
3/28/14	

1	

CS583 Lecture 09	

 Jana Kosecka	

 	

 Graph Algorithms 	

 Topological Sort	

 Strongly Connected Component	

 Minimum Spanning Tree	

 	

Many slides here are based on E. Demaine , D. Luebke, Kleinberg-Tardos slides	

Graph Algs. Continued	

•  Review BFS	

•  Application of BSF – check bipartiteness	

•  Review DFS 	

•  Check for cycles	

3/28/14	

2	

World Wide Web	

• Web graph.	

Node: web page.	

Edge: hyperlink from one page to another.	

cnn.com	

cnnsi.com	
novell.com	
netscape.com	
 timewarner.com	

hbo.com	

sorpranos.com	

4	

9-11 Terrorist Network	

• Social network graph.	

Node: people.	

Edge: relationship between two people.	

Reference: Valdis Krebs, http://www.firstmonday.org/issues/issue7_4/krebs	

3/28/14	

3	

Rooted Trees	

• Rooted tree. Given a tree T, choose a root node r and
orient each edge away from r.	

• Importance. Models hierarchical structure.	

a tree	
 the same tree, rooted at 1	

v	

parent of v	

child of v	

root r	

Phylogeny Trees	

• Phylogeny trees. Describe evolutionary history of
species. 	

3/28/14	

4	

GUI Containment Hierarchy	

Reference: http://java.sun.com/docs/books/tutorial/uiswing/overview/anatomy.html

• GUI containment hierarchy. Describe organization of
GUI widgets.	

Breadth-First Search	

•  Again will associate vertex “colors” to guide the

algorithm	

White vertices have not been discovered	

All vertices start out white	

Grey vertices are discovered but not fully explored	

They may be adjacent to white vertices	

Black vertices are discovered and fully explored	

They are adjacent only to black and gray vertices	

•  Explore vertices by scanning adjacency list of grey
vertices	

3/28/14	

5	

Breadth-First Search	

BFS(G, s) {
 initialize vertices;
 Q = {s}; // Q is a queue (duh); initialize
to s

 while (Q not empty) {
 u = RemoveTop(Q);
 for each v ∈ u->adj {
 if (v->color == WHITE)
 v->color = GREY;
 v->d = u->d + 1;
 v->p = u;
 Enqueue(Q, v);
 }
 u->color = BLACK;
 }
}

What does v->p represent?
What does v->d represent?

Breadth-First Search: Example	

∞

∞

∞

∞

∞

∞

∞

∞

r s t u

v w x y

3/28/14	

6	

BSF 	

•  Check for bi-partite graphs 	
	

•  Graphs representing relationships	

•  All nodes can belong to two subsets	

•  There are no edges between subsets	

Depth-First Search	

•  Depth-first search is another strategy for exploring a

graph	

•  Explore “deeper” in the graph whenever possible	

•  Edges are explored out of the most recently discovered
vertex v that still has unexplored edges	

•  When all of v’s edges have been explored, backtrack to
the vertex from which v was discovered	

	

3/28/14	

7	

Depth-First Search	

•  Vertices initially colored white	

•  Then colored gray when discovered	

•  Then black when finished	

Depth-First Search: The Code	

DFS(G)
{
 for each vertex u ∈ G->V
 {
 u->color = WHITE;
 }
 time = 0;
 for each vertex u ∈ G->V
 {
 if (u->color ==
WHITE)

 DFS_Visit(u);
 }
}

DFS_Visit(u)
{
 u->color = GREY;
 time = time+1;
 u->d = time;
 for each v ∈ u->Adj[]
 {
 if (v->color ==
WHITE)

 DFS_Visit(v);
 }
 u->color = BLACK;
 time = time+1;
 u->f = time;
}

3/28/14	

8	

Depth-First Sort Analysis	

•  This running time argument is an informal example of

amortized analysis	

•  “Charge” the exploration of edge to the edge:	

•  Each loop in DFS_Visit can be attributed to an edge in the

graph 	

•  Runs once/edge if directed graph, twice if undirected	

•  Thus loop will run in O(E) time, algorithm O(V+E)	

•  Considered linear for graph, b/c adj list requires O(V+E)

storage	

•  Important to be comfortable with this kind of reasoning and

analysis	

DFS Example	

1 |12 8 |11 13|16

14|15 5 | 6 3 | 4

2 | 7 9 |10

source
vertex

d f

Tree edges

3/28/14	

9	

DFS: Kinds of edges	

•  DFS introduces an important distinction among edges

in the original graph:	

•  Tree edge: encounter new (white) vertex 	

•  Back edge: from descendent to ancestor	

Encounter a grey vertex (grey to grey)	

DFS Example	

1 |12 8 |11 13|16

14|15 5 | 6 3 | 4

2 | 7 9 |10

source
vertex

d f

Tree edges Back edges

3/28/14	

10	

DFS: Kinds of edges	

•  DFS introduces an important distinction among edges

in the original graph:	

Tree edge: encounter new (white) vertex 	

Back edge: from descendent to ancestor	

Forward edge: from ancestor to descendent	

	

Not a tree edge, though	

From grey node to black node	

DFS Example	

Tree edges Back edges Forward edges

1 |12 8 |11 13|16

14|15 5 | 6 3 | 4

2 | 7 9 |10

source
vertex

d f

3/28/14	

11	

DFS: Kinds of edges	

•  DFS introduces an important distinction among edges

in the original graph:	

Tree edge: encounter new (white) vertex 	

Back edge: from descendent to ancestor	

Forward edge: from ancestor to descendent	

Cross edge: between a tree or subtrees	

	

From a grey node to a black node	

	

DFS Example	

source
vertex

d f

Tree edges Back edges Forward edges

1 |12 8 |11 13|16

14|15 5 | 6 3 | 4

2 | 7 9 |10

Cross edges

3/28/14	

12	

DFS: Kinds of edges	

•  DFS introduces an important distinction among edges

in the original graph:	

Tree edge: encounter new (white) vertex 	

Back edge: from descendent to ancestor	

Forward edge: from ancestor to descendent	

Cross edge: between a tree or subtrees	

•  Note: tree & back edges are important; most
algorithms don’t distinguish forward & cross	

DFS: Kinds Of Edges	

•  Thm 23.9 (22.10 – in 3rd edition): If G is undirected, a

DFS produces only tree and back edges	

•  Suppose you have u.d < v.d	

•  Then search discovered u before v, so first time v is

discovered it is white – hence the edge 	

 (u,v) is a tree edge	

•  Otherwise the search already explored this 	

 edge in direction from v to u	

•  edge must actually be a back edge since	

•  u is still gray	

3/28/14	

13	

DFS And Graph Cycles	

•  Thm: An undirected graph is acyclic iff a DFS yields

no back edges	

•  If acyclic, no back edges (because a back edge implies

a cycle	

•  If no back edges, acyclic	

No back edges implies only tree edges (Why?)	

Only tree edges implies we have a tree or a forest	

Which by definition is acyclic	

•  Thus, can run DFS to find whether a graph has a cycle	

DFS And Cycles	

• How would you modify the code to detect cycles?	

DFS(G)
{
 for each vertex u ∈ G->V
 {
 u->color = WHITE;
 }
 time = 0;
 for each vertex u ∈ G->V
 {
 if (u->color == WHITE)
 DFS_Visit(u);
 }
}

DFS_Visit(u)
{
 u->color = GREY;
 time = time+1;
 u->d = time;

 for each v ∈ u->Adj[]
 {
 if (v->color == WHITE)
 DFS_Visit(v);
 }
 u->color = BLACK;
 time = time+1;
 u->f = time;
}

3/28/14	

14	

DFS And Cycles	

• What will be the running time ?	

DFS(G)
{
 for each vertex u ∈ G->V
 {
 u->color = WHITE;
 }
 time = 0;
 for each vertex u ∈ G->V
 {
 if (u->color == WHITE)
 DFS_Visit(u);
 }
}

DFS_Visit(u)
{
 u->color = GREY;
 time = time+1;
 u->d = time;

 for each v ∈ u->Adj[]
 {
 if (v->color == WHITE)
 DFS_Visit(v);
 }
 u->color = BLACK;
 time = time+1;
 u->f = time;
}

DFS And Cycles	

•  What will be the running time?	

•  A: O(V+E)	

•  We can actually determine if cycles exist in O(V) time:	

	

In an undirected acyclic forest, |E| ≤ |V| - 1 	

	

So count the edges: if ever see |V| distinct edges, must	

have seen a back edge along the way	

3/28/14	

15	

Review: Kinds Of Edges	

•  Thm: If G is undirected, a DFS produces only tree and

back edges	

•  Thm: An undirected graph is acyclic iff a DFS yields

no back edges	

•  Thus, can run DFS to find cycles	

source
vertex

d f

Tree edges Back edges Forward edges

1 |12 8 |11 13|16

14|15 5 | 6 3 | 4

2 | 7 9 |10

Cross edges

Review: Kinds of Edges	

3/28/14	

16	

DFS And Cycles	

•  Running time: O(V+E)	

•  We can actually determine if cycles exist in O(V) time:	

In an undirected acyclic forest, |E| ≤ |V| - 1 	

So count the edges: if ever see |V| distinct edges, must	

have seen a back edge along the way	

Why not just test if |E| <|V| and answer the question	

in constant time?	

	

We can have some isolated component nodes not

connected by any edges to the rest of the graph	

Directed Acyclic Graphs	

•  A directed acyclic graph or DAG is a directed graph

with no directed cycles:	

3/28/14	

17	

DFS and DAGs	

•  Argue that a directed graph G is acyclic iff a DFS of G yields

no back edges:	

•  Forward: if G is acyclic, will be no back edges	

 Trivial: a back edge implies a cycle	

•  Backward: if no back edges, G is acyclic	

•  Argue contrapositive: Suppose G has a cycle ⇒ we will show

that DFS will produce a back edge	

•  Let v be the vertex on the cycle first discovered, and u be the

predecessor of v on the cycle	

•  When v discovered, whole cycle is white	

•  Must visit everything reachable from v before returning from

DFS-Visit()	

•  So path from u→v is descendant of v hence (gray→gray), thus

(u, v) is a back edge	

Topological Sort	

•  Topological sort of a DAG:	

Linear ordering of all vertices in graph G such that
vertex u comes before vertex v if edge (u, v) ∈ G	

•  Real-world example: getting dressed	

3/28/14	

18	

Getting Dressed	

Underwear Socks

Shoes Pants

Belt

Shirt

Watch

Tie

Jacket

Getting Dressed	

Underwear Socks

Shoes Pants

Belt

Shirt

Watch

Tie

Jacket

Socks Underwear Pants Shoes Watch Shirt Belt Tie Jacket

3/28/14	

19	

Topological Sort Algorithm	

Topological-Sort()
{
Run DFS
When a vertex is finished, output it
On the front of linked list
Vertices are output in reverse
topological order

}
•  Time: O(V+E)	

•  Correctness: Want to prove that���

	
(u,v) ∈ G ⇒ u→f > v→f	

Topological Sort	

•  Ordering of activities in the presence of constraints	

•  Process scheduling 	

3/28/14	

20	

Correctness of Topological Sort	

•  Claim: (u,v) ∈ G ⇒ u→f > v→f	

•  Show that if there is an edge from u to v, finishing time	

 of u is greater then v	

•  When (u,v) is explored, u is gray	

v = gray ⇒ (u,v) is back edge. Contradiction (Why?)	

hence v cannot be gray – since there are no cycles	

v = white ⇒ v becomes descendent of u ⇒ v→f < u→f	

(since must finish v before backtracking and finishing u)	

v = black ⇒ v already finished ⇒ v→f < u→f	

Connected components	

•  Undirected graph is connected: there is a path from u -> v 	

For all u and v	

	

•  Directed graph is strongly connected if there is a path from

u->v for all u and v	

•  How can we find strongly connected components of a
directed graph 	

3/28/14	

21	

Strongly Connected components	

•  SSC algorithm will induce component graph which is a DAG	

ABD	
 EF	

CH	
 G	

13|14 11|16 1|10

2|7 3 | 4 12|15

8|9

5|6

D

A

C

B E F

GH

Strongly Connected component	

•  How to use DFS to find strongly connected component	

•  When running DFS_visit recursively it will stop once all

nodes reachable from start are visited – as a result you will
have one DFS tree. 	

•  Observation DFS tree will contain one of more strongly

connected components 	

•  How to run DFS so it will break (finish DFS_visit) just after 	

 finishing only one SCC	

	

3/28/14	

22	

Strongly Connected Components	

•  Call DFS to compute finishing times f[u] of each

vertex	

•  Create transpose graph (directions of edges reversed)	

•  Call DFS on the transpose, but in the main loop of

DFS, consider vertices in the decreasing order of f[u]	

•  Output the vertices of each tree in the depth-first forest

formed in line 3 as a separate strongly connected
component	

 	

ABD	
 EF	

CH	
 G	

13|14 11|16 1|10

2|7 3 | 4 12|15

8|9

5|6

D

A

C

B E F

GH

2|5 1|6 7|10

14|15 12|13 3|4

8|9

16|17

D

A

C

B E F

GH

3/28/14	

23	

Strongly connected components	

•  Property: Suppose you have two SCC’s C and C’. If

there is an edge between C and C’, then vertex of C
visited first has the highest finishing number: 	

 f(C) > f(C‘) suppose there is an edge u -> v from C to
C’ 	

	

•  If DFS is started at C it visits all vertices in C and C’

before it gets “stuck”.	

Minimum Spanning Tree	

•  Minimum spanning tree. Given a connected graph G =
(V, E) with real-valued edge weights ce, an MST is a
subset of the edges T ⊆ E such that T is a spanning tree
whose sum of edge weights is minimized.	

	

•  Cayley's Theorem. There are nn-2 spanning trees of Kn
complete graph	

 5	

23	

10 	

21	

 14	

24	

 16	

 6	

 4	

18	

9	

7	

11	

 8	

 5	

 6	

 4	

9	

7	

11	

 8	

G = (V, E)	
 T, Σe∈T ce = 50	

can't solve by brute force	

3/28/14	

24	

Applications	

•  MST is fundamental problem with diverse applications.	

	

Network design.	

telephone, electrical, hydraulic, TV cable, computer, road	

	

Approximation algorithms for NP-hard problems.	

traveling salesperson problem, Steiner tree	

	

Indirect applications.	

•  max bottleneck paths	

•  LDPC codes for error correction	

•  image registration with Renyi entropy	

•  learning salient features for real-time face verification	

•  reducing data storage in sequencing amino acids in a protein	

•  model locality of particle interactions in turbulent fluid flows	

•  autoconfig protocol for Ethernet bridging to avoid cycles in a

network	

	

Cluster analysis.	

MST Algorithms	

• Kruskal's algorithm. Start with T = φ. Consider edges
in ascending order of cost. Insert edge e in T unless
doing so would create a cycle.	

• Reverse-Delete algorithm. Start with T = E. Consider
edges in descending order of cost. Delete edge e from T
unless doing so would disconnect T.	

• Prim's algorithm. Start with some root node s and
greedily grow a tree T from s outward. At each step, add
the cheapest edge e to T that has exactly one endpoint in
T.	

3/28/14	

25	

Minimum Spanning Tree	

•  Problem: given a connected, undirected, weighted

graph:	

14
10

3

6 4
5

2

9

15

8

Minimum Spanning Tree	

•  Problem: given a connected, undirected, weighted

graph, find a spanning tree using edges that minimize
the total weight	

14
10

3

6 4
5

2

9

15

8

3/28/14	

26	

Minimum Spanning Tree	

•  Which edges form the minimum spanning tree (MST)

of the below graph?	

H B C

G E D

F

A

14
10

3

6 4
5

2

9

15

8

Minimum Spanning Tree	

•  Answer:	

H B C

G E D

F

A

14
10

3

6 4
5

2

9

15

8

3/28/14	

27	

Minimum Spanning Tree	

•  MSTs satisfy the optimal substructure property: an optimal

tree is composed of optimal subtrees	

•  Let T be an MST of G with an edge (u,v) in the middle	

Removing (u,v) partitions T into two trees T1 and T2	

	

•  Claim: T1 is an MST of G1 = (V1,E1), and T2 is an MST

of G2 = (V2,E2) (Do V1 and V2 share vertices? Why?)	

•  Proof: w(T) = w(u,v) + w(T1) + w(T2)���
(There can’t be a better tree than T1 or T2, or T would be
suboptimal)	

Minimum Spanning Tree	

•  Thm: 	

Let T be MST of G, and let A ⊆ T be subtree of T	

Let (u,v) be min-weight edge connecting A to V-A	

Then (u,v) ∈ T	

3/28/14	

28	

Minimum Spanning Tree	

•  Thm: 	

Let T be MST of G, and let A ⊆ T be subtree of T	

Let (u,v) be min-weight edge connecting A to V-A	

Then (u,v) ∈ T	

•  Proof: in book (see Thm 23.1)	

Prim’s Algorithm	

MST-Prim(G, w, r)
 Q = V[G];
 for each u ∈ Q
 key[u] = ∞;
 key[r] = 0;
 p[r] = NULL;
 while (Q not empty)
 u = ExtractMin(Q);
 for each v ∈ Adj[u]
 if (v ∈ Q and w(u,v) < key[v])
 p[v] = u;
 key[v] = w(u,v);

3/28/14	

29	

Prim’s Algorithm	

MST-Prim(G, w, r)
 Q = V[G];
 for each u ∈ Q
 key[u] = ∞;
 key[r] = 0;
 p[r] = NULL;
 while (Q not empty)
 u = ExtractMin(Q);
 for each v ∈ Adj[u]
 if (v ∈ Q and w(u,v) < key[v])
 p[v] = u;
 key[v] = w(u,v);

14 10

3

6 4
5

2

9

15

8

Run on example graph

Prim’s Algorithm	

MST-Prim(G, w, r)
 Q = V[G];
 for each u ∈ Q
 key[u] = ∞;
 key[r] = 0;
 p[r] = NULL;
 while (Q not empty)
 u = ExtractMin(Q);
 for each v ∈ Adj[u]
 if (v ∈ Q and w(u,v) < key[v])
 p[v] = u;
 key[v] = w(u,v);

Pick a start vertex r

∞ ∞ ∞

∞ ∞
∞

∞

14 10

3

6 4
5

2

9

15

8
r ∞

3/28/14	

30	

Prim’s Algorithm	

MST-Prim(G, w, r)
 Q = V[G];
 for each u ∈ Q
 key[u] = ∞;
 key[r] = 0;
 p[r] = NULL;
 while (Q not empty)
 u = ExtractMin(Q);
 for each v ∈ Adj[u]
 if (v ∈ Q and w(u,v) < key[v])
 p[v] = u;
 key[v] = w(u,v);

∞ ∞ ∞

0 ∞ ∞
∞

∞

14 10

3

6 4
5

2

9

15

8

Pick a start vertex r

r

Prim’s Algorithm	

MST-Prim(G, w, r)
 Q = V[G];
 for each u ∈ Q
 key[u] = ∞;
 key[r] = 0;
 p[r] = NULL;
 while (Q not empty)
 u = ExtractMin(Q);
 for each v ∈ Adj[u]
 if (v ∈ Q and w(u,v) < key[v])
 p[v] = u;
 key[v] = w(u,v);

Red vertices have been removed from Q

∞

∞ ∞ ∞

0 ∞ ∞

∞

14 10

3

6 4
5

2

9

15

8
u

3/28/14	

31	

Prim’s Algorithm	

MST-Prim(G, w, r)
 Q = V[G];
 for each u ∈ Q
 key[u] = ∞;
 key[r] = 0;
 p[r] = NULL;
 while (Q not empty)
 u = ExtractMin(Q);
 for each v ∈ Adj[u]
 if (v ∈ Q and w(u,v) < key[v])
 p[v] = u;
 key[v] = w(u,v);

Red arrows indicate parent pointers

3

∞ ∞ ∞

0 ∞ ∞

∞

14 10

3

6 4
5

2

9

15

8
u

Prim’s Algorithm	

MST-Prim(G, w, r)
 Q = V[G];
 for each u ∈ Q
 key[u] = ∞;
 key[r] = 0;
 p[r] = NULL;
 while (Q not empty)
 u = ExtractMin(Q);
 for each v ∈ Adj[u]
 if (v ∈ Q and w(u,v) < key[v])
 p[v] = u;
 key[v] = w(u,v);

3

14 ∞ ∞

0 ∞ ∞

∞

14 10

3

6 4
5

2

9

15

8
u

3/28/14	

32	

Prim’s Algorithm	

MST-Prim(G, w, r)
 Q = V[G];
 for each u ∈ Q
 key[u] = ∞;
 key[r] = 0;
 p[r] = NULL;
 while (Q not empty)
 u = ExtractMin(Q);
 for each v ∈ Adj[u]
 if (v ∈ Q and w(u,v) < key[v])
 p[v] = u;
 key[v] = w(u,v);

u
3

10 ∞ ∞

0 ∞ ∞

∞

14 10

3

6 4
5

2

9

15

8

Prim’s Algorithm	

MST-Prim(G, w, r)
 Q = V[G];
 for each u ∈ Q
 key[u] = ∞;
 key[r] = 0;
 p[r] = NULL;
 while (Q not empty)
 u = ExtractMin(Q);
 for each v ∈ Adj[u]
 if (v ∈ Q and w(u,v) < key[v])
 p[v] = u;
 key[v] = w(u,v);

3

10 ∞ ∞

0 8 ∞

∞

14 10

3

6 4
5

2

9

15

8

3/28/14	

33	

Prim’s Algorithm	

MST-Prim(G, w, r)
 Q = V[G];
 for each u ∈ Q
 key[u] = ∞;
 key[r] = 0;
 p[r] = NULL;
 while (Q not empty)
 u = ExtractMin(Q);
 for each v ∈ Adj[u]
 if (v ∈ Q and w(u,v) < key[v])
 p[v] = u;
 key[v] = w(u,v); 6

3

10 ∞ ∞

0 8 ∞

∞

14 10

3

6 4
5

2

9

15

8

Prim’s Algorithm	

MST-Prim(G, w, r)
 Q = V[G];
 for each u ∈ Q
 key[u] = ∞;
 key[r] = 0;
 p[r] = NULL;
 while (Q not empty)
 u = ExtractMin(Q);
 for each v ∈ Adj[u]
 if (v ∈ Q and w(u,v) < key[v])
 p[v] = u;
 key[v] = w(u,v);

3

10 ∞ ∞

0 8 ∞

∞

14 10

3

6 4
5

2

9

15

8
u	

3/28/14	

34	

Prim’s Algorithm	

MST-Prim(G, w, r)
 Q = V[G];
 for each u ∈ Q
 key[u] = ∞;
 key[r] = 0;
 p[r] = NULL;
 while (Q not empty)
 u = ExtractMin(Q);
 for each v ∈ Adj[u]
 if (v ∈ Q and w(u,v) < key[v])
 p[v] = u;
 key[v] = w(u,v);

3

10 2 ∞

0 8 ∞

∞

14 10

3

6 4
5

2

9

15

8

Prim’s Algorithm	

MST-Prim(G, w, r)
 Q = V[G];
 for each u ∈ Q
 key[u] = ∞;
 key[r] = 0;
 p[r] = NULL;
 while (Q not empty)
 u = ExtractMin(Q);
 for each v ∈ Adj[u]
 if (v ∈ Q and w(u,v) < key[v])
 p[v] = u;
 key[v] = w(u,v);

3

10 2 ∞

0 8 15

∞

14 10

3

6 4
5

2

9

15

8

3/28/14	

35	

Prim’s Algorithm	

MST-Prim(G, w, r)
 Q = V[G];
 for each u ∈ Q
 key[u] = ∞;
 key[r] = 0;
 p[r] = NULL;
 while (Q not empty)
 u = ExtractMin(Q);
 for each v ∈ Adj[u]
 if (v ∈ Q and w(u,v) < key[v])
 p[v] = u;
 key[v] = w(u,v);

3

10 2 9

0 8 15

∞

14 10

3

6 4
5

2

9

15

8

Prim’s Algorithm	

MST-Prim(G, w, r)
 Q = V[G];
 for each u ∈ Q
 key[u] = ∞;
 key[r] = 0;
 p[r] = NULL;
 while (Q not empty)
 u = ExtractMin(Q);
 for each v ∈ Adj[u]
 if (v ∈ Q and w(u,v) < key[v])
 p[v] = u;
 key[v] = w(u,v);

3

10 2 9

0 8 15

4

14 10

3

6 4
5

2

9

15

8

3/28/14	

36	

Prim’s Algorithm	

MST-Prim(G, w, r)
 Q = V[G];
 for each u ∈ Q
 key[u] = ∞;
 key[r] = 0;
 p[r] = NULL;
 while (Q not empty)
 u = ExtractMin(Q);
 for each v ∈ Adj[u]
 if (v ∈ Q and w(u,v) < key[v])
 p[v] = u;
 key[v] = w(u,v);

3

5 2 9

0 8 15

4

14 10

3

6 4
5

2

9

15

8

Prim’s Algorithm	

MST-Prim(G, w, r)
 Q = V[G];
 for each u ∈ Q
 key[u] = ∞;
 key[r] = 0;
 p[r] = NULL;
 while (Q not empty)
 u = ExtractMin(Q);
 for each v ∈ Adj[u]
 if (v ∈ Q and w(u,v) < key[v])
 p[v] = u;
 key[v] = w(u,v);

3

5 2 9

0 8 15

4

14 10

3

6 4
5

2

9

15

8

3/28/14	

37	

Prim’s Algorithm	

MST-Prim(G, w, r)
 Q = V[G];
 for each u ∈ Q
 key[u] = ∞;
 key[r] = 0;
 p[r] = NULL;
 while (Q not empty)
 u = ExtractMin(Q);
 for each v ∈ Adj[u]
 if (v ∈ Q and w(u,v) < key[v])
 p[v] = u;
 key[v] = w(u,v);

3

5 2 9

0 8 15

4

14 10

3

6 4
5

2

9

15

8

Prim’s Algorithm	

MST-Prim(G, w, r)
 Q = V[G];
 for each u ∈ Q
 key[u] = ∞;
 key[r] = 0;
 p[r] = NULL;
 while (Q not empty)
 u = ExtractMin(Q);
 for each v ∈ Adj[u]
 if (v ∈ Q and w(u,v) < key[v])
 p[v] = u;
 key[v] = w(u,v);

3

5 2 9

0 8 15

4

14 10

3

6 4
5

2

9

15

8

3/28/14	

38	

Review: Prim’s Algorithm	

MST-Prim(G, w, r)
 Q = V[G];
 for each u ∈ Q
 key[u] = ∞;
 key[r] = 0;
 p[r] = NULL;
 while (Q not empty)
 u = ExtractMin(Q);
 for each v ∈ Adj[u]
 if (v ∈ Q and w(u,v) < key[v])
 p[v] = u;
 DecreaseKey(v, w(u,v));

Review: Prim’s Algorithm	

MST-Prim(G, w, r)
 Q = V[G];
 for each u ∈ Q
 key[u] = ∞;
 key[r] = 0;
 p[r] = NULL;
 while (Q not empty)
 u = ExtractMin(Q);
 for each v ∈ Adj[u]
 if (v ∈ Q and w(u,v) < key[v])
 p[v] = u;
 DecreaseKey(v, w(u,v));

How often is ExtractMin() called?
How often is DecreaseKey() called?

ExtractMin total number of calls O(V log V) 	

DecreaseKey total number of calls O(E log V) 	

3/28/14	

39	

Review: Prim’s Algorithm	

MST-Prim(G, w, r)
 Q = V[G];
 for each u ∈ Q
 key[u] = ∞;
 key[r] = 0;
 p[r] = NULL;
 while (Q not empty)
 u = ExtractMin(Q);
 for each v ∈ Adj[u]
 if (v ∈ Q and w(u,v) < key[v])
 p[v] = u;
 key[v] = w(u,v);

What will be the running time?
A: Depends on queue
binary heap: O(E lg V)
Fibonacci heap: O(V lg V + E)

ExtractMin total number of calls O(V log V) 	

DecreaseKey total number of calls O(E log V) 	

Total number of calls O(V logV +E logV) = O(E log V)	

Think why we can combine things in the expression above	

Minimum Weight Spanning Tree
Kruskal’s Algorithm	

Kruskal()
{
 T = ∅;
 for each v ∈ V
 MakeSet(v);
 sort E by increasing edge weight w
 for each (u,v) ∈ E (in sorted order)
 if FindSet(u) ≠ FindSet(v)
 T = T U {{u,v}};
 Union(FindSet(u), FindSet(v));
}

3/28/14	

40	

Disjoint-Set Union Problem	

•  Want a data structure to support disjoint sets 	

Collection of disjoint sets S = {Si}, Si ∩ Sj = ∅	

•  Need to support following operations:	

MakeSet(x): S = S U {{x}}	

Union(Si, Sj): S = S - {Si, Sj} U {Si U Sj}	

FindSet(X): return Si ∈ S such that x ∈ Si	

•  Before discussing implementation details, we look at
example application: MSTs	

Kruskal’s Algorithm	

Kruskal()
{
 T = ∅;
 for each v ∈ V
 MakeSet(v);
 sort E by increasing edge weight w
 for each (u,v) ∈ E (in sorted order)
 if FindSet(u) ≠ FindSet(v)
 T = T U {{u,v}};
 Union(FindSet(u), FindSet(v));
}

2 19

9

1

5

13

17
25

14
8

21

Run the algorithm:

3/28/14	

41	

Kruskal’s Algorithm	

Kruskal()
{
 T = ∅;
 for each v ∈ V
 MakeSet(v);
 sort E by increasing edge weight w
 for each (u,v) ∈ E (in sorted order)
 if FindSet(u) ≠ FindSet(v)
 T = T U {{u,v}};
 Union(FindSet(u), FindSet(v));
}

2 19

9

1

5

13

17
25

14
8

21

Run the algorithm:

Kruskal’s Algorithm	

Kruskal()
{
 T = ∅;
 for each v ∈ V
 MakeSet(v);
 sort E by increasing edge weight w
 for each (u,v) ∈ E (in sorted order)
 if FindSet(u) ≠ FindSet(v)
 T = T U {{u,v}};
 Union(FindSet(u), FindSet(v));
}

2 19

9

1

5

13

17
25

14
8

21

Run the algorithm:

3/28/14	

42	

Kruskal’s Algorithm	

Kruskal()
{
 T = ∅;
 for each v ∈ V
 MakeSet(v);
 sort E by increasing edge weight w
 for each (u,v) ∈ E (in sorted order)
 if FindSet(u) ≠ FindSet(v)
 T = T U {{u,v}};
 Union(FindSet(u), FindSet(v));
}

2 19

9

1?

5

13

17
25

14
8

21

Run the algorithm:

Kruskal’s Algorithm	

Kruskal()
{
 T = ∅;
 for each v ∈ V
 MakeSet(v);
 sort E by increasing edge weight w
 for each (u,v) ∈ E (in sorted order)
 if FindSet(u) ≠ FindSet(v)
 T = T U {{u,v}};
 Union(FindSet(u), FindSet(v));
}

2 19

9

1

5

13

17
25

14
8

21

Run the algorithm:

3/28/14	

43	

Kruskal’s Algorithm	

Kruskal()
{
 T = ∅;
 for each v ∈ V
 MakeSet(v);
 sort E by increasing edge weight w
 for each (u,v) ∈ E (in sorted order)
 if FindSet(u) ≠ FindSet(v)
 T = T U {{u,v}};
 Union(FindSet(u), FindSet(v));
}

2? 19

9

1

5

13

17
25

14
8

21

Run the algorithm:

Kruskal’s Algorithm	

Kruskal()
{
 T = ∅;
 for each v ∈ V
 MakeSet(v);
 sort E by increasing edge weight w
 for each (u,v) ∈ E (in sorted order)
 if FindSet(u) ≠ FindSet(v)
 T = T U {{u,v}};
 Union(FindSet(u), FindSet(v));
}

2 19

9

1

5

13

17
25

14
8

21

Run the algorithm:

3/28/14	

44	

Kruskal’s Algorithm	

Kruskal()
{
 T = ∅;
 for each v ∈ V
 MakeSet(v);
 sort E by increasing edge weight w
 for each (u,v) ∈ E (in sorted order)
 if FindSet(u) ≠ FindSet(v)
 T = T U {{u,v}};
 Union(FindSet(u), FindSet(v));
}

2 19

9

1

5?

13

17
25

14
8

21

Run the algorithm:

Kruskal’s Algorithm	

Kruskal()
{
 T = ∅;
 for each v ∈ V
 MakeSet(v);
 sort E by increasing edge weight w
 for each (u,v) ∈ E (in sorted order)
 if FindSet(u) ≠ FindSet(v)
 T = T U {{u,v}};
 Union(FindSet(u), FindSet(v));
}

2 19

9

1

5

13

17
25

14
8

21

Run the algorithm:

3/28/14	

45	

Kruskal’s Algorithm	

Kruskal()
{
 T = ∅;
 for each v ∈ V
 MakeSet(v);
 sort E by increasing edge weight w
 for each (u,v) ∈ E (in sorted order)
 if FindSet(u) ≠ FindSet(v)
 T = T U {{u,v}};
 Union(FindSet(u), FindSet(v));
}

2 19

9

1

5

13

17
25

14
8?

21

Run the algorithm:

Kruskal’s Algorithm	

Kruskal()
{
 T = ∅;
 for each v ∈ V
 MakeSet(v);
 sort E by increasing edge weight w
 for each (u,v) ∈ E (in sorted order)
 if FindSet(u) ≠ FindSet(v)
 T = T U {{u,v}};
 Union(FindSet(u), FindSet(v));
}

2 19

9

1

5

13

17
25

14
8

21

Run the algorithm:

3/28/14	

46	

Kruskal’s Algorithm	

Kruskal()
{
 T = ∅;
 for each v ∈ V
 MakeSet(v);
 sort E by increasing edge weight w
 for each (u,v) ∈ E (in sorted order)
 if FindSet(u) ≠ FindSet(v)
 T = T U {{u,v}};
 Union(FindSet(u), FindSet(v));
}

2 19

9?

1

5

13

17
25

14
8

21

Run the algorithm:

Kruskal’s Algorithm	

Kruskal()
{
 T = ∅;
 for each v ∈ V
 MakeSet(v);
 sort E by increasing edge weight w
 for each (u,v) ∈ E (in sorted order)
 if FindSet(u) ≠ FindSet(v)
 T = T U {{u,v}};
 Union(FindSet(u), FindSet(v));
}

2 19

9

1

5

13

17
25

14
8

21

Run the algorithm:

3/28/14	

47	

Kruskal’s Algorithm	

Kruskal()
{
 T = ∅;
 for each v ∈ V
 MakeSet(v);
 sort E by increasing edge weight w
 for each (u,v) ∈ E (in sorted order)
 if FindSet(u) ≠ FindSet(v)
 T = T U {{u,v}};
 Union(FindSet(u), FindSet(v));
}

2 19

9

1

5

13?

17
25

14
8

21

Run the algorithm:

Kruskal’s Algorithm	

Kruskal()
{
 T = ∅;
 for each v ∈ V
 MakeSet(v);
 sort E by increasing edge weight w
 for each (u,v) ∈ E (in sorted order)
 if FindSet(u) ≠ FindSet(v)
 T = T U {{u,v}};
 Union(FindSet(u), FindSet(v));
}

2 19

9

1

5

13

17
25

14
8

21

Run the algorithm:

3/28/14	

48	

Kruskal’s Algorithm	

Kruskal()
{
 T = ∅;
 for each v ∈ V
 MakeSet(v);
 sort E by increasing edge weight w
 for each (u,v) ∈ E (in sorted order)
 if FindSet(u) ≠ FindSet(v)
 T = T U {{u,v}};
 Union(FindSet(u), FindSet(v));
}

2 19

9

1

5

13

17
25

14?
8

21

Run the algorithm:

Kruskal’s Algorithm	

Kruskal()
{
 T = ∅;
 for each v ∈ V
 MakeSet(v);
 sort E by increasing edge weight w
 for each (u,v) ∈ E (in sorted order)
 if FindSet(u) ≠ FindSet(v)
 T = T U {{u,v}};
 Union(FindSet(u), FindSet(v));
}

2 19

9

1

5

13

17
25

14
8

21

Run the algorithm:

3/28/14	

49	

Kruskal’s Algorithm	

Kruskal()
{
 T = ∅;
 for each v ∈ V
 MakeSet(v);
 sort E by increasing edge weight w
 for each (u,v) ∈ E (in sorted order)
 if FindSet(u) ≠ FindSet(v)
 T = T U {{u,v}};
 Union(FindSet(u), FindSet(v));
}

2 19

9

1

5

13

17?
25

14
8

21

Run the algorithm:

Kruskal’s Algorithm	

Kruskal()
{
 T = ∅;
 for each v ∈ V
 MakeSet(v);
 sort E by increasing edge weight w
 for each (u,v) ∈ E (in sorted order)
 if FindSet(u) ≠ FindSet(v)
 T = T U {{u,v}};
 Union(FindSet(u), FindSet(v));
}

2 19?

9

1

5

13

17
25

14
8

21

Run the algorithm:

3/28/14	

50	

Kruskal’s Algorithm	

Kruskal()
{
 T = ∅;
 for each v ∈ V
 MakeSet(v);
 sort E by increasing edge weight w
 for each (u,v) ∈ E (in sorted order)
 if FindSet(u) ≠ FindSet(v)
 T = T U {{u,v}};
 Union(FindSet(u), FindSet(v));
}

2 19

9

1

5

13

17
25

14
8

21?

Run the algorithm:

Kruskal’s Algorithm	

Kruskal()
{
 T = ∅;
 for each v ∈ V
 MakeSet(v);
 sort E by increasing edge weight w
 for each (u,v) ∈ E (in sorted order)
 if FindSet(u) ≠ FindSet(v)
 T = T U {{u,v}};
 Union(FindSet(u), FindSet(v));
}

2 19

9

1

5

13

17
25?

14
8

21

Run the algorithm:

3/28/14	

51	

Kruskal’s Algorithm	

Kruskal()
{
 T = ∅;
 for each v ∈ V
 MakeSet(v);
 sort E by increasing edge weight w
 for each (u,v) ∈ E (in sorted order)
 if FindSet(u) ≠ FindSet(v)
 T = T U {{u,v}};
 Union(FindSet(u), FindSet(v));
}

2 19

9

1

5

13

17
25

14
8

21

Run the algorithm:

Kruskal’s Algorithm	

Kruskal()
{
 T = ∅;
 for each v ∈ V
 MakeSet(v);
 sort E by increasing edge weight w
 for each (u,v) ∈ E (in sorted order)
 if FindSet(u) ≠ FindSet(v)
 T = T U {{u,v}};
 Union(FindSet(u), FindSet(v));
}

2 19

9

1

5

13

17
25

14
8

21

Run the algorithm:

3/28/14	

52	

Correctness Of Kruskal’s
Algorithm	

•  Sketch of a proof that this algorithm produces an MST for T:	

• Assume algorithm is wrong: result is not an MST	

• Then algorithm adds a wrong edge at some point	

•  If it adds a wrong edge, there must be a lower weight edge

(cut and paste argument)	

• But algorithm chooses lowest weight edge at each step ->

Contradiction	

•  Again, important to be comfortable with cut and paste

arguments	

Kruskal’s Algorithm	

Kruskal()
{
 T = ∅;
 for each v ∈ V
 MakeSet(v);
 sort E by increasing edge weight w
 for each (u,v) ∈ E (in sorted order)
 if FindSet(u) ≠ FindSet(v)

 T = T U {{u,v}};

 Union(FindSet(u), FindSet(v));
}

What will affect the running time?

3/28/14	

53	

Kruskal’s Algorithm	

Kruskal()
{
 T = ∅;
 for each v ∈ V
 MakeSet(v);
 sort E by increasing edge weight w
 for each (u,v) ∈ E (in sorted order)
 if FindSet(u) ≠ FindSet(v)

 T = T U {{u,v}};

 Union(FindSet(u), FindSet(v));
}

What will affect the running time?
 1 Sort

O(V) MakeSet() calls
O(E) FindSet() calls

O(V) Union() calls
(Exactly how many Union()s?)

Kruskal’s Algorithm: Running
Time	

•  To summarize: 	

Sort edges: O(E lg E) 	

O(V) MakeSet()’s	

O(E) FindSet()’s and Union()’s 	

•  Upshot: 	

Best disjoint-set union algorithm makes above 	

3 operation stake O((V+E)⋅α(V)), α almost constant	

(slowly growing function of V)	

Since E >= V-1 then we have O(E⋅α(V))	

Also since α(V) = O(lg V) = O(lg E)	

	

Overall thus O(E lg E), almost linear w/o sorting	

3/28/14	

54	

Disjoint Sets (ch 21)	

•  In Kruskal’s alg., Connected Components 	

•  Need to do set membership and set union efficiently	

•  Typical operations on disjoint sets 	

 member(a,s)
 insert(a,s)
 delete(a,s)
 union(s1, s2, s3)
 find(a)
 make-set(x)	

•  Analysis in terms on n number of make-set operations	

•  And m total number of make-set, find, union (more details 	

Later) 	

Shortest Path Algorithms	

3/28/14	

55	

Single-Source Shortest Path	

•  Problem: given a weighted directed graph G, find the

minimum-weight path from a given source vertex s to
another vertex v	

•  “Shortest-path” = minimum weight 	

•  Weight of path is sum of edges	

•  E.g., a road map: what is the shortest path from 	

 Faixfax to Washington DC?	

Shortest Path Properties	

•  Again, we have optimal substructure: the shortest path

consists of shortest subpaths:	

•  Proof: suppose some subpath is not a shortest path	

 There must then exist a shorter subpath 	

 Could substitute the shorter subpath for a shorter path	

 but then overall path is not shortest path.

Contradiction	

•  Optimal substructure property – hallmark of dynamic

programming	

3/28/14	

56	

Shortest Path Properties	

•  In graphs with negative weight cycles, some shortest paths
will not exist (Why?):	

< 0

Relaxation	

•  A key technique in shortest path algorithms is relaxation	

Idea: for all v, maintain upper bound d[v] on δ(s,v)	

Relax(u,v,w) {
 if (d[v] > d[u]+w) then d[v]=d[u]+w;
}

9 5
2

7 5
2

Relax

6 5
2

6 5
2

Relax

3/28/14	

57	

Shortest Path Properties	

•  Define δ(u,v) to be the weight of the shortest path from

u to v	

•  Shortest paths satisfy the triangle inequality: δ(u,v) ≤
δ(u,x) + δ(x,v)	

•  “Proof”:	

x

u v

This path is no longer than any other path

Dijkstra’s Algorithm	

•  If no negative edge weights, we can beat Bellman-Ford	

•  Similar to breadth-first search	

•  Grow a tree gradually, advancing from vertices taken

from a queue	

•  Also similar to Prim’s algorithm for MST	

Use a priority queue keyed on d[v]	

3/28/14	

58	

Dijkstra’s Algorithm	

Dijkstra(G)
 for each v ∈ V
 d[v] = ∞;
 d[s] = 0; S = ∅; Q = V;
 while (Q ≠ ∅)
 u = ExtractMin(Q);
 S = S U {u};
 for each v ∈ u->Adj[]
 if (d[v] > d[u]+w(u,v))
 d[v] = d[u]+w(u,v);

Relaxation
Step

Note: this
is really a
call to Q->DecreaseKey()

B

C

D A

10

4 3

2

1 5

Ex: run the algorithm

Dijkstra’s Algorithm	

Dijkstra(G)
 for each v ∈ V
 d[v] = ∞;
 d[s] = 0; S = ∅; Q = V;
 while (Q ≠ ∅)
 u = ExtractMin(Q);
 S = S U {u};
 for each v ∈ u->Adj[]
 if (d[v] > d[u]+w(u,v))
 d[v] = d[u]+w(u,v);

How many times is
ExtractMin() called?

How many times is
DecraseKey() called?

What will be the total running time?

3/28/14	

59	

Dijkstra’s Algorithm	

Dijkstra(G)
 for each v ∈ V
 d[v] = ∞;
 d[s] = 0; S = ∅; Q = V;
 while (Q ≠ ∅)
 u = ExtractMin(Q);
 S = S U {u};
 for each v ∈ u->Adj[]
 if (d[v] > d[u]+w(u,v))
 d[v] = d[u]+w(u,v);

How many times is
ExtractMin() called?

How many times is
DecraseKey() called?

A: O(E lg V) using binary heap for Q
Can acheive O(V lg V + E) with Fibonacci heaps

Dijkstra’s Algorithm	

Dijkstra(G)
 for each v ∈ V
 d[v] = ∞;
 d[s] = 0; S = ∅; Q = V;
 while (Q ≠ ∅)
 u = ExtractMin(Q);
 S = S U{u};
 for each v ∈ u->Adj[]
 if (d[v] > d[u]+w(u,v))
 d[v] = d[u]+w(u,v);

Correctness: we must show that when u is
removed from Q, it has already converged

