
4/10/14	

1	

CS583 Lecture 10	

 Jana Kosecka	

 	

 Graph Algorithms	

 Shortest Path Algorithms 	

 Dynamic Programming 	

 	

 	

Many slides here are based on D. Luebke slides	

Previously	

•  Depth first search 	

•  DAG’s 	

 - topological sort	

 - strongly connected components	

•  MST 	

 - Prim’s	

 - Kruskal’s	

•  Shortest path with non-negative weights	

4/10/14	

2	

Shortest Path Algorithms	

Single-Source Shortest Path	

•  Problem: given a weighted directed graph G, find the
minimum-weight path from a given source vertex s to
another vertex v	

•  “Shortest-path” = minimum weight 	

•  Weight of path is sum of edges	

•  E.g., a road map: what is the shortest path from 	

 Faixfax to Washington DC?	

4/10/14	

3	

Shortest Path Properties	

•  Again, we have optimal substructure: the shortest path
consists of shortest subpaths:	

•  Proof: suppose some subpath is not a shortest path	

 There must then exist a shorter subpath 	

 Could substitute the shorter subpath for a shorter path	

 but then overall path is not shortest path. Contradiction	

•  Optimal substructure property – hallmark of dynamic

programming	

Shortest Path Properties	

•  In graphs with negative weight cycles, some shortest paths
will not exist (Why?):	

< 0

4/10/14	

4	

Relaxation	

•  A key technique in shortest path algorithms is relaxation	

Idea: for all v, maintain upper bound d[v] on δ(s,v)	

Relax(u,v,w) {
 if (d[v] > d[u]+w) then d[v]=d[u]+w;
}
•  Relaxing an edge – checking if it can improve
•  The cost of the path

9 5
2

7 5
2

Relax

6 5
2

6 5
2

Relax

Shortest Path Properties	

•  Define δ(u,v) to be the weight of the shortest path from u to v	

•  Shortest paths satisfy the triangle inequality: δ(u,v) ≤ δ(u,x)

+ δ(x,v)	

•  “Proof”:	

x

u v

This path is no longer than any other path

4/10/14	

5	

Shortest Path Properties	

•  Triangle inequality	

• Upper bound property	

• No path property	

• Convergence Property 	

•  Path relaxation property	

•  Predecessor subgraph property	

Dijkstra’s Algorithm	

•  If no negative edge weights, we can beat Bellman-Ford	

•  Similar to breadth-first search	

•  Grow a tree gradually, advancing from vertices taken from a

queue	

•  Also similar to Prim’s algorithm for MST	

Use a priority queue keyed on d[v]	

4/10/14	

6	

Bellman Ford Algorithm	

•  Single source shortest path algorithm	

•  Weights can be negative	

•  Algorithm returns NIL if there is negative weight cycle	

•  Otherwise returns produces shortest paths from source 	

•  to all other vertices	

Bellman-Ford Algorithm	

BellmanFord()
 for each v ∈ V
 d[v] = ∞;
 d[s] = 0;
 for i=1 to |V|-1
 for each edge (u,v) ∈ E
 Relax(u,v, w(u,v));
 for each edge (u,v) ∈ E
 if (d[v] > d[u] + w(u,v))
 return “no solution”;

Relax(u,v,w): if (d[v] > d[u]+w) then d[v]=d[u]+w

Initialize d[], which
will converge to

shortest-path value δ

Relaxation:
Make |V|-1 passes,
relaxing each edge

Test for solution
Under what condition
do we get a solution?

4/10/14	

7	

Bellman-Ford Algorithm	

BellmanFord()
 for each v ∈ V
 d[v] = ∞;
 d[s] = 0;
 for i=1 to |V|-1
 for each edge (u,v) ∈ E
 Relax(u,v, w(u,v));
 for each edge (u,v) ∈ E
 if (d[v] > d[u] + w(u,v))
 return “no solution”;

Relax(u,v,w): if (d[v] > d[u]+w) then d[v]=d[u]+w

What will be the
running time?

Bellman-Ford Algorithm	

BellmanFord()
 for each v ∈ V
 d[v] = ∞;
 d[s] = 0;
 for i=1 to |V|-1
 for each edge (u,v) ∈ E
 Relax(u,v, w(u,v));
 for each edge (u,v) ∈ E
 if (d[v] > d[u] + w(u,v))
 return “no solution”;

Relax(u,v,w): if (d[v] > d[u]+w) then d[v]=d[u]+w

What will be the
running time?

A: O(VE)

4/10/14	

8	

Bellman-Ford Algorithm	

BellmanFord()
 for each v ∈ V
 d[v] = ∞;
 d[s] = 0;
 for i=1 to |V|-1
 for each edge (u,v) ∈ E
 Relax(u,v, w(u,v));
 for each edge (u,v) ∈ E
 if (d[v] > d[u] + w(u,v))
 return “no solution”;

Relax(u,v,w): if (d[v] > d[u]+w) then d[v]=d[u]+w

B

E

D C

A

-1 2

2

1 -3

5

3

4

Ex: work on board

s

Bellman-Ford	

•  Running time O(VE)	

•  Not so good for large dense graphs	

•  Still very practical 	

4/10/14	

9	

Bellman-Ford	

•  Prove: Algorithm after |V|-1 passes of the for loop, all d
values (shortest path values) are correct (for all vertices)	

•  Consider shortest path from s to v, since the path is simple	

 (no loops) there are at most |V|-1 edges	

•  s → v1 → v2 → v3 → v4 → v	

	

Initially, d[s] = 0 is correct, and doesn’t change (Why?)	

After 1 pass through edges, d[v1] is correct (Why?) and	

doesn’t change	

After 2 passes, d[v2] is correct and doesn’t change	

…	

Terminates in |V| - 1 passes: (Why?) 	

What if it doesn’t?	

	

Bellman-Ford	

• Note that order in which edges are processed affects

how quickly it converges	

• Correctness: show d[v] = δ(s,v) for all vertices or

returns FALSE (negative weight cycle)	

	

By previous lemma at the termination we have 	

d[v] = δ(s,v)	

 <= δ(s,u) + w(u,v) by triangle inequality	

 = d[u] + w(u,v)	

And none of the test in the last loop will return ”no solution”, i.e.

TRUE.	

	

If there is a negative weight cycle – prove by contradiction that 	

Bellman Ford algorithm will return FALSE (see book)	

���
	

if (d[v] > d[u] + w(u,v))
 return “no solution”;

4/10/14	

10	

DAG Shortest Paths	

•  Problem: finding shortest paths in DAG	

Bellman-Ford takes O(VE) time. 	

How can we do better?	

	

•  Idea: use topological sort	

•  If were lucky and process vertices on each shortest path

from left to right, would be done in one pass	

• Every path in a DAG is subsequence of topologically

sorted vertex order, so processing vertices in that order, we
will do each path in forward order (will never relax edges
out of vertex before doing all edges into vertex). 	

• Thus: just one pass. What will be the running time?	

Review: Dijkstra’s Algorithm	

Dijkstra(G)
 for each v ∈ V
 d[v] = ∞;
 d[s] = 0; S = ∅; Q = V;
 while (Q ≠ ∅)
 u = ExtractMin(Q);
 S = S U {u};
 for each v ∈ u->Adj[]
 if (d[v] > d[u]+w(u,v))
 d[v] = d[u]+w(u,v);

Relaxation
Step

Note: this
is really a
call to Q->DecreaseKey()

B

C

D A

10

4 3

2

1 5

Ex: run the algorithm

4/10/14	

11	

Correctness Of Dijkstra's
Algorithm	

s

x
y

u
p2

p2

1.  See the description of the proof in the book	

Show that Dijkstra’s algorithm will terminate with 	

The cost of each node to be the cost of shortest path.	

Idea: show that when the vertex is added to the set the 	

cost of that vertex is the length of the shortest path	

Reminder: We always add the vertex with minimal cost	

Correctness Of Dijkstra's
Algorithm	

•  Want to show that when vertex is added to set S, d[u] = δ(s,u)	

•  and throughout note that d[u] ≥ δ(s,u) ∀u 	

•  Proof by contradiction d[u] is not equal to δ(s,u)	

•  Before u gets added, some other vertex y on that shortest path needs	

 to be added; claim that d[y] = δ(s,y) when added. 	

•  Know that d[x] = δ(s,x) and δ(s,y) <= δ(s,u) and d[y] = δ(s,y), so d[y] <= d[u] 	

•  But both y and u are outside of S when is chosen so d[u] <= d[y] 	

•  Hence d[y] = d[u] = δ(s,y) = δ(s,y)	

	

s

x
y

u
p2

p2

4/10/14	

12	

Previously 	

•  Shortest path algorithms: given single source compute 	

 shortest path to all other vertices. 	

•  Dijkstra O(E + V lg V)	

•  Bellman-Ford O(VE)	

•  DAG O(V+E)	

•  All pairs shortest path: compute shortest path between each

pair of nodes	

•  Option 1. Run single source shortest path from each node

using previous algorithms	

•  Run Bellman-Ford once for each vertex O(V2E) 	

•  Can we do better ? See All-pairs-shortest path	

	

 	

Dynamic Programming���
���

Chap 15.	

4/10/14	

13	

Dynamic Programming	

•  Another strategy for designing algorithms is dynamic
programming	

•  A metatechnique, not an algorithm ���

(like divide & conquer)	

•  The word “programming” is historical and predates computer

programming	

•  Use when problem breaks down into recurring small

subproblems	

Dynamic Programming History	

•  Bellman. Pioneered the systematic study of dynamic
programming in the 1950s.	

•  Etymology.	

Dynamic programming = planning over time.	

Secretary of Defense was hostile to mathematical research.	

Bellman sought an impressive name to avoid confrontation.	

"it's impossible to use dynamic in a pejorative sense"	

"something not even a Congressman could object to"	

Reference: Bellman, R. E. Eye of the Hurricane, An Autobiography.	

4/10/14	

14	

Dynamic Programming
Applications	

• Areas. 	

Bioinformatics.	

Control theory.	

Information theory.	

Operations research.	

Computer science: theory, graphics, AI, systems, ….	

•  Some famous dynamic programming algorithms. 	

Viterbi for hidden Markov models.	

Unix diff for comparing two files.	

Smith-Waterman for sequence alignment.	

Bellman-Ford for shortest path routing in networks.	

Cocke-Kasami-Younger for parsing context free grammars.	

	

Dynamic Programming	

•  More Examples	

•  Matrix chain multiplication 	

•  Longest common subsequence	

•  Optimal triangulation 	

•  All-pairs-shortest path	

4/10/14	

15	

Dynamic Programming	

•  Problem solving methodology (as divide and conquer)	

•  Idea: divide into sub-problems, solve sub-problems	

•  Applicable to optimization problems 	

•  Ingredients	

1. Characterize the optimal solution	

2. Recursively define a value of the optimal solution	

3. Compute values of optimal solution bottom up	

4. Construct an optimal solution from computed inf. 	

Dynamic programming	

•  It is used, when the solution can be recursively

described in terms of solutions to sub-problems (optimal
substructure)
•  Algorithm finds solutions to sub-problems and stores

them in memory for later use
•  More efficient than “brute-force methods”, which solve

the same sub-problems over and over again	

4/10/14	

16	

Weighted Interval Scheduling	

Weighted Interval Scheduling	

• Weighted interval scheduling problem.	

Job j starts at sj, finishes at fj, and has weight or value vj . 	

Two jobs compatible if they don't overlap.	

Goal: find maximum weight subset of mutually compatible jobs.	

Time	
0	
 1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	

f	

g	

h	

e	

a	

b	

c	

d	

4/10/14	

17	

Unweighted Interval Scheduling
Review	

•  Observation. Greedy algorithm can fail spectacularly if
arbitrary weights are allowed.	

Time	
0	
 1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 1
0	

1
1	

b	

a	

weight = 999	

weight = 1	

Weighted Interval Scheduling	

Notation. Label jobs by finishing time: f1 ≤ f2 ≤ . . . ≤ fn .	

Def. p(j) = largest index i < j such that job i is compatible with
j. Ex: p(8) = 5, p(7) = 3, p(2) = 0.	

Time	

0	
 1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	

6	

7	

8	

4	

3	

1	

2	

5	

4/10/14	

18	

Dynamic Programming: Binary
Choice	

•  Notation. OPT(j) = value of optimal solution to the problem
consisting of job requests 1, 2, ..., j.	

Case 1: OPT selects job j.	

can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j - 1 }	

must include optimal solution to problem consisting of

remaining compatible jobs 1, 2, ..., p(j)	

Case 2: OPT does not select job j.	

must include optimal solution to problem consisting of
remaining compatible jobs 1, 2, ..., j-1	

	

€

OPT(j) =
0 if j = 0

max v j + OPT(p(j)), OPT(j −1){ } otherwise

$
%

optimal substructure	

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤
fn.

Compute p(1), p(2), …, p(n)

Compute-Opt(j) {
 if (j = 0)
 return 0
 else
 return max(vj + Compute-Opt(p(j)), Compute-
Opt(j-1))
}

Weighted Interval Scheduling:
Brute Force	

•  Brute force recursive implemenation	

4/10/14	

19	

Weighted Interval Scheduling:
Brute Force	

• Observation. Recursive algorithm fails spectacularly because
of redundant sub-problems ⇒ exponential algorithms. 	

• Ex. Number of recursive calls for family of "layered"
instances grows like Fibonacci sequence.	

3	

4	

5	

1	

2	

p(1) = 0, p(j) = j-2	

5	

4	
 3	

3	
 2	
 2	
 1	

2	
 1	

1	
 0	

1	
 0	
 1	
 0	

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn.
Compute p(1), p(2), …, p(n)

for j = 1 to n
 M[j] = empty
M[j] = 0

M-Compute-Opt(j) {
 if (M[j] is empty)
 M[j] = max(wj + M-Compute-Opt(p(j)), M-Compute-
Opt(j-1))
 return M[j]
}

global array

Weighted Interval Scheduling:
Memoization	

• Memoization. Store results of each sub-problem in a cache;
lookup as needed.	

4/10/14	

20	

Weighted Interval Scheduling:
Running Time	

• Claim. Memoized version of algorithm takes O(n log n) time.	

Sort by finish time: O(n log n).	

Computing p(⋅) : O(n) after sorting by start time.	

M-Compute-Opt(j): each invocation takes O(1) time and either	

(i) returns an existing value M[j]
(ii) fills in one new entry M[j] and makes two recursive

calls	

Progress measure Φ = # nonempty entries of M[].

initially Φ = 0, throughout Φ ≤ n. 	

(ii) increases Φ by 1 ⇒ at most 2n recursive calls.	

Overall running time of M-Compute-Opt(n) is O(n). ▪	

	

• Remark. O(n) if jobs are pre-sorted by start and finish times.	

Weighted Interval Scheduling:
Finding a Solution	

• Q. Dynamic programming algorithms computes optimal
value. What if we want the solution itself?	

• A. Do some post-processing.
	

	

	

	

	

	

	

	

	

	

	

	

Run M-Compute-Opt(n)
Run Find-Solution(n)

Find-Solution(j) {
 if (j = 0)
 output nothing
 else if (vj + M[p(j)] > M[j-1])
 print j
 Find-Solution(p(j))
 else
 Find-Solution(j-1)
}

4/10/14	

21	

Weighted Interval Scheduling:
Bottom-Up	

• Bottom-up dynamic programming. Unwind recursion.	

Input: n, s1,…,sn , f1,…,fn , v1,…,vn

Sort jobs by finish times so that f1 ≤ f2 ≤ ... ≤ fn.

Compute p(1), p(2), …, p(n)

Iterative-Compute-Opt {
 M[0] = 0
 for j = 1 to n
 M[j] = max(vj + M[p(j)], M[j-1])
}

Dynamic Programming Example: ���
Longest Common Subsequence	

•  Longest common subsequence (LCS) problem: 	

Given two sequences x[1..m] and y[1..n], find the longest

subsequence which occurs in both	

Ex: x = {A B C B D A B }, y = {B D C A B A}	

{B C} and {A A} are both subsequences of both	

What is the LCS?	

Brute-force algorithm: For every subsequence of x, check if

it’s a subsequence of y	

	

How many subsequences of x are there?	

What will be the running time of the brute-force alg?	

4/10/14	

22	

Longest Common Subsequence (LCS)	

•  Application: comparison of two DNA strings
•  Ex: X= {A B C B D A B }, Y= {B D C A B A}
•  Longest Common Subsequence:
•  X = A B C B D A B
•  Y = B D C A B A
•  Brute force algorithm would compare each subsequence of X

with the symbols in Y	

LCS Algorithm	

•  Brute-force algorithm: 2m subsequences of x to check against
n elements of y: O(n 2m)	

•  We can do better: for now, let’s only worry about the

problem of finding the length of LCS	

•  When finished we will see how to backtrack from this

solution back to the actual LCS	

•  Notice LCS problem has optimal substructure	

Subproblems: LCS of pairs of prefixes of x and y	

4/10/14	

23	

LCS Algorithm	

•  First we’ll find the length of LCS. Later we’ll modify the

algorithm to find LCS itself.
•  Define Xi, Yj to be the prefixes of X and Y of length i and j

respectively
•  Define c[i,j] to be the length of LCS of Xi and Yj
•  Then the length of LCS of X and Y will be c[m,n]	

⎩
⎨
⎧

−−

=+−−
=

otherwise]),1[],1,[max(
],[][if1]1,1[

],[
jicjic

jyixjic
jic

LCS recursive solution	

•  We start with i = j = 0 (empty substrings of x and y)
•  Since X0 and Y0 are empty strings, their LCS is always

empty (i.e. c[0,0] = 0)
•  LCS of empty string and any other string is empty, so for

every i and j: c[0, j] = c[i,0] = 0	

⎩
⎨
⎧

−−

=+−−
=

otherwise]),1[],1,[max(
],[][if1]1,1[

],[
jicjic

jyixjic
jic

4/10/14	

24	

LCS recursive solution	

•  When we calculate c[i,j], we consider two cases:
•  First case: x[i]=y[j]: one more symbol in strings X and Y

matches, so the length of LCS Xi and Yj equals to the length
of LCS of smaller strings Xi-1 and Yi-1 , plus 1

⎩
⎨
⎧

−−

=+−−
=

otherwise]),1[],1,[max(
],[][if1]1,1[

],[
jicjic

jyixjic
jic

LCS recursive solution	

•  Second case: x[i] != y[j]
•  As symbols don’t match, our solution is not improved, and

the length of LCS(Xi , Yj) is the same as before (i.e.
maximum of LCS(Xi, Yj-1) and LCS(Xi-1,Yj)

⎩
⎨
⎧

−−

=+−−
=

otherwise]),1[],1,[max(
],[][if1]1,1[

],[
jicjic

jyixjic
jic

Why not just take the length of LCS(Xi-1, Yj-1) ?	

4/10/14	

25	

LCS Length Algorithm	

LCS-Length(X, Y)
1. m = length(X) // get the # of symbols in X
2. n = length(Y) // get the # of symbols in Y
3. for i = 1 to m c[i,0] = 0 // special case: Y0
4. for j = 1 to n c[0,j] = 0 // special case: X0
5. for i = 1 to m // for all Xi
6. for j = 1 to n // for all Yj
7. if (Xi == Yj)
8. c[i,j] = c[i-1,j-1] + 1
9. else c[i,j] = max(c[i-1,j], c[i,j-1])
10. return c

LCS Example	

We’ll see how LCS algorithm works on the following example:
•  X = ABCB
•  Y = BDCAB

LCS(X, Y) = BCB	

X = A B C B	

Y = B D C A B	

What is the Longest Common Subsequence 	

of X and Y?	

4/10/14	

26	

LCS Example (0)	

j 0 1 2 3 4 5 	

0	

1	

2	

3	

4	

i	

Xi	

A	

B	

C	

B	

Yj	
 B	
B	
 A	
C	
D	

X = ABCB; m = |X| = 4	

Y = BDCAB; n = |Y| = 5	

Allocate array c[5,4] 	
	

ABCB	

BDCAB	

LCS Example (1)	

j 0 1 2 3 4 5 	

0	

1	

2	

3	

4	

i	

Xi	

A	

B	

C	

B	

Yj	
 B	
B	
 A	
C	
D	

0	

0	

0	
0	
0	
0	
0	

0	

0	

0	

	

for i = 1 to m 	
c[i,0] = 0 	
	

for j = 1 to n 	
c[0,j] = 0 	
	

ABCB	

BDCAB	

4/10/14	

27	

LCS Example (2)	

j 0 1 2 3 4 5 	

0	

1	

2	

3	

4	

i	

Xi	

A	

B	

C	

B	

Yj	
 B	
B	
 A	
C	
D	

0	

0	

0	
0	
0	
0	
0	

0	

0	

0	

 	
 	
if (Xi == Yj) 	
 	
	

 	
 	
 	
c[i,j] = c[i-1,j-1] + 1	

 	
 	
else c[i,j] = max(c[i-1,j], c[i,j-1])	

	

0	

ABCB	

BDCAB	

LCS Example (3)	

j 0 1 2 3 4 5 	

0	

1	

2	

3	

4	

i	

Xi	

A	

B	

C	

B	

Yj	
 B	
B	
 A	
C	
D	

0	

0	

0	
0	
0	
0	
0	

0	

0	

0	

 	
 	
if (Xi == Yj) 	
 	
	

 	
 	
 	
c[i,j] = c[i-1,j-1] + 1	

 	
 	
else c[i,j] = max(c[i-1,j], c[i,j-1])	

0	
 0	
 0	

ABCB	

BDCAB	

4/10/14	

28	

LCS Example (4)	

j 0 1 2 3 4 5 	

0	

1	

2	

3	

4	

i	

Xi	

A	

B	

C	

B	

Yj	
 B	
B	
 A	
C	
D	

0	

0	

0	
0	
0	
0	
0	

0	

0	

0	

 	
 	
if (Xi == Yj) 	
 	
	

 	
 	
 	
c[i,j] = c[i-1,j-1] + 1	

 	
 	
else c[i,j] = max(c[i-1,j], c[i,j-1])	

0	
 0	
 0	
 1	

ABCB	

BDCAB	

LCS Example (5)	

j 0 1 2 3 4 5 	

0	

1	

2	

3	

4	

i	

Xi	

A	

B	

C	

B	

Yj	
 B	
B	
 A	
C	
D	

0	

0	

0	
0	
0	
0	
0	

0	

0	

0	

 	
 	
if (Xi == Yj) 	
 	
	

 	
 	
 	
c[i,j] = c[i-1,j-1] + 1	

 	
 	
else c[i,j] = max(c[i-1,j], c[i,j-1])	

0	
0	
0	
 1	
 1	

ABCB	

BDCAB	

4/10/14	

29	

LCS Example (6)	

j 0 1 2 3 4 5 	

0	

1	

2	

3	

4	

i	

Xi	

A	

B	

C	

B	

Yj	
 B	
B	
 A	
C	
D	

0	

0	

0	
0	
0	
0	
0	

0	

0	

0	

 	
 	
if (Xi == Yj) 	
 	
	

 	
 	
 	
c[i,j] = c[i-1,j-1] + 1	

 	
 	
else c[i,j] = max(c[i-1,j], c[i,j-1])	

0	
 0	
 1	
0	
 1	

1	

ABCB	

BDCAB	

LCS Example (7)	

j 0 1 2 3 4 5 	

0	

1	

2	

3	

4	

i	

Xi	

A	

B	

C	

B	

Yj	
 B	
B	
 A	
C	
D	

0	

0	

0	
0	
0	
0	
0	

0	

0	

0	

 	
 	
if (Xi == Yj) 	
 	
	

 	
 	
 	
c[i,j] = c[i-1,j-1] + 1	

 	
 	
else c[i,j] = max(c[i-1,j], c[i,j-1])	

1	
0	
0	
0	
 1	

1	
 1	
 1	
1	

ABCB	

BDCAB	

4/10/14	

30	

LCS Example (8)	

j 0 1 2 3 4 5 	

0	

1	

2	

3	

4	

i	

Xi	

A	

B	

C	

B	

Yj	
 B	
B	
 A	
C	
D	

0	

0	

0	
0	
0	
0	
0	

0	

0	

0	

 	
 	
if (Xi == Yj) 	
 	
	

 	
 	
 	
c[i,j] = c[i-1,j-1] + 1	

 	
 	
else c[i,j] = max(c[i-1,j], c[i,j-1])	

1	
0	
0	
0	
 1	

1	
 1	
 1	
 1	
 2	

ABCB	

BDCAB	

LCS Example (10)	

j 0 1 2 3 4 5 	

0	

1	

2	

3	

4	

i	

Xi	

A	

B	

C	

B	

Yj	
 B	
B	
 A	
C	
D	

0	

0	

0	
0	
0	
0	
0	

0	

0	

0	

	
 	
if (Xi == Yj) 	
 	
	

	
 	
 	
c[i,j] = c[i-1,j-1] + 1	

	
 	
else c[i,j] = max(c[i-1,j], c[i,j-1])	

	

1	
0	
0	
0	
 1	

2	
1	
 1	
 1	
1	

1	
 1	

ABCB	

BDCAB	

4/10/14	

31	

LCS Example (11)	

j 0 1 2 3 4 5 	

0	

1	

2	

3	

4	

i	

Xi	

A	

B	

C	

B	

Yj	
 B	
B	
 A	
C	
D	

0	

0	

0	
0	
0	
0	
0	

0	

0	

0	

 	
 	
if (Xi == Yj) 	
 	
	

 	
 	
 	
c[i,j] = c[i-1,j-1] + 1	

 	
 	
else c[i,j] = max(c[i-1,j], c[i,j-1])	

1	
0	
0	
0	
 1	

1	
 2	
1	
 1	
1	

1	
 1	
 2	

ABCB	

BDCAB	

LCS Example (12)	

j 0 1 2 3 4 5 	

0	

1	

2	

3	

4	

i	

Xi	

A	

B	

C	

B	

Yj	
 B	
B	
 A	
C	
D	

0	

0	

0	
0	
0	
0	
0	

0	

0	

0	

	
 	
if (Xi == Yj) 	
 	
	

	
 	
 	
c[i,j] = c[i-1,j-1] + 1	

	
 	
else c[i,j] = max(c[i-1,j], c[i,j-1])	

1	
0	
0	
0	
 1	

1	
 2	
1	
 1	

1	
 1	
 2	

1	

2	
2	

ABCB	

BDCAB	

4/10/14	

32	

LCS Example (13)	

j 0 1 2 3 4 5 	

0	

1	

2	

3	

4	

i	

Xi	

A	

B	

C	

B	

Yj	
 B	
B	
 A	
C	
D	

0	

0	

0	
0	
0	
0	
0	

0	

0	

0	

 	
 	
if (Xi == Yj) 	
 	
	

 	
 	
 	
c[i,j] = c[i-1,j-1] + 1	

 	
 	
else c[i,j] = max(c[i-1,j], c[i,j-1])	

1	
0	
0	
0	
 1	

1	
 2	
1	
 1	

1	
 1	
 2	

1	

2	
2	

1	

ABCB	

BDCAB	

LCS Example (14)	

j 0 1 2 3 4 5 	

0	

1	

2	

3	

4	

i	

Xi	

A	

B	

C	

B	

Yj	
 B	
B	
 A	
C	
D	

0	

0	

0	
0	
0	
0	
0	

0	

0	

0	

	
 	
if (Xi == Yj) 	
 	
	

	
 	
 	
c[i,j] = c[i-1,j-1] + 1	

	
 	
else c[i,j] = max(c[i-1,j], c[i,j-1])	

1	
0	
0	
0	
 1	

1	
 2	
1	
 1	

1	
 1	
 2	

1	

2	
2	

1	
 1	
 2	
 2	

ABCB	

BDCAB	

4/10/14	

33	

LCS Example (15)	

j 0 1 2 3 4 5 	

0	

1	

2	

3	

4	

i	

Xi	

A	

B	

C	

B	

Yj	
 B	
B	
 A	
C	
D	

0	

0	

0	
0	
0	
0	
0	

0	

0	

0	

 	
 	
if (Xi == Yj) 	
 	
	

 	
 	
 	
c[i,j] = c[i-1,j-1] + 1	

 	
 	
else c[i,j] = max(c[i-1,j], c[i,j-1])	

1	
0	
0	
0	
 1	

1	
 2	
1	
 1	

1	
 1	
 2	

1	

2	
2	

1	
 1	
 2	
 2	

3	

ABCB	

BDCAB	

LCS Algorithm Running Time	

•  LCS algorithm calculates the values of each entry of the

array c[m,n]
•  So what is the running time?	

O(m*n)	

since each c[i,j] is calculated in
constant time, and there are m*n

elements in the array	

4/10/14	

34	

How to find actual LCS	

•  So far, we have just found the length of LCS, but not LCS

itself.
•  We want to modify this algorithm to make it output Longest

Common Subsequence of X and Y
Each c[i,j] depends on c[i-1,j] and c[i,j-1]
or c[i-1, j-1]
For each c[i,j] we can say how it was acquired:

2	

2	
 3	

2	
 For example, here 	

c[i,j] = c[i-1,j-1] +1 = 2+1=3	

How to find actual LCS - continued	

•  Remember that

⎩
⎨
⎧

−−

=+−−
=

otherwise]),1[],1,[max(
],[][if1]1,1[

],[
jicjic

jyixjic
jic

  So we can start from c[m,n] and go backwards	

  Whenever c[i,j] = c[i-1, j-1]+1, remember x[i] 	

  (because x[i] is a part of LCS)	

  When i=0 or j=0 (i.e. we reached the beginning), output

remembered letters in reverse order	

4/10/14	

35	

Finding LCS	

j 0 1 2 3 4 5 	

0	

1	

2	

3	

4	

i	

Xi	

A	

B	

C	

Yj	
 B	
B	
 A	
C	
D	

0	

0	

0	
0	
0	
0	
0	

0	

0	

0	

1	
0	
0	
0	
 1	

1	
 2	
1	
 1	

1	
 1	
 2	

1	

2	
2	

1	
 1	
 2	
 2	

3	
B	

Finding LCS (2)	

j 0 1 2 3 4 5 	

0	

1	

2	

3	

4	

i	

Xi	

A	

B	

C	

Yj	
 B	
B	
 A	
C	
D	

0	

0	

0	
0	
0	
0	
0	

0	

0	

0	

1	
0	
0	
0	
 1	

1	
 2	
1	
 1	

1	
 1	
 2	

1	

2	
2	

1	
 1	
 2	
 2	

3	
B	

B	
 C	
 B	
LCS (reversed order):	

LCS (straight order):	

4/10/14	

36	

Review: Dynamic Programming	

•  Summary of the basic idea: 	

•  Optimal substructure: optimal solution to problem consists of

optimal solutions to subproblems	

•  Overlapping subproblems: few subproblems in total, many

recurring instances of each	

•  Solve bottom-up, building a table of solved subproblems that

are used to solve larger ones	

•  Variations:	

“Table” could be 3-dimensional, triangular, a tree, etc. 	

1v
2v

3v

4v
6v

5v

With this form of the energy function, we can minimize using
dynamic programming, with the Viterbi algorithm.	

	

Iterate until optimal position for each point is the center of
the box, i.e., the snake is optimal in the local search space

constrained by boxes.	

	
 [Amini, Weymouth, Jain, 1990]	

Fig from Y. Boykov	

Computer Vision: Energy minimization: ���
dynamic programming	

4/10/14	

37	

Energy minimization: ���
dynamic programming	

Etotal (ν1,…,νn) = Ei (ν i ,ν i+1)
i=1

n−1

∑

•  Possible because snake energy can be rewritten as a sum of
pair-wise interaction potentials:	

•  Or sum of triple-interaction potentials.	

	

Etotal (ν1,…,νn) = Ei (ν i−1,ν i ,ν i+1)
i=1

n−1

∑

E4 (v4 ,vn)E3(v3,v4)

)3(3E

)(3mE)(4mE

)3(4E

)2(4E

)1(4E

)(mEn

)3(nE

)2(nE

)1(nE

)2(3E

)1(3E

)(2mE

)3(2E

Etotal = E1(v1,v2)+ E2 (v2 ,v3)+ ...+ En−1(vn−1,vn)

E2 (v2 ,v3)

)1(2E

)2(2E

E1(v1,v2)

E1(1) = 0

E1(2) = 0

E1(3) = 0

E1(m) = 0

Main idea: determine optimal position (state) of predecessor, for each
possible position of self. Then backtrack from best state for last

vertex.	

states

1

2

…

m

ve
rt

ic
es

1v 2v 3v 4v nv

O(nm2)Complexity: 	
 vs. brute force search ____?	

Viterbi algorithm	

Example adapted from Y. Boykov	

4/10/14	

38	

Viterbi alg. dynamic programming	

•  We are interested in the assignment of states for vertices, 	

 such that total energy is minimized. Each vertex
can be in one of the m states 	

minvn minvn−1 ... minv1 = [E1(v1,v2)+ E2 (v2 ,v3)+ ...+ En−1(vn−1,vn)]

s1,s2 ,...sm
v1,v2 ,...vn

minvnminvn−1 = [En−1(vn−1,vn)+ ...+ E1(v2 ,v3)+minv1 E2 (v1,v2)]

minvn = [En−1(vn−1,vn)+Mn−2,n−1(xn−1)]

minvnminvn−1 = [En−1(vn−1,vn)+ ...+ E1(v2 ,v3)+M1,2 (v1)]

memoize the partial solution	
.	

.	

Matrix Chain Multiplication	

•  Given sequence of matrices	

•  And their dimensions	

•  What is the optimal order of multiplication	

•  Example: why two different orders matter ? 	

•  Brute force strategy – examine all possible parenthezations	

•  Solution to the recurrence 	

€

A1A2An

€

p0, p1,p2, pn

€

P(n)= P(k)P(n − k)
k=1

n−1

∑

€

P(n)=Ω(4n /n3 / 2)

4/10/14	

39	

Matrix Chain Multiplication	

•  Substructure property	

•  Total cost will be cost of solving the two subproblems	

 and multiplying the two resulting matrices	

	

	

•  Optimal substructure find the split which will yield the

minimal total cost	

 	

•  Idea: try to define it recursively	

€

A1A2AkAk+1An

€

(A1A2Ak)(Ak+1An)

Matrix Chain Multiplication	

•  Define the cost recursively m[i,j] cost of multiplying 	

€

m[i, j] =
0 if i = j,

min
i≤k< j

{m[i,k] + m[k +1, j] + pi−1pk p j} otherwise
$
%
&

' &

€

AiA j

4/10/14	

40	

Matrix Chain Multiplication	

•  Option 1: Compute the cost recursively, remember good
splits	

•  Draw the recurrence tree for 	

€

A1A4

Matrix Chain Multiplication	

•  Look up the pseudo-code in the textbook 	

•  Core is the recursive call 	

C = RecursiveMatrixChain(p,i,k) + 	

 RecursiveMatrixChain(p,k+1,j) +	

	

	

	

	

	

•  Prove by substitution	

•  Recursive solution would still take exponential time 	

€

pi−1pk p j

€

T(n) ≥1+ (T(k) + T(n − k) +1)
k=1

n−1

∑

€

T(n) ≥1+ 2 T(i)
i=1

n−1

∑ + n

€

T(n) =Ω(2n)

4/10/14	

41	

Matrix Chain Multiplication	

•  Idea: memoization 	

•  Look at the recursion tree, many of the sub-problems repeat	

•  Remember then and reuse in the	

•  How many sub-problems do we have ? 	

•  Why ? 	

•  Compute the solution to all subproblems bottom up	

•  Memoize in the table store intermediate cost m[i,j]	

	
 €

T(n) =Θ(n2)

�
n
2

⇥
+ n

Matrix Chain Multiplication	

1.   n = length(p)-1
2.   for i=1 to n m[i,i] = 0; % initialize
3.   for l=2 to n % l is the chain length
4.   for i=1 to n-l+1 % first compute all m[i,i

+1], then m[i,i+2]
5.   do j := i+1-1
6.   m[i,j] inf
7.   for k = i to j-1
8.   do q = m[i,k] + m[k+1,j] +

p(i-1)p(k)p(j)
9.   if q < m[i,j] then
10.   m[i,j] = q;
11.   s[i,j] = k; % remember k with min

cost
12.   end
13.   end
14.   end
15.  Return m and s

4/10/14	

42	

Matrix Chain Multiplication	

•  Example	

Dynamic Programming	

•  What is the structure of the sub-problem 	

•  Common pattern:	

•  Optimal solution requires making a choice which leads to

optimal solution 	

•  Hard part: what is the optimal subproblem structure	

 How many subproblems ? 	

 How many choices we have which sub-problem to use ? 	

	

•  Matrix chain multiplication 	

•  LCS 	

	

4/10/14	

43	

Dynamic Programming	

•  What is the structure of the sub-problem 	

•  Common pattern: 	

•  Optimal solution requires making a choice which leads to

optimal solution 	

•  Hard part: what is the optimal subproblem structure	

 How many sub-problems ? 	

 How many choices we have which sub-problem to use ? 	

	

•  Matrix chain multiplication: 2 subproblems, j-i choices	

•  LCS: 3 suproblems 3 choices	

•  Subtleties (graph examples) shortest path, longest path	

	

Previously 	

•  Shortest path algorithms: given single source compute 	

 shortest path to all other vertices. 	

•  Dijkstra O(E + V lg V)	

•  Bellman-Ford O(VE)	

•  DAG O(V+E)	

•  All pairs shortest path: compute shortest path between each

pair of nodes	

•  Option 1. Run single source shortest path from each node

using previous algorithms	

•  Run Bellman-Ford once for each vertex O(V2E) 	

•  Can we do better ? 	

	

 	

4/10/14	

44	

All pairs shortest path	

•  Final representation of the solution is in adjacency matrix 	

•  δ(i,j) will be the length of the shortest path from i to j	

•  Structure of the optimal solution	

•  Weight of the shortest path with m-1 edges and minimum of
the weight of any path consisting of at most m edges	

€

dij
0 =

0 if i = j
∞ otherwise

$
%

€

dij
(m) =min(dij

(m−1),min1≤k≤n{dik
(m−1) + wkj})

4/10/14	

45	

Example all shortest paths	

€

0 3 8 ∞ −4
∞ 0 ∞ 1 7
∞ 4 0 ∞ ∞

2 ∞ −5 0 ∞

∞ ∞ ∞ 6 0

€

0 3 8 2 −4
3 0 −4 1 7
∞ 4 0 5 11
2 −1 −5 0 −2
8 ∞ 1 6 0

€

D(0)

€

D(1)

3	
 4	

-4	

-5	

6	

7	

8	

1	

2	

•  Matrix multiplication	

•  Repeated Squaring 	

€

Θ(n4)

€

Θ(n3 lgn)

€

D(0) =W

€

D(1) = D(0)W =WW

€

D(2) = D(1)W = D(0)WW

€

dij
(m) =min(dij

(m−1),min1≤k≤n{dik
(m−1) + wkj})

1	

2	

3	

5	
 4	

Like matrix multiplication + => min . => +	

Example all shortest paths	

€

0 3 8 ∞ −4
∞ 0 ∞ 1 7
∞ 4 0 ∞ ∞

2 ∞ −5 0 ∞

∞ ∞ ∞ 6 0

€

0 3 8 2 −4
3 0 −4 1 7
∞ 4 0 5 11
2 −1 −5 0 −2
8 ∞ 1 6 0

€

0 3 −3 2 −4
3 0 −4 1 −1
7 4 0 5 11
2 −1 −5 0 −2
8 5 1 6 0

€

0 1 −3 2 −4
3 0 −4 1 −1
7 4 0 5 3
2 −1 −5 0 −2
8 5 1 6 0

€

D(0)

€

D(1)

€

D(2)

€

D(3)

3	
 4	

-4	

-5	

6	

7	

8	

1	

2	

•  Matrix multiplication	

•  Repeated Squaring 	

€

Θ(n4)

€

Θ(n3 lgn)

€

D(0) =W

€

D(1) = D(0)W =WW

€

D(2) = D(1)W = D(0)WW

1	

2	

3	

4	
5	

