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CS583 Lecture 09	


                                    Jana Kosecka	



                               	


                                Graph Algorithms                                	


                                 Topological Sort	


                      Strongly Connected Component	


                              Minimum Spanning Tree	



 	



Many slides here are based on E. Demaine , D. Luebke, Kleinberg-Tardos slides	



Graph Algs. Continued	


•  Review BFS	


•  Application of BSF – check bipartiteness	


•  Review DFS 	


•  Check for cycles	
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World Wide Web	


• Web graph.	



Node:  web page.	


Edge:  hyperlink from one page to another.	



cnn.com	



cnnsi.com	

novell.com	

netscape.com	

 timewarner.com	



hbo.com	



sorpranos.com	
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9-11 Terrorist Network	



• Social network graph.	


Node:  people.	


Edge:  relationship between two people.	



Reference:  Valdis Krebs, http://www.firstmonday.org/issues/issue7_4/krebs	
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Rooted Trees	


• Rooted tree.  Given a tree T, choose a root node r and 
orient each edge away from r.	


• Importance.  Models hierarchical structure.	



a tree	

 the same tree, rooted at 1	



v	



parent of v	



child of v	



root r	



Phylogeny Trees	


• Phylogeny trees.  Describe evolutionary history of 
species. 	
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GUI Containment Hierarchy	



Reference:  http://java.sun.com/docs/books/tutorial/uiswing/overview/anatomy.html 

• GUI containment hierarchy.  Describe organization of 
GUI widgets.	



Breadth-First Search	


•  Again will associate vertex “colors” to guide the 

algorithm	


White vertices have not been discovered	


All vertices start out white	


Grey vertices are discovered but not fully explored	


They may be adjacent to white vertices	


Black vertices are discovered and fully explored	


They are adjacent only to black and gray vertices	



•  Explore vertices by scanning adjacency list of grey 
vertices	
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Breadth-First Search	


BFS(G, s) { 
    initialize vertices; 
    Q = {s};   // Q is a queue (duh); initialize 
to s 

    while (Q not empty) {     
        u = RemoveTop(Q); 
        for each v ∈ u->adj { 
            if (v->color == WHITE) 
                v->color = GREY; 
                v->d = u->d + 1; 
                v->p = u; 
                Enqueue(Q, v); 
        } 
        u->color = BLACK; 
    } 
} 

What does v->p represent? 
What does v->d represent? 

Breadth-First Search: Example	



∞ 

∞ 

∞ 

∞ 

∞ 

∞ 

∞ 

∞ 

r s t u 

v w x y 
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BSF 	


•  Check for bi-partite graphs 	

	


•  Graphs representing relationships	


•  All nodes can belong to two subsets	


•  There are no edges between subsets	



Depth-First Search	


•  Depth-first search is another strategy for exploring a 

graph	



•  Explore “deeper” in the graph whenever possible	



•  Edges are explored out of the most recently discovered 
vertex v that still has unexplored edges	



•  When all of v’s edges have been explored, backtrack to 
the vertex from which v was discovered	
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Depth-First Search	


•  Vertices initially colored white	


•  Then colored gray when discovered	


•  Then black when finished	



Depth-First Search: The Code	


DFS(G) 
{ 
   for each vertex u ∈ G->V 
   { 
      u->color = WHITE; 
   } 
   time = 0; 
   for each vertex u ∈ G->V 
   { 
      if (u->color == 
WHITE) 

         DFS_Visit(u); 
   } 
} 

DFS_Visit(u) 
{ 
   u->color = GREY; 
   time = time+1; 
   u->d = time; 
   for each v ∈ u->Adj[] 
   { 
      if (v->color == 
WHITE) 

         DFS_Visit(v); 
   } 
   u->color = BLACK; 
   time = time+1; 
   u->f = time; 
} 
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Depth-First Sort Analysis	


•  This running time argument is an informal example of 

amortized analysis	



•  “Charge” the exploration of edge to the edge:	


•  Each loop in DFS_Visit can be attributed to an edge in the 

graph 	


•  Runs once/edge if directed graph, twice if undirected	


•  Thus loop will run in O(E) time, algorithm O(V+E)	


•  Considered linear for graph, b/c adj list requires O(V+E) 

storage	


•  Important to be comfortable with this kind of reasoning and 

analysis	



DFS Example	



1 |12 8 |11 13|16 

14|15 5 | 6 3 | 4 

2 | 7 9 |10 

source 
vertex 

d      f 

Tree edges 



3/28/14	



9	



DFS: Kinds of edges	


•  DFS introduces an important distinction among edges 

in the original graph:	



•  Tree edge: encounter new (white) vertex 	


•  Back edge: from descendent to ancestor	



Encounter a grey vertex (grey to grey)	



DFS Example	



1 |12 8 |11 13|16 

14|15 5 | 6 3 | 4 

2 | 7 9 |10 

source 
vertex 

d      f 

Tree edges Back edges 
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DFS: Kinds of edges	


•  DFS introduces an important distinction among edges 

in the original graph:	


Tree edge: encounter new (white) vertex 	


Back edge: from descendent to ancestor	


Forward edge: from ancestor to descendent	


	


Not a tree edge, though	


From grey node to black node	



DFS Example	



Tree edges Back edges Forward edges 

1 |12 8 |11 13|16 

14|15 5 | 6 3 | 4 

2 | 7 9 |10 

source 
vertex 

d      f 
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DFS: Kinds of edges	


•  DFS introduces an important distinction among edges 

in the original graph:	


Tree edge: encounter new (white) vertex 	


Back edge: from descendent to ancestor	


Forward edge: from ancestor to descendent	


Cross edge: between a tree or subtrees	


	


From a grey node to a black node	


	



DFS Example	


source 
vertex 

d      f 

Tree edges Back edges Forward edges 

1 |12 8 |11 13|16 

14|15 5 | 6 3 | 4 

2 | 7 9 |10 

Cross edges 
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DFS: Kinds of edges	


•  DFS introduces an important distinction among edges 

in the original graph:	


Tree edge: encounter new (white) vertex 	


Back edge: from descendent to ancestor	


Forward edge: from ancestor to descendent	


Cross edge: between a tree or subtrees	



•  Note: tree & back edges are important; most 
algorithms don’t distinguish forward & cross	



DFS: Kinds Of Edges	


•  Thm 23.9 (22.10 – in 3rd edition): If G is undirected, a 

DFS produces only tree and back edges	


•  Suppose you have u.d < v.d	


•  Then search discovered u before v, so first time v is 

discovered it is white – hence the edge 	


   (u,v) is a tree edge	


•  Otherwise the search already explored this 	


   edge in direction from v to u	


•  edge must actually be a back edge since	


•  u is still gray	
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DFS And Graph Cycles	


•  Thm: An undirected graph is acyclic iff a DFS yields 

no back edges	


•  If acyclic, no back edges (because a back edge implies 

a cycle	


•  If no back edges, acyclic	



No back edges implies only tree edges (Why?)	


Only tree edges implies we have a tree or a forest	


Which by definition is acyclic	



•  Thus, can run DFS to find whether a graph has a cycle	



DFS And Cycles	


• How would you modify the code to detect cycles?	



DFS(G) 
{ 
   for each vertex u ∈ G->V 
   { 
      u->color = WHITE; 
   } 
   time = 0; 
   for each vertex u ∈ G->V 
   { 
      if (u->color == WHITE) 
         DFS_Visit(u); 
   } 
} 

DFS_Visit(u) 
{ 
   u->color = GREY; 
   time = time+1; 
   u->d = time; 

   for each v ∈ u->Adj[] 
   { 
      if (v->color == WHITE) 
         DFS_Visit(v); 
   } 
   u->color = BLACK; 
   time = time+1; 
   u->f = time; 
} 
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DFS And Cycles	


• What will be the running time ?	



DFS(G) 
{ 
   for each vertex u ∈ G->V 
   { 
      u->color = WHITE; 
   } 
   time = 0; 
   for each vertex u ∈ G->V 
   { 
      if (u->color == WHITE) 
         DFS_Visit(u); 
   } 
} 

DFS_Visit(u) 
{ 
   u->color = GREY; 
   time = time+1; 
   u->d = time; 

   for each v ∈ u->Adj[] 
   { 
      if (v->color == WHITE) 
         DFS_Visit(v); 
   } 
   u->color = BLACK; 
   time = time+1; 
   u->f = time; 
} 

DFS And Cycles	


•  What will be the running time?	


•  A: O(V+E)	


•  We can actually determine if cycles exist in O(V) time:	


	


In an undirected acyclic forest, |E| ≤ |V| - 1 	


	


So count the edges: if ever see |V| distinct edges, must	


have seen a back edge along the way	
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Review: Kinds Of Edges	


•  Thm: If G is undirected, a DFS produces only tree and 

back edges	


•  Thm: An undirected graph is acyclic iff a DFS yields 

no back edges	


•  Thus, can run DFS to find cycles	



source 
vertex 

d      f 

Tree edges Back edges Forward edges 

1 |12 8 |11 13|16 

14|15 5 | 6 3 | 4 

2 | 7 9 |10 

Cross edges 

Review: Kinds of Edges	





3/28/14	



16	



DFS And Cycles	


•  Running time: O(V+E)	


•  We can actually determine if cycles exist in O(V) time:	



In an undirected acyclic forest, |E| ≤ |V| - 1 	


So count the edges: if ever see |V| distinct edges, must	


have seen a back edge along the way	


Why not just test if |E| <|V| and answer the question	


in constant time?	


	


We can have some isolated component nodes not 

connected by any edges to the rest of the graph	



Directed Acyclic Graphs	


•  A directed acyclic graph or DAG is a directed graph 

with no directed cycles:	
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DFS and DAGs	


•  Argue that a directed graph G is acyclic iff a DFS of G yields 

no back edges:	


•  Forward: if G is acyclic, will be no back edges	


   Trivial: a back edge implies a cycle	


•  Backward: if no back edges, G is acyclic	


•  Argue contrapositive: Suppose G has a cycle ⇒ we will show 

that DFS will produce a back edge	


•  Let v be the vertex on the cycle first discovered, and u be the 

predecessor of v on the cycle	


•  When v discovered, whole cycle is white	


•  Must visit everything reachable from v before returning from 

DFS-Visit()	


•  So path from u→v is descendant of v hence (gray→gray), thus 

(u, v) is a back edge	



Topological Sort	


•  Topological sort of a DAG:	



Linear ordering of all vertices in graph G such that 
vertex u comes before vertex v if edge (u, v) ∈ G	



•  Real-world example: getting dressed	
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Getting Dressed	



Underwear Socks 

Shoes Pants 

Belt 

Shirt 

Watch 

Tie 

Jacket 

Getting Dressed	



Underwear Socks 

Shoes Pants 

Belt 

Shirt 

Watch 

Tie 

Jacket 

Socks Underwear Pants Shoes Watch Shirt Belt Tie Jacket 
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Topological Sort Algorithm	


Topological-Sort() 
{ 
Run DFS 
When a vertex is finished, output it 
On the front of linked list 
Vertices are output in reverse 
topological order 

} 
•  Time: O(V+E)	


•  Correctness: Want to prove that���

	

(u,v) ∈ G ⇒ u→f > v→f	



Topological Sort	


•  Ordering of activities in the presence of constraints	


•  Process scheduling 	
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Correctness of Topological Sort	


•  Claim: (u,v) ∈ G ⇒ u→f  >  v→f	


•  Show that if there is an edge from u to v, finishing time	


   of u is greater then v	



•  When (u,v) is explored, u is gray	


v = gray ⇒ (u,v) is back edge.  Contradiction (Why?)	


hence v cannot be gray – since there are no cycles	


v = white ⇒ v becomes descendent of u ⇒ v→f < u→f	


(since must finish v before backtracking and finishing u)	


v = black ⇒ v already finished ⇒ v→f < u→f	



Connected components	


•  Undirected graph is connected: there is a path from u -> v 	


For all u and v	


	


•   Directed graph is strongly connected if there is a path from 

u->v for all u and v	



•  How can we find strongly connected components of a 
directed graph 	
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Strongly Connected components	


•  SSC algorithm will induce component graph which is a DAG	



ABD	

 EF	



CH	

 G	



13|14 11|16 1|10 

2|7 3 | 4 12|15  

8|9 

5|6 

D

A

C

B E F

GH

Strongly Connected component	


•  How to use DFS to find strongly connected component	


•  When running DFS_visit recursively it will stop once all 

nodes reachable from start are visited – as a result you will 
have one DFS tree. 	


•  Observation DFS tree will contain one of more strongly 

connected components 	


•  How to run DFS so it will break (finish DFS_visit) just after 	


   finishing only one SCC	
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Strongly Connected Components	


•  Call DFS to compute finishing times f[u] of each 

vertex	


•  Create transpose graph (directions of edges reversed)	


•  Call DFS on the transpose, but in the main loop of 

DFS, consider vertices in the decreasing order of f[u]	


•  Output the vertices of each tree in the depth-first forest 

formed in line 3 as a separate strongly connected 
component	



 	



ABD	

 EF	



CH	

 G	



13|14 11|16 1|10 

2|7 3 | 4 12|15  

8|9 

5|6 

D

A

C

B E F

GH

2|5 1|6 7|10 

14|15 12|13 3|4  

8|9 

16|17 

D

A

C

B E F

GH
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Strongly connected components	


•  Property: Suppose you have two SCC’s C and C’. If 

there is an edge between C and C’, then vertex of C 
visited first has the highest finishing number: 	



   f(C) > f(C‘) suppose there is an edge u -> v from C to 
C’ 	


	


•  If DFS is started at C it visits all vertices in C  and C’ 

before it gets “stuck”.	



Minimum Spanning Tree	


•  Minimum spanning tree.  Given a connected graph G = 
(V, E) with real-valued edge weights ce, an MST is a 
subset of the edges T ⊆ E such that T is a spanning tree 
whose sum of edge weights is minimized.	



	


•  Cayley's Theorem.  There are nn-2 spanning trees of Kn 
complete graph	



 5	



23	



10 	



21	



 14	



24	



 16	



 6	



 4	



18	


9	



7	



11	


 8	



 5	



 6	



 4	



9	



7	



11	


 8	



G = (V, E)	

 T,  Σe∈T ce = 50	


can't solve by brute force	
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Applications	


•  MST is fundamental problem with diverse applications.	


	


Network design.	



telephone, electrical, hydraulic, TV cable, computer, road	


	


Approximation algorithms for NP-hard problems.	



traveling salesperson problem, Steiner tree	


	


Indirect applications.	


•  max bottleneck paths	


•  LDPC codes for error correction	


•  image registration with Renyi entropy	


•  learning salient features for real-time face verification	


•  reducing data storage in sequencing amino acids in a protein	


•  model locality of particle interactions in turbulent fluid flows	


•  autoconfig protocol for Ethernet bridging to avoid cycles in a 

network	


	



Cluster analysis.	



MST Algorithms	


• Kruskal's algorithm.  Start with T = φ. Consider edges 
in ascending order of cost. Insert edge e in T unless 
doing so would create a cycle.	



• Reverse-Delete algorithm.  Start with T = E.  Consider 
edges in descending order of cost. Delete edge e from T 
unless doing so would disconnect T.	



• Prim's algorithm.  Start with some root node s and 
greedily grow a tree T from s outward.  At each step, add 
the cheapest edge e to T that has exactly one endpoint in 
T.	
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Minimum Spanning Tree	


•  Problem: given a connected, undirected, weighted 

graph:	



14 
10 

3 

6 4 
5 

2 

9 

15 

8 

Minimum Spanning Tree	


•  Problem: given a connected, undirected, weighted 

graph, find a spanning tree using edges that minimize 
the total weight	



14 
10 

3 

6 4 
5 

2 

9 

15 

8 
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Minimum Spanning Tree	


•  Which edges form the minimum spanning tree (MST) 

of the below graph?	



H B C 

G E D 

F 

A 

14 
10 

3 

6 4 
5 

2 

9 

15 

8 

Minimum Spanning Tree	


•  Answer:	



H B C 

G E D 

F 

A 

14 
10 

3 

6 4 
5 

2 

9 

15 

8 
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Minimum Spanning Tree	


•  MSTs satisfy the optimal substructure property: an optimal 

tree is composed of optimal subtrees	


•  Let T be an MST of G with an edge (u,v) in the middle	



Removing (u,v) partitions T into two trees T1 and T2	


	


•   Claim: T1 is an MST of G1 = (V1,E1), and T2 is an MST 

of G2 = (V2,E2)   (Do V1 and V2 share vertices?  Why?)	



•  Proof: w(T) = w(u,v) + w(T1) + w(T2)���
(There can’t be a better tree than T1 or T2, or T would be 
suboptimal)	



Minimum Spanning Tree	


•  Thm: 	



Let T be MST of G, and let A ⊆ T be subtree of T	


Let (u,v) be min-weight edge connecting A to V-A	


Then (u,v) ∈ T	
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Minimum Spanning Tree	


•  Thm: 	



Let T be MST of G, and let A ⊆ T be subtree of T	


Let (u,v) be min-weight edge connecting A to V-A	


Then (u,v) ∈ T	



•  Proof: in book (see Thm 23.1)	



Prim’s Algorithm	


MST-Prim(G, w, r) 
    Q = V[G]; 
    for each u ∈ Q 
        key[u] = ∞; 
    key[r] = 0; 
    p[r] = NULL; 
    while (Q not empty) 
        u = ExtractMin(Q); 
        for each v ∈ Adj[u] 
            if (v ∈ Q and w(u,v) < key[v]) 
                p[v] = u; 
                key[v] = w(u,v); 
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Prim’s Algorithm	


MST-Prim(G, w, r) 
    Q = V[G]; 
    for each u ∈ Q 
        key[u] = ∞; 
    key[r] = 0; 
    p[r] = NULL; 
    while (Q not empty) 
        u = ExtractMin(Q); 
        for each v ∈ Adj[u] 
            if (v ∈ Q and w(u,v) < key[v]) 
                p[v] = u; 
                key[v] = w(u,v); 

14 10 

3 

6 4 
5 

2 

9 

15 

8 

Run on example graph 

Prim’s Algorithm	


MST-Prim(G, w, r) 
    Q = V[G]; 
    for each u ∈ Q 
        key[u] = ∞; 
    key[r] = 0; 
    p[r] = NULL; 
    while (Q not empty) 
        u = ExtractMin(Q); 
        for each v ∈ Adj[u] 
            if (v ∈ Q and w(u,v) < key[v]) 
                p[v] = u; 
                key[v] = w(u,v); 

Pick a start vertex r 

∞ ∞ ∞ 

∞ ∞ 
∞ 

∞ 

14 10 

3 

6 4 
5 

2 

9 

15 

8 
r ∞ 
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Prim’s Algorithm	


MST-Prim(G, w, r) 
    Q = V[G]; 
    for each u ∈ Q 
        key[u] = ∞; 
    key[r] = 0; 
    p[r] = NULL; 
    while (Q not empty) 
        u = ExtractMin(Q); 
        for each v ∈ Adj[u] 
            if (v ∈ Q and w(u,v) < key[v]) 
                p[v] = u; 
                key[v] = w(u,v); 

∞ ∞ ∞ 

0 ∞ ∞ 
∞ 

∞ 

14 10 

3 

6 4 
5 

2 

9 

15 

8 

Pick a start vertex r 

r 

Prim’s Algorithm	



MST-Prim(G, w, r) 
    Q = V[G]; 
    for each u ∈ Q 
        key[u] = ∞; 
    key[r] = 0; 
    p[r] = NULL; 
    while (Q not empty) 
        u = ExtractMin(Q); 
        for each v ∈ Adj[u] 
            if (v ∈ Q and w(u,v) < key[v]) 
                p[v] = u; 
                key[v] = w(u,v); 

Red vertices have been removed from Q 

∞ 

∞ ∞ ∞ 

0 ∞ ∞ 

∞ 

14 10 

3 

6 4 
5 

2 

9 

15 

8 
u 
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Prim’s Algorithm	



MST-Prim(G, w, r) 
    Q = V[G]; 
    for each u ∈ Q 
        key[u] = ∞; 
    key[r] = 0; 
    p[r] = NULL; 
    while (Q not empty) 
        u = ExtractMin(Q); 
        for each v ∈ Adj[u] 
            if (v ∈ Q and w(u,v) < key[v]) 
                p[v] = u; 
                key[v] = w(u,v); 

Red arrows indicate parent pointers 

3 

∞ ∞ ∞ 

0 ∞ ∞ 

∞ 

14 10 

3 

6 4 
5 

2 

9 

15 

8 
u 

Prim’s Algorithm	



MST-Prim(G, w, r) 
    Q = V[G]; 
    for each u ∈ Q 
        key[u] = ∞; 
    key[r] = 0; 
    p[r] = NULL; 
    while (Q not empty) 
        u = ExtractMin(Q); 
        for each v ∈ Adj[u] 
            if (v ∈ Q and w(u,v) < key[v]) 
                p[v] = u; 
                key[v] = w(u,v); 

3 

14 ∞ ∞ 

0 ∞ ∞ 

∞ 

14 10 

3 

6 4 
5 

2 

9 

15 

8 
u 
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Prim’s Algorithm	



MST-Prim(G, w, r) 
    Q = V[G]; 
    for each u ∈ Q 
        key[u] = ∞; 
    key[r] = 0; 
    p[r] = NULL; 
    while (Q not empty) 
        u = ExtractMin(Q); 
        for each v ∈ Adj[u] 
            if (v ∈ Q and w(u,v) < key[v]) 
                p[v] = u; 
                key[v] = w(u,v); 

u 
3 

10 ∞ ∞ 

0 ∞ ∞ 

∞ 

14 10 

3 

6 4 
5 

2 

9 

15 

8 

Prim’s Algorithm	


MST-Prim(G, w, r) 
    Q = V[G]; 
    for each u ∈ Q 
        key[u] = ∞; 
    key[r] = 0; 
    p[r] = NULL; 
    while (Q not empty) 
        u = ExtractMin(Q); 
        for each v ∈ Adj[u] 
            if (v ∈ Q and w(u,v) < key[v]) 
                p[v] = u; 
                key[v] = w(u,v); 

3 

10 ∞ ∞ 

0 8 ∞ 

∞ 

14 10 

3 

6 4 
5 

2 

9 

15 

8 
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Prim’s Algorithm	


MST-Prim(G, w, r) 
    Q = V[G]; 
    for each u ∈ Q 
        key[u] = ∞; 
    key[r] = 0; 
    p[r] = NULL; 
    while (Q not empty) 
        u = ExtractMin(Q); 
        for each v ∈ Adj[u] 
            if (v ∈ Q and w(u,v) < key[v]) 
                p[v] = u; 
                key[v] = w(u,v); 6 

3 

10 ∞ ∞ 

0 8 ∞ 

∞ 

14 10 

3 

6 4 
5 

2 

9 

15 

8 

Prim’s Algorithm	


MST-Prim(G, w, r) 
    Q = V[G]; 
    for each u ∈ Q 
        key[u] = ∞; 
    key[r] = 0; 
    p[r] = NULL; 
    while (Q not empty) 
        u = ExtractMin(Q); 
        for each v ∈ Adj[u] 
            if (v ∈ Q and w(u,v) < key[v]) 
                p[v] = u; 
                key[v] = w(u,v); 

3 

10 ∞ ∞ 

0 8 ∞ 

∞ 

14 10 

3 

6 4 
5 

2 

9 

15 

8 
u	
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Prim’s Algorithm	


MST-Prim(G, w, r) 
    Q = V[G]; 
    for each u ∈ Q 
        key[u] = ∞; 
    key[r] = 0; 
    p[r] = NULL; 
    while (Q not empty) 
        u = ExtractMin(Q); 
        for each v ∈ Adj[u] 
            if (v ∈ Q and w(u,v) < key[v]) 
                p[v] = u; 
                key[v] = w(u,v); 

3 

10 2 ∞ 

0 8 ∞ 

∞ 

14 10 

3 

6 4 
5 

2 

9 

15 

8 

Prim’s Algorithm	


MST-Prim(G, w, r) 
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Prim’s Algorithm	
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Prim’s Algorithm	
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Prim’s Algorithm	


MST-Prim(G, w, r) 
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Review: Prim’s Algorithm	


MST-Prim(G, w, r) 
    Q = V[G]; 
    for each u ∈ Q 
        key[u] = ∞; 
    key[r] = 0; 
    p[r] = NULL; 
    while (Q not empty) 
        u = ExtractMin(Q); 
        for each v ∈ Adj[u] 
            if (v ∈ Q and w(u,v) < key[v]) 
                p[v] = u; 
                DecreaseKey(v, w(u,v)); 
 

Review: Prim’s Algorithm	


MST-Prim(G, w, r) 
    Q = V[G]; 
    for each u ∈ Q 
        key[u] = ∞; 
    key[r] = 0; 
    p[r] = NULL; 
    while (Q not empty) 
        u = ExtractMin(Q); 
        for each v ∈ Adj[u] 
            if (v ∈ Q and w(u,v) < key[v]) 
                p[v] = u; 
                DecreaseKey(v, w(u,v)); 
 

How often is ExtractMin() called? 
How often is DecreaseKey() called? 

ExtractMin  total number of calls O(V log V) 	


DecreaseKey  total number of calls O(E log V) 	
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Review: Prim’s Algorithm	


MST-Prim(G, w, r) 
    Q = V[G]; 
    for each u ∈ Q 
        key[u] = ∞; 
    key[r] = 0; 
    p[r] = NULL; 
    while (Q not empty) 
        u = ExtractMin(Q); 
        for each v ∈ Adj[u] 
            if (v ∈ Q and w(u,v) < key[v]) 
                p[v] = u; 
                key[v] = w(u,v); 
 

What will be the running time? 
A: Depends on queue 
binary heap: O(E lg V) 
Fibonacci heap: O(V lg V + E) 

ExtractMin  total number of calls O(V log V) 	


DecreaseKey  total number of calls O(E log V) 	


Total number of calls O(V logV +E logV) = O(E log V)	


Think why we can combine things in the expression above	



Minimum Weight Spanning Tree 
Kruskal’s Algorithm	



Kruskal() 
{  
   T = ∅; 
   for each v ∈ V 
      MakeSet(v); 
   sort E by increasing edge weight w 
   for each (u,v) ∈ E (in sorted order) 
      if FindSet(u) ≠ FindSet(v) 
         T = T U {{u,v}}; 
         Union(FindSet(u), FindSet(v)); 
} 
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Disjoint-Set Union Problem	


•  Want a data structure to support disjoint sets 	



Collection of disjoint sets S = {Si}, Si ∩ Sj = ∅	


•  Need to support following operations:	



MakeSet(x): S = S U {{x}}	


Union(Si, Sj): S = S - {Si, Sj} U {Si U Sj}	


FindSet(X): return Si ∈ S such that x ∈ Si	



•  Before discussing implementation details, we look at 
example application: MSTs	



Kruskal’s Algorithm	


Kruskal() 
{  
   T = ∅; 
   for each v ∈ V 
      MakeSet(v); 
   sort E by increasing edge weight w 
   for each (u,v) ∈ E (in sorted order) 
      if FindSet(u) ≠ FindSet(v) 
         T = T U {{u,v}}; 
         Union(FindSet(u), FindSet(v)); 
} 
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Run the algorithm: 
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Kruskal’s Algorithm	
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Kruskal’s Algorithm	
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Kruskal’s Algorithm	
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Kruskal’s Algorithm	
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Kruskal’s Algorithm	
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Kruskal’s Algorithm	
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Kruskal’s Algorithm	
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Kruskal’s Algorithm	
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Kruskal’s Algorithm	
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Kruskal’s Algorithm	
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Correctness Of Kruskal’s 
Algorithm	



•  Sketch of a proof that this algorithm produces an MST for T:	


• Assume algorithm is wrong: result is not an MST	


• Then algorithm adds a wrong edge at some point	


•  If it adds a wrong edge, there must be a lower weight edge 

(cut and paste argument)	


• But algorithm chooses lowest weight edge at each step ->  

Contradiction	


•  Again, important to be comfortable with cut and paste 

arguments	



Kruskal’s Algorithm	


Kruskal() 
{ 
   T = ∅; 
   for each v ∈ V 
      MakeSet(v); 
   sort E by increasing edge weight w 
   for each (u,v) ∈ E (in sorted order) 
      if FindSet(u) ≠ FindSet(v) 

         T = T U {{u,v}}; 

         Union(FindSet(u), FindSet(v)); 
} 

What will affect the running time? 
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Kruskal’s Algorithm	


Kruskal() 
{ 
   T = ∅; 
   for each v ∈ V 
      MakeSet(v); 
   sort E by increasing edge weight w 
   for each (u,v) ∈ E (in sorted order) 
      if FindSet(u) ≠ FindSet(v) 

         T = T U {{u,v}}; 

         Union(FindSet(u), FindSet(v)); 
} 

What will affect the running time? 
 1 Sort 

O(V) MakeSet() calls 
O(E) FindSet() calls 

O(V) Union() calls   
(Exactly how many Union()s?) 

Kruskal’s Algorithm: Running 
Time	



•  To summarize: 	


Sort edges: O(E lg E) 	


O(V) MakeSet()’s	


O(E) FindSet()’s and Union()’s 	



•  Upshot: 	


Best disjoint-set union algorithm makes above 	


3 operation stake O((V+E)⋅α(V)), α almost constant	


(slowly growing function of V)	


Since E >= V-1 then we have  O(E⋅α(V))	


Also since α(V) = O(lg V) = O(lg E)	


	


Overall thus O(E lg E), almost linear w/o sorting	
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Disjoint Sets (ch 21)	


•  In Kruskal’s alg., Connected Components 	


•  Need to do set membership and set union efficiently	


•  Typical operations on disjoint sets 	


   member(a,s) 
 insert(a,s) 
 delete(a,s) 
 union(s1, s2, s3) 
 find(a) 
 make-set(x)	


•  Analysis in terms on n number of make-set operations	


•  And m total number of make-set, find, union (more details 	


Later) 	



Shortest Path Algorithms	
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Single-Source Shortest Path	


•  Problem: given a weighted directed graph G, find the 

minimum-weight path from a given source vertex s to 
another vertex v	



•  “Shortest-path” = minimum weight 	


•  Weight of path is sum of edges	



•  E.g., a road map: what is the shortest path from 	


   Faixfax to Washington DC?	



Shortest Path Properties	


•  Again, we have optimal substructure: the shortest path 

consists of shortest subpaths:	



•  Proof: suppose some subpath is not a shortest path	


   There must then exist a shorter subpath 	


   Could substitute the shorter subpath for a shorter path	


   but then overall path is not shortest path.  

Contradiction	


•  Optimal substructure property – hallmark of dynamic 

programming	
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Shortest Path Properties	



•  In graphs with negative weight cycles, some shortest paths 
will not exist (Why?):	



< 0 

Relaxation	


•  A key technique in shortest path algorithms is relaxation	



Idea: for all v, maintain upper bound d[v] on δ(s,v)	


Relax(u,v,w) {  
    if (d[v] > d[u]+w) then d[v]=d[u]+w; 
} 

9 5 
2 

7 5 
2 

Relax 

6 5 
2 

6 5 
2 

Relax 
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Shortest Path Properties	


•  Define δ(u,v) to be the weight of the shortest path from 

u to v	


•  Shortest paths satisfy the triangle inequality: δ(u,v) ≤ 
δ(u,x) + δ(x,v)	


•  “Proof”:	



x 

u v 

This path is no longer than any other path 

Dijkstra’s Algorithm	


•  If no negative edge weights, we can beat Bellman-Ford	


•  Similar to breadth-first search	


•  Grow a tree gradually, advancing from vertices taken 

from a queue	


•  Also similar to Prim’s algorithm for MST	



Use a priority queue keyed on d[v]	
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Dijkstra’s Algorithm	


Dijkstra(G) 
   for each v ∈ V 
      d[v] = ∞; 
   d[s] = 0; S = ∅; Q = V; 
   while (Q ≠ ∅) 
      u = ExtractMin(Q); 
      S = S U {u}; 
      for each v ∈ u->Adj[] 
         if (d[v] > d[u]+w(u,v)) 
            d[v] = d[u]+w(u,v); 

Relaxation 
Step 

Note: this 
is really a  
call to Q->DecreaseKey() 

B 

C 

D A 

10 

4 3 

2 

1 5 

Ex: run the algorithm 

Dijkstra’s Algorithm	


Dijkstra(G) 
   for each v ∈ V 
      d[v] = ∞; 
   d[s] = 0; S = ∅; Q = V; 
   while (Q ≠ ∅) 
      u = ExtractMin(Q); 
      S = S U {u}; 
      for each v ∈ u->Adj[] 
         if (d[v] > d[u]+w(u,v)) 
            d[v] = d[u]+w(u,v); 

How many times is  
ExtractMin() called? 

How many times is  
DecraseKey() called? 

What will be the total running time? 
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Dijkstra’s Algorithm	


Dijkstra(G) 
   for each v ∈ V 
      d[v] = ∞; 
   d[s] = 0; S = ∅; Q = V; 
   while (Q ≠ ∅) 
      u = ExtractMin(Q); 
      S = S U {u}; 
      for each v ∈ u->Adj[] 
         if (d[v] > d[u]+w(u,v)) 
            d[v] = d[u]+w(u,v); 

How many times is  
ExtractMin() called? 

How many times is  
DecraseKey() called? 

A: O(E lg V) using binary heap for Q 
Can acheive O(V lg V + E) with Fibonacci heaps 

Dijkstra’s Algorithm	


Dijkstra(G) 
   for each v ∈ V 
      d[v] = ∞; 
   d[s] = 0; S = ∅; Q = V; 
   while (Q ≠ ∅) 
      u = ExtractMin(Q); 
      S = S U{u}; 
      for each v ∈ u->Adj[] 
         if (d[v] > d[u]+w(u,v)) 
            d[v] = d[u]+w(u,v); 

Correctness: we must show that when u is  
removed from Q, it has already converged 


