operatorname{Adj}[u]$
if ($v \in Q$ and $w(u, v)<$ key $[v])$
$\mathrm{p}[\mathrm{v}]=\mathrm{u}$;
key[v] = w (u, v) ;

Prim's Algorithm

$\operatorname{MST}-\operatorname{Prim}(G, \quad w, r)$
$\mathrm{Q}=\mathrm{V}[\mathrm{G}]$;
for each $u \in Q$
key $[\mathrm{u}]=\infty$;
key $[\mathrm{r}]=0$;
$\mathrm{p}[\mathrm{r}]=$ NULL;
while (Q not empty)

Prim's Algorithm

```
MST-Prim(G, w, r)
```

$\mathrm{Q}=\mathrm{V}[\mathrm{G}]$;
for each $u \in Q$
key[u] $=\infty$;
key $[\mathrm{r}]=0$;
$\mathrm{p}[r]=$ NULL;
while (Q not empty)
$u=$ ExtractMin (Q);
for each $v \in \operatorname{Adj}[u]$
if $(v \in Q$ and $w(u, v)<k e y[v])$
$\mathrm{p}[\mathrm{v}]=\mathrm{u}$;
key[v] = w(u,v);

Prim's Algorithm

```
MST-Prim(G, w, r)
```

 \(\mathrm{Q}=\mathrm{V}[\mathrm{G}]\);
 for each \(u \in Q\)
 key[u] \(=\infty\);
 key \([\mathrm{r}]=0\);
 \(\mathrm{p}[\mathrm{r}]=\mathrm{NULL} ;\)
 while (\(Q\) not empty)
 \(\mathrm{u}=\) ExtractMin (Q) ;

Prim's Algorithm

```
MST-Prim(G, w, r)
```

 \(\mathrm{Q}=\mathrm{V}[\mathrm{G}]\);
 for each \(u \in Q\)
 key[u] \(=\infty\);
 key \([r]=0\);
 \(\mathrm{p}[\mathrm{r}]=\mathrm{NULL} ;\)
 while (\(Q\) not empty)
 \(\mathrm{u}=\) ExtractMin (Q) ;

for each $v \in \operatorname{Adj}[u]$
if ($v \in Q$ and $w(u, v)<k e y[v])$
$\mathrm{p}[\mathrm{v}]=\mathrm{u}$;
key[v] = w(u,v);

Prim's Algorithm

```
MST-Prim(G, w, r)
    Q = V[G];
    for each u \in Q
    key[u] = \infty;
    key[r] = 0;
    p[r] = NULL;
    while (Q not empty)
        u = ExtractMin(Q);
        for each v }\in\mathrm{ Adj[u]
            if (v }\inQ\mathrm{ and w(u,v) < key[v])
                p[v] = u;
                key[v] = w(u,v);
```


Prim's Algorithm

MST-Prim (G, w, r)
$\mathrm{Q}=\mathrm{V}[\mathrm{G}]$;
for each $u \in Q$
key[u] $=\infty$;
key $[r]=0$;
$\mathrm{p}[\mathrm{r}]=\mathrm{NULL} ;$
while (Q not empty)
$\mathrm{u}=$ ExtractMin (Q) ;

for each $v \in \operatorname{Adj}[u]$
if ($v \in Q$ and $w(u, v)<k e y[v])$
$\mathrm{p}[\mathrm{v}]=\mathrm{u}$;
key[v] = w(u,v);

Review: Prim's Algorithm

```
MST-Prim(G, w, r)
    Q = V[G];
    for each u \in Q
    key[u] = \infty;
    key[r] = 0;
    p[r] = NULL;
    while (Q not empty)
        u = ExtractMin(Q);
        for each v \in Adj[u]
            if (v G Q and w(u,v) < key[v])
                p[v] = u;
                DecreaseKey(v, w(u,v));
```


Review: Prim's Algorithm

```
MST-Prim(G, w, r)
    Q = V[G];
    for each u G Q
    key[u] = \infty; How often is ExtractMin() called?
    key[r] = 0;
    p[r] = NULL;
    while (Q not empty)
        u = ExtractMin(Q);
        for each v A Adj[u]
            if (v G Q and w(u,v) < key[v])
                p[v] = u;
                DecreaseKey(v, w(u,v));
```

ExtractMin total number of calls $\mathrm{O}(\mathrm{V} \log \mathrm{V})$
DecreaseKey total number of calls $\mathrm{O}(\mathrm{E} \log \mathrm{V})$

Review: Prim's Algorithm

MST-Prim (G, w, r) $\mathrm{Q}=\mathrm{V}[\mathrm{G}]$;
for each $u \in Q$
key[u] $=\infty$;
key[r] = 0; $\mathrm{p}[\mathrm{r}]=\mathrm{NULL} ;$
while (Q not empty)
u = ExtractMin(Q);
for each $v \in \operatorname{Adj}[u]$
if ($v \in Q$ and $w(u, v)<k e y[v])$
$\mathrm{p}[\mathrm{v}]=\mathrm{u}$;
key[v] = w(u,v);

ExtractMin total number of calls $\mathrm{O}(\mathrm{V} \log \mathrm{V})$
DecreaseKey total number of calls $\mathrm{O}(\mathrm{E} \log \mathrm{V})$
Total number of calls $\mathrm{O}(\mathrm{V} \log \mathrm{V}+\mathrm{E} \log \mathrm{V})=\mathrm{O}(\mathrm{E} \log \mathrm{V})$
Think why we can combine things in the expression above

Minimum Weight Spanning Tree Kruskal's Algorithm

```
Kruskal()
{
    T = \varnothing;
    for each v }\in\mathbb{V
        MakeSet(v) ;
    sort E by increasing edge weight w
    for each (u,v) \in E (in sorted order)
        if FindSet(u) \not= FindSet(v)
            T = T U {{u,v}};
            Union(FindSet(u), FindSet(v));
}
```


Disjoint-Set Union Problem

- Want a data structure to support disjoint sets

Collection of disjoint sets $S=\left\{\mathrm{S}_{\mathrm{i}}\right\}, \mathrm{S}_{\mathrm{i}} \cap \mathrm{S}_{\mathrm{j}}=\varnothing$

- Need to support following operations:

MakeSet(x): $S=S U\{\{\mathrm{x}\}\}$
$\operatorname{Union}\left(\mathrm{S}_{\mathrm{i}}, \mathrm{S}_{\mathrm{j}}\right): S=S-\left\{\mathrm{S}_{\mathrm{i}}, \mathrm{S}_{\mathrm{j}}\right\} \cup\left\{\mathrm{S}_{\mathrm{i}} \cup \mathrm{S}_{\mathrm{j}}\right\}$
FindSet(X): return $\mathrm{S}_{\mathrm{i}} \in S$ such that $\mathrm{x} \in \mathrm{S}_{\mathrm{i}}$

- Before discussing implementation details, we look at example application: MSTs

Kruskal's Algorithm

```
Kruskal()
```

\{
$T=\varnothing ;$
$\left\{\begin{array}{r}\text { for each } v \in{ }^{8} \mathrm{~V} \\ \operatorname{MakeSet}(\mathrm{v}) ;\end{array}\right.$
sort E by increasing edg, weight.
for each (u, v) $\in E$ (in sorted order)
if FindSet(u) \neq FindSet(v)
$T=T U\{\{u, v\}\} ;$
Union(FindSet(u), FindSet(v));
\}

Kruskal's Algorithm
Kruskal()
\{
$T=\varnothing ;$
for each $v \in{ }^{8}$ MakeSet(v) ;
sort E by increasing edg weight.
$\left\{\begin{array}{l}\text { sort E by increasing edy } \\ \text { for each }(u, v) \in E \text { (in sorted order) }\end{array}\right.$
if FindSet(u) \neq FindSet(v)
$T=T U\{\{u, v\}\} ;$
Union(FindSet(u), FindSet(v));
\}

Kruskal's Algorithm

Kruskal()
\{
$T=\varnothing ;$
for each $v \in V^{8}$ MakeSet(v);

Run the algorithm:

sort E by increasing edg- weight ..
for each (u, v) $\in E$ (in sorted order)

```
T = T U {{u,v}};
Union(FindSet(u), FindSet(v));
```


Kruskal's Algorithm

```
Kruskal()
```

\{
$T=\varnothing ;$
for each $v \in \stackrel{8}{V}^{8}$
MakeSet (v) ;
sort E by increasing edg- weight..
for each (u, v) $\in E$ (in sorted order)
$\left\{\begin{aligned} \text { if } & \text { FindSet }(u) \neq \text { FindSet }(v) \\ & T=T U\{\{u, v\}\} ; \\ & \text { Union }(\text { FindSet }(u), \text { FindSet (v)); }\end{aligned}\right.$

Kruskal's Algorithm

Kruskal()
\{
$T=\varnothing ;$
for each $v \in \vee^{8}$ MakeSet(v) ;

Run the algorithm:

sort E by increasing edg weight.
for each (u, v) $\in E$ (in sorted order)

```
T = T U {{u,v}};
Union(FindSet(u), FindSet(v));
```


Kruskal's Algorithm

Kruskal()

\{
$T=\varnothing ;$
for each $v \in v^{8}$ MakeSet (v) ;

Run the algorithm:

sort E by increasing edg weight.
for each (u, v) $\in E$ (in sorted order)

```
T = T U {{u,v}};
Union(FindSet(u), FindSet(v));
```


Kruskal's Algorithm

Kruskal()

\{
$T=\varnothing ;$
for each $v \in \mathrm{v}^{8}$ MakeSet(v);

Run the algorithm:
sort E by incrtusing edg, weight.
for each (u, v) $\in E$ (in sorted order)
$\left\{\begin{aligned} \text { if } & \text { FindSet }(u) \neq \text { FindSet }(v) \\ & T=T U\{\{u, v\}\} ; \\ & \text { Union (FindSet }(u), \text { FindSet }(v)) ;\end{aligned}\right.$

Kruskal's Algorithm

Kruskal()
\{
$T=\varnothing ;$
for each $v \in \vee^{8}$ MakeSet(v) ; Run the algorithm:

sort E by increusing edg weight..
for each (u, v) $\in E$ (in sorted order)
$\left\{\begin{aligned} \text { if } & \text { FindSet }(u) \neq \text { FindSet }(v) \\ & T=T U\{\{u, v\}\} ; \\ & \text { Union }(\text { FindSet }(u), \text { FindSet (v)); }\end{aligned}\right.$

Kruskal's Algorithm

Kruskal's Algorithm

Kruskal()
\{
$T=\varnothing ;$
for each $v \in{ }^{8}$ MakeSet(v);

Run the algorithm:

sort E by incrtusing edy, weight.
for each (u, v) $\in E$ (in sorted order)
$\left\{\begin{aligned} \text { if } & \text { FindSet }(u) \neq \text { FindSet }(v) \\ & T=T U\{\{u, v\}\} ; \\ & \text { Union (FindSet }(u), \text { FindSet }(v)) ;\end{aligned}\right.$

Kruskal's Algorithm

Kruskal()
\{
$T=\varnothing ;$
for each $v \in V^{8}$ MakeSet(v) ;

Run the algorithm:

sort E by increusing edy- weight..
for each (u, v) $\in E$ (in sorted order)
$\left\{\begin{aligned} \text { if } & \text { FindSet }(u) \neq \text { FindSet }(v) \\ & T=T U\{\{u, v\}\} ; \\ & \text { Union (FindSet }(u), \text { FindSet }(v)) ;\end{aligned}\right.$

Kruskal's Algorithm

Kruskal's Algorithm

Kruskal()
\{
$\mathbf{T}=\varnothing ;$
for each $v \in V$
MakeSet(v);
Run the algorithm:
sort E by increasing edge weight w
for each (u, v) $\in E$ (in sorted order)
if FindSet(u) \neq FindSet(v)
$T=T U\{\{u, v\}\} ;$
Union(FindSet(u), FindSet(v));

Kruskal's Algorithm

Kruskal()
\{
$T=\varnothing ;$
for each $v \in V^{8}$ MakeSet(v) ;

Run the algorithm:

sort E by increusing edy- weight..
for each (u, v) $\in E$ (in sorted order)
$\left\{\begin{aligned} \text { if } & \text { FindSet }(u) \neq \text { FindSet }(v) \\ & T=T U\{\{u, v\}\} ; \\ & \text { Union (FindSet }(u), \text { FindSet }(v)) ;\end{aligned}\right.$

```
Kruskal's Algorithm Run the algorithm:
Kruskal()
{
    T = \varnothing;
    for each v }\in
        MakeSet(v) ;
```



```
    sort E by increasing edge weight w
    for each (u,v) \inE (in sorted order)
        if FindSet(u) \not= FindSet(v)
            T = T U {{u,v}};
            Union(FindSet(u), FindSet(v));
    }
```


Correctness Of Kruskal's Algorithm

- Sketch of a proof that this algorithm produces an MST for T :
- Assume algorithm is wrong: result is not an MST
- Then algorithm adds a wrong edge at some point
- If it adds a wrong edge, there must be a lower weight edge (cut and paste argument)
- But algorithm chooses lowest weight edge at each step -> Contradiction
- Again, important to be comfortable with cut and paste arguments

Kruskal's Algorithm

```
Kruskal()
                                    What will affect the running time?
\{
    \(T=\varnothing ;\)
    for each \(v \in V\)
        MakeSet(v);
    sort \(E\) by increasing edge weight w
    for each (u,v) \(\in E\) (in sorted order)
        if FindSet \((u) \neq\) FindSet \((v)\)
            \(\mathbf{T}=\mathbf{T} \boldsymbol{U}\{\{\mathrm{u}, \mathrm{v}\}\} ;\)
            Union(FindSet(u), FindSet(v));
\}
```


Kruskal's Algorithm

Kruskal()
\{
What will affect the running time?
1 Sort
O(V) MakeSet() calls
$T=\varnothing ;$
O(E) FindSet() calls
for each $v \in V$ MakeSet (v); (Exactly how many Union()s?)
sort E by increasing edge weight w
for each (u, v) $\in E$ (in sorted order)
if FindSet (u) \neq FindSet (v)
$T=T \boldsymbol{U}\{\{u, v\}\} ;$
Union(FindSet(u), FindSet(v));
\}

Kruskal's Algorithm: Running Time

- To summarize:

Sort edges: $O(E \lg E)$
$O(V)$ MakeSet()'s
$O(E)$ FindSet()'s and Union()'s

- Upshot:

Best disjoint-set union algorithm makes above
3 operation stake $O((V+E) \cdot \alpha(V)), \alpha$ almost constant
(slowly growing function of V)
Since $\mathrm{E}>=\mathrm{V}-1$ then we have $O(E \cdot \alpha(V))$
Also since $\alpha(V)=O(l g V)=O(\lg E)$
Overall thus $O(E \lg E)$, almost linear w/o sorting

Disjoint Sets (ch 21)

- In Kruskal's alg., Connected Components
- Need to do set membership and set union efficiently
- Typical operations on disjoint sets
member (a, s)
insert (a,s)
delete (a, s)
union(s1, s2, s3)
find(a)
make-set(x)
- Analysis in terms on n number of make-set operations
- And m total number of make-set, find, union (more details Later)

Shortest Path Algorithms

Single-Source Shortest Path

- Problem: given a weighted directed graph G, find the minimum-weight path from a given source vertex s to another vertex v
- "Shortest-path" = minimum weight
- Weight of path is sum of edges
- E.g., a road map: what is the shortest path from Faixfax to Washington DC?

Shortest Path Properties

- Again, we have optimal substructure: the shortest path consists of shortest subpaths:

- Proof: suppose some subpath is not a shortest path There must then exist a shorter subpath Could substitute the shorter subpath for a shorter path but then overall path is not shortest path.
Contradiction
- Optimal substructure property - hallmark of dynamic programming

Shortest Path Properties

- In graphs with negative weight cycles, some shortest paths will not exist (Why?):

Relaxation

- A key technique in shortest path algorithms is relaxation Idea: for all v, maintain upper bound $\mathrm{d}[v]$ on $\delta(\mathrm{s}, \mathrm{v})$
Relax (u,v,w) \{
if $(d[v]>d[u]+w)$ then $d[v]=d[u]+w$; \}

Shortest Path Properties

- Define $\delta(u, v)$ to be the weight of the shortest path from u to v
- Shortest paths satisfy the triangle inequality: $\delta(\mathrm{u}, \mathrm{v}) \leq$ $\delta(\mathrm{u}, \mathrm{x})+\delta(\mathrm{x}, \mathrm{v})$
- "Proof":

This path is no longer than any other path

Dijkstra's Algorithm

- If no negative edge weights, we can beat Bellman-Ford
- Similar to breadth-first search
- Grow a tree gradually, advancing from vertices taken from a queue
- Also similar to Prim's algorithm for MST

Use a priority queue keyed on $\mathrm{d}[\mathrm{v}$]

Dijkstra's Algorithm

Dijkstra(G)

for each $v \in V$ $d[\mathrm{v}]=\infty$;
$\mathrm{d}[\mathrm{s}]=0 ; \mathrm{s}=\varnothing ; \mathrm{Q}=\mathrm{v}$; while ($Q \neq \varnothing$)

$\mathrm{u}=$ ExtractMin(Q);
$S=S U\{u\} ;$
for each $v \in u->A d j[]$
if (d[v] > d[u]+w(u,v)) $d[v]=d[u]+w(u, v) ;$

Relaxation Step

Note: this
is really a
call to Q->DecreaseKey ()

Dijkstra's Algorithm

```
Dijkstra(G)
    for each v G V How many times is
        d[v] = \infty;
    d[s] = 0; s = \varnothing; Q = v;
    while (Q & \varnothing) How many times is
        u = ExtractMin(Q) iDecraseKey() called?
        S = S U {u};
        for each v G u->Adj[]
            if (d[v] > d[u]+w(u,v))
                d[v] = d[u]+w(u,v);
```

What will be the total running time?

Dijkstra's Algorithm

Dijkstra(G)

for each $v \in V$ $d[v]=\infty$;

How many times is ExtractMin() called?
$\mathrm{d}[\mathrm{s}]=0 ; \mathrm{s}=\varnothing ; \mathrm{Q}=\mathrm{v}$;
while ($Q \neq \varnothing$)
How many times is $\mathrm{u}=$ ExtractMin(Q) iDecraseKey () called? $S=S U\{u\} ;$
for each $v \in u->A d j[]$
if (d[v] > d[u]+w(u,v))
$d[v]=d[u]+w(u, v) ;$

A: $O(E \lg V)$ using binary heap for Q Can acheive $O(V \lg V+E)$ with Fibonacci heaps

Dijkstra's Algorithm

Dijkstra(G)
for each $v \in V$ $d[\mathrm{v}]=\infty$;
$\mathrm{d}[\mathrm{s}]=0 ; \mathrm{s}=\varnothing ; \mathrm{Q}=\mathrm{v}$;
while $(Q \neq \varnothing)$ $\mathrm{u}=$ ExtractMin(Q); S = S U\{u\}; for each $v \in u->A d j[]$
if (d[v] > d[u]+w(u,v))

$$
d[v]=d[u]+w(u, v) ;
$$

Correctness: we must show that when u is removed from Q, it has already converged

