CS583 Lecture 10

Jana Kosecka

Graph Algorithms
Shortest Path Algorithms
Dynamic Programming

Previously

- Depth first search
- DAG's
- topological sort
- strongly connected components
- MST
- Prim's
- Kruskal's
- Shortest path with non-negative weights

Shortest Path Algorithms

Single-Source Shortest Path

- Problem: given a weighted directed graph G, find the minimum-weight path from a given source vertex s to another vertex v
- "Shortest-path" = minimum weight
- Weight of path is sum of edges
- E.g., a road map: what is the shortest path from Faixfax to Washington DC?

Shortest Path Properties

- Again, we have optimal substructure: the shortest path consists of shortest subpaths:

- Proof: suppose some subpath is not a shortest path There must then exist a shorter subpath
Could substitute the shorter subpath for a shorter path but then overall path is not shortest path. Contradiction
- Optimal substructure property - hallmark of dynamic programming

Shortest Path Properties

- In graphs with negative weight cycles, some shortest paths will not exist (Why?):

Relaxation

- A key technique in shortest path algorithms is relaxation Idea: for all v, maintain upper bound $\mathrm{d}[v]$ on $\delta(\mathrm{s}, \mathrm{v})$ Relax (u,v,w) \{
if $(d[v]>d[u]+w)$ then $d[v]=d[u]+w$; \}
- Relaxing an edge - checking if it can improve - The cost of the path

Shortest Path Properties

- Define $\delta(u, v)$ to be the weight of the shortest path from u to v
- Shortest paths satisfy the triangle inequality: $\delta(\mathrm{u}, \mathrm{v}) \leq \delta(\mathrm{u}, \mathrm{x})$ $+\delta(x, v)$
- "Proof":

This path is no longer than any other path

Shortest Path Properties

- Triangle inequality
- Upper bound property
- No path property
- Convergence Property
- Path relaxation property
- Predecessor subgraph property

Dijkstra's Algorithm

- If no negative edge weights, we can beat Bellman-Ford
- Similar to breadth-first search
- Grow a tree gradually, advancing from vertices taken from a queue
- Also similar to Prim's algorithm for MST

Use a priority queue keyed on $\mathrm{d}[\mathrm{v}$]

Bellman Ford Algorithm

- Single source shortest path algorithm
- Weights can be negative
- Algorithm returns NIL if there is negative weight cycle
- Otherwise returns produces shortest paths from source
- to all other vertices

Bellman-Ford Algorithm

```
BellmanFord()
    for each v G V
        d[v] = \infty;
    d[s] = 0;
    for i=1 to |V|-1
        for each edge (u,v) \inE
            Relax(u,v, w(u,v));
    for each edge (u,v) \in E
        if (d[v] > d[u] + w(u,v))
```

 return "no solution"; \(\left\{\begin{array}{l}\text { Under what condition } \\ \text { do we get a solution? }\end{array}\right.\)
 Relax (u,v,w): if (d[v] > d[u]+w) then $d[v]=d[u]+w$

Bellman-Ford Algorithm

```
BellmanFord()
    for each v \in v
            d[v] = \infty;
    d[s] = 0;
    for i=1 to |V|-1
        for each edge (u,v) \inE
            Relax(u,v, w(u,v));
    for each edge (u,v) \in E
        if (d[v] > d[u] + w(u,v))
            return "no solution";
```

$\operatorname{Relax}(u, v, w):$ if $(d[v]>d[u]+w)$ then $d[v]=d[u]+w$

Bellman-Ford Algorithm

BellmanFord()
for each $v \in V$
$d[v]=\infty$;
$d[s]=0$;
for $i=1$ to $|V|-1$
for each edge ($u, v) \in E$
Relax (u,v, w(u,v));
for each edge (u,v) $\in E$
if (d[v] > d[u] + w(u,v))
return "no solution";

Relax (u,v,w): if (d[v] > d[u]+w) then $d[v]=d[u]+w$

Bellman-Ford Algorithm

```
BellmanFord()
    for each v G v
        d[v] = \infty;
    d[s] = 0;
    for i=1 to |V|-1
        for each edge (u,v) \inE
            Relax(u,v, w(u,v));
    for each edge (u,v) \inE
        if (d[v] > d[u] + w(u,v))
            return "no solution";
```


$\operatorname{Relax}(u, v, w):$ if $(d[v]>d[u]+w)$ then $d[v]=d[u]+w$

Bellman-Ford

- Running time $\mathrm{O}(\mathrm{VE})$
- Not so good for large dense graphs
- Still very practical

Bellman-Ford

- Prove: Algorithm after IVI-1 passes of the for loop, all d values (shortest path values) are correct (for all vertices)
- Consider shortest path from s to v , since the path is simple (no loops) there are at most $\mid \mathrm{VI}-1$ edges
$\cdot \mathrm{s} \rightarrow \mathrm{v}_{1} \rightarrow \mathrm{v}_{2} \rightarrow \mathrm{v}_{3} \rightarrow \mathrm{v}_{4} \rightarrow \mathrm{v}$
Initially, $\mathrm{d}[\mathrm{s}]=0$ is correct, and doesn't change (Why?) After 1 pass through edges, $\mathrm{d}\left[\mathrm{v}_{1}\right]$ is correct (Why?) and doesn't change
After 2 passes, $\mathrm{d}\left[\mathrm{v}_{2}\right]$ is correct and doesn't change
Terminates in IVI-1 passes: (Why?)
What if it doesn't?

Bellman-Ford

- Note that order in which edges are processed affects how quickly it converges
- Correctness: show $\mathrm{d}[\mathrm{v}]=\delta(\mathrm{s}, \mathrm{v})$ for all vertices or returns FALSE (negative weight cycle)

By previous lemma at the termination we have
$\mathrm{d}[\mathrm{v}]=\delta(\mathrm{s}, \mathrm{v})$
$<=\delta(\mathrm{s}, \mathrm{u})+\mathrm{w}(\mathrm{u}, \mathrm{v})$ by triangle inequality $=\mathrm{d}[\mathrm{u}]+\mathrm{w}(\mathrm{u}, \mathrm{v})$
And none of the test in the last loop will return "no solution", i.e.
TRUE.
if (d[v] > d[u] + w(u,v))
return "no solution";
If there is a negative weight cycle - prove by contradiction that Bellman Ford algorithm will return FALSE (see book)

DAG Shortest Paths

- Problem: finding shortest paths in DAG

Bellman-Ford takes O(VE) time.
How can we do better?

- Idea: use topological sort
- If were lucky and process vertices on each shortest path from left to right, would be done in one pass
- Every path in a DAG is subsequence of topologically sorted vertex order, so processing vertices in that order, we will do each path in forward order (will never relax edges out of vertex before doing all edges into vertex).
- Thus: just one pass. What will be the running time?

Review: Dijkstra's Algorithm

```
Dijkstra(G)
```

 for each \(v \in V\)
 \(d[v]=\infty ;\)
 $\mathrm{d}[\mathrm{s}]=0 ; \mathrm{S}=\varnothing ; Q=\mathrm{V}$; while ($Q \neq \varnothing$)
 u = ExtractMin(Q); S = S U \{u\};
for each $v \in u->A d j[]$
if (d[v] > d[u]+w(u,v))
$d[v]=d[u]+w(u, v) ;$

Relaxation Step

Note: this
is really a
call to Q->DecreaseKey ()

Correctness Of Dijkstra's Algorithm

I. See the description of the proof in the book

Show that Dijkstra's algorithm will terminate with
The cost of each node to be the cost of shortest path.
Idea: show that when the vertex is added to the set the cost of that vertex is the length of the shortest path
Reminder: We always add the vertex with minimal cost

- Want to show that when vertex is added to set $\mathrm{S}, \mathrm{d}[\mathrm{u}]=\delta(\mathrm{s}, \mathrm{u})$
- and throughout note that $\mathrm{d}[\mathrm{u}] \geq \delta(\mathrm{s}, \mathrm{u}) \forall \mathrm{u}$
- Proof by contradiction $\mathrm{d}[\mathrm{u}]$ is not equal to $\delta(\mathrm{s}, \mathrm{u})$
- Before u gets added, some other vertex y on that shortest path needs to be added; claim that $\mathrm{d}[\mathrm{y}]=\delta(\mathrm{s}, \mathrm{y})$ when added.
- Know that $\mathrm{d}[\mathrm{x}]=\delta(\mathrm{s}, \mathrm{x})$ and $\delta(\mathrm{s}, \mathrm{y})<=\delta(\mathrm{s}, \mathrm{u})$ and $\mathrm{d}[\mathrm{y}]=\delta(\mathrm{s}, \mathrm{y})$, so $\mathrm{d}[\mathrm{y}]<=\mathrm{d}[\mathrm{u}]$
- But both y and u are outside of S when is chosen so $d[u]<=d[y]$
- Hence $d[y]=d[u]=\delta(s, y)=\delta(s, y)$

Previously

- Shortest path algorithms: given single source compute shortest path to all other vertices.
- Dijkstra $O(E+V \lg V)$
- Bellman-Ford $O(V E)$
- DAG $O(V+E)$
- All pairs shortest path: compute shortest path between each pair of nodes
- Option 1. Run single source shortest path from each node using previous algorithms
- Run Bellman-Ford once for each vertex $\mathrm{O}\left(\mathrm{V}^{2} \mathrm{E}\right)$
- Can we do better ? See All-pairs-shortest path

Dynamic Programming

Chap 15.

Dynamic Programming

- Another strategy for designing algorithms is dynamic programming
- A metatechnique, not an algorithm (like divide \& conquer)
- The word "programming" is historical and predates computer programming
- Use when problem breaks down into recurring small subproblems

Dynamic Programming History

- Bellman. Pioneered the systematic study of dynamic programming in the 1950s.
- Etymology.

Dynamic programming = planning over time.
Secretary of Defense was hostile to mathematical research.
Bellman sought an impressive name to avoid confrontation.
"it's impossible to use dynamic in a pejorative sense"
"something not even a Congressman could object to"
Reference: Bellman, R. E. Eye of the Hurricane, An Autobiography.

Dynamic Programming Applications

- Areas.

Bioinformatics.
Control theory.
Information theory.
Operations research.
Computer science: theory, graphics, AI, systems,

- Some famous dynamic programming algorithms.

Viterbi for hidden Markov models.
Unix diff for comparing two files.
Smith-Waterman for sequence alignment.
Bellman-Ford for shortest path routing in networks.
Cocke-Kasami-Younger for parsing context free grammars.

Dynamic Programming

- More Examples
- Matrix chain multiplication
- Longest common subsequence
- Optimal triangulation
- All-pairs-shortest path

Dynamic Programming

- Problem solving methodology (as divide and conquer)
- Idea: divide into sub-problems, solve sub-problems
- Applicable to optimization problems
- Ingredients

1. Characterize the optimal solution
2. Recursively define a value of the optimal solution
3. Compute values of optimal solution bottom up
4. Construct an optimal solution from computed inf.

Dynamic programming

- It is used, when the solution can be recursively described in terms of solutions to sub-problems (optimal substructure)
- Algorithm finds solutions to sub-problems and stores them in memory for later use
- More efficient than "brute-force methods", which solve the same sub-problems over and over again

Weighted Interval Scheduling

Weighted Interval Scheduling

-Weighted interval scheduling problem.
Job j starts at s_{j}, finishes at f_{j}, and has weight or value v_{j}.
Two jobs compatible if they don't overlap.
Goal: find maximum weight subset of mutually compatible jobs.

Unweighted Interval Scheduling Review

- Observation. Greedy algorithm can fail spectacularly if arbitrary weights are allowed.

Weighted Interval Scheduling

Notation. Label jobs by finishing time: $f_{1} \leq f_{2} \leq \ldots \leq f_{n}$.
Def. $p(j)=$ largest index $i<j$ such that job i is compatible with j. $E x: p(8)=5, p(7)=3, p(2)=0$.

Dynamic Programming: Binary Choice

- Notation. OPT(j) = value of optimal solution to the problem consisting of job requests $1,2, \ldots, \mathrm{j}$.

Case 1: OPT selects job j.
can't use incompatible jobs $\{\mathrm{p}(\mathrm{j})+1, \mathrm{p}(\mathrm{j})+2, \ldots, \mathrm{j}-1\}$ must include optimal solution to prøblem consisting of remaining compatible jobs $1,2, \ldots, \mathrm{p}(\mathrm{j})$
Case 2: OPT does not select job j. must include optimal solution to problem consisting of remaining compatible jobs $1,2, \ldots, \mathrm{j}-1$

```
OPT(j)={\begin{array}{ll}{0}&{\mathrm{ if }\textrm{j}=0}\\{\operatorname{max}{\mp@subsup{v}{j}{}+OPT(p(j)),}&{OPT(j-1)}}\\{\mathrm{ otherwise}}\end{array}}
```


Weighted Interval Scheduling: Brute Force

- Brute force recursive implemenation

```
Input: n, s
Sort jobs by finish times so that f}\mp@subsup{f}{1}{}\leq\mp@subsup{f}{2}{}\leq\ldots
f
Compute p(1), p(2), ... p(n)
Compute-Opt(j) {
    if (j = 0)
            return 0
        else
            return max(v}\mp@subsup{v}{j}{}+\mathrm{ Compute-Opt(p(j)), Compute-
Opt(j-1))
}
```


Weighted Interval Scheduling: Brute Force

- Observation. Recursive algorithm fails spectacularly because of redundant sub-problems \Rightarrow exponential algorithms.
-Ex. Number of recursive calls for family of "layered" instances grows like Fibonacci sequence.

$p(I)=0, p(i)=j-2$

Weighted Interval Scheduling: Memoization

-Memoization. Store results of each sub-problem in a cache; lookup as needed.

```
Input: n, s
Sort jobs by finish times so that f}\mp@subsup{f}{1}{}\leqslant\mp@subsup{f}{2}{}\leq\ldots\leq\mp@subsup{f}{n}{}
Compute p(1), p(2), ..., p(n)
for j = 1 to n }~\mathrm{ global array
    M[j] = empty
M[j] = 0
M-Compute-Opt(j) {
        if (M[j] is empty)
            M[j] = max(w w + M-Compute-Opt(p(j)), M-Compute-
Opt(j-1))
        return M[j]
}
```


Weighted Interval Scheduling: Running Time

-Claim. Memoized version of algorithm takes $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ time.
Sort by finish time: O(n log n).
Computing $\mathrm{p}(\cdot)$: $\mathrm{O}(\mathrm{n})$ after sorting by start time.
m -Compute-opt (j): each invocation takes $\mathrm{O}(1)$ time and either
(i) returns an existing value $\mathrm{m}[\mathrm{j}]$
(ii) fills in one new entry м ${ }_{[j]}$ and makes two recursive calls
Progress measure $\Phi=$ \# nonempty entries of m[]. initially $\Phi=0$, throughout $\Phi \leq \mathrm{n}$.
(ii) increases Φ by $1 \Rightarrow$ at most 2 n recursive calls.

Overall running time of m-Compute-Opt (n) is $\mathrm{O}(\mathrm{n})$. •
-Remark. $\mathrm{O}(\mathrm{n})$ if jobs are pre-sorted by start and finish times.

Weighted Interval Scheduling: Finding a Solution

-Q. Dynamic programming algorithms computes optimal value. What if we want the solution itself?
-A. Do some post-processing.

```
Run M-Compute-Opt(n)
Run Find-Solution(n)
Find-Solution(j) {
    if (j = 0)
        output nothing
```



```
        print j
        Find-Solution(p(j))
    else
        Find-Solution(j-1)
}
```


Weighted Interval Scheduling: Bottom-Up

-Bottom-up dynamic programming. Unwind recursion.

```
Input: n, s
Sort jobs by finish times so that f}\mp@subsup{f}{1}{}\leq\mp@subsup{f}{2}{}\leq\ldots\leq\mp@subsup{f}{n}{}
Compute p(1), p(2), ..., p(n)
Iterative-Compute-Opt {
    M[0] = 0
    for j = 1 to n
        M[j] = max (vj + M[p(j)], M[j-1])
}
```


Dynamic Programming Example: Longest Common Subsequence

- Longest common subsequence (LCS) problem:

Given two sequences $\mathrm{x}[1 . \mathrm{m}]$ and $\mathrm{y}[1 . . \mathrm{n}]$, find the longest subsequence which occurs in both
Ex: $x=\{$ A B C B D A B $\}, y=\{B D C A B A\}$
$\{B C\}$ and $\{A A\}$ are both subsequences of both What is the LCS?
Brute-force algorithm: For every subsequence of x , check if it's a subsequence of y

How many subsequences of x are there?
What will be the running time of the brute-force alg?

Longest Common Subsequence (LCS)

- Application: comparison of two DNA strings
- Ex: $\mathrm{X}=\{$ A B C B D A B $\}, \mathrm{Y}=\{$ B D C A B A $\}$
- Longest Common Subsequence:
- $\mathrm{X}=\mathrm{AB} \quad \mathrm{C} \quad \mathrm{BD} \mathrm{AB}$
- $\mathrm{Y}=\mathrm{BDCAB} \mathrm{A}$
- Brute force algorithm would compare each subsequence of X with the symbols in Y

LCS Algorithm

- Brute-force algorithm: 2^{m} subsequences of x to check against n elements of $\mathrm{y}: \mathrm{O}\left(n 2^{m}\right)$
- We can do better: for now, let's only worry about the problem of finding the length of LCS
- When finished we will see how to backtrack from this solution back to the actual LCS
- Notice LCS problem has optimal substructure Subproblems: LCS of pairs of prefixes of x and y

LCS Algorithm

- First we'll find the length of LCS. Later we'll modify the algorithm to find LCS itself.
- Define X_{i}, Y_{j} to be the prefixes of X and Y of length i and j respectively
- Define $c[i, j]$ to be the length of LCS of X_{i} and Y_{j}
- Then the length of LCS of X and Y will be $c[m, n]$

$$
c[i, j]= \begin{cases}c[i-1, j-1]+1 & \text { if } x[i]=y[j], \\ \max (c[i, j-1], c[i-1, j]) & \text { otherwise }\end{cases}
$$

LCS recursive solution

$$
c[i, j]= \begin{cases}c[i-1, j-1]+1 & \text { if } x[i]=y[j] \\ \max (c[i, j-1], c[i-1, j]) & \text { otherwise }\end{cases}
$$

- We start with $i=j=0$ (empty substrings of x and y)
- Since X_{0} and Y_{0} are empty strings, their LCS is always empty (i.e. $c[0,0]=0$)
- LCS of empty string and any other string is empty, so for every i and $\mathrm{j}: c[0, j]=c[i, 0]=0$

LCS recursive solution $c[i, j]= \begin{cases}c[i-1, j-1]+1 & \text { if } x[i]=y[j], \\ \max (c[i, j-1], c[i-1, j]) & \text { otherwise }\end{cases}$

- When we calculate $c[i, j]$, we consider two cases:
- First case: $x[i]=y[j]$: one more symbol in strings \mathbf{X} and Y matches, so the length of LCS X_{i} and Y_{j} equals to the length of LCS of smaller strings X_{i-1} and Y_{i-1}, plus 1

LCS recursive solution $c[i, j]= \begin{cases}c[i-1, j-1]+1 & \text { if } x[i]=y[j], \\ \max (c[i, j-1], c[i-1, j]) & \text { otherwise }\end{cases}$

- Second case: $x[i]!=y[j]$
- As symbols don't match, our solution is not improved, and the length of $\operatorname{LCS}\left(\mathrm{X}_{\mathrm{i}}, \mathrm{Y}_{\mathrm{j}}\right)$ is the same as before (i.e. maximum of $\operatorname{LCS}\left(\mathrm{X}_{\mathrm{i}}, \mathrm{Y}_{\mathrm{j}-1}\right)$ and $\operatorname{LCS}\left(\mathrm{X}_{\mathrm{i}-1}, \mathrm{Y}_{\mathrm{j}}\right)$

Why not just take the length of $\operatorname{LCS}\left(\mathrm{X}_{\mathrm{i}-1}, \mathrm{Y}_{\mathrm{j}-1}\right)$?

LCS Length Algorithm

LCS-Length(X, Y)

1. $m=$ length $(X) / /$ get the $\#$ of symbols in X
2. $\mathrm{n}=$ length $(\mathrm{Y}) / /$ get the \# of symbols in Y
3. for $\mathrm{i}=1$ to $\mathrm{m} \quad \mathrm{c}[\mathrm{i}, 0]=0 \quad$ // special case: Y_{0}
4. for $\mathrm{j}=1$ to $\mathrm{n} \quad \mathrm{c}[0, \mathrm{j}]=0 \quad / /$ special case: X_{0}
5. for $\mathrm{i}=1$ to m
// for all X_{i}
6. for $\mathrm{j}=1$ to $\mathrm{n} \quad / /$ for all Y_{j}
7. \quad if $\left(X_{i}==Y_{j}\right)$
8. $\quad c[i, j]=c[i-1, j-1]+1$
9. \quad else $c[i, j]=\max (c[i-1, j], c[i, j-1])$
10. return c

LCS Example

We'll see how LCS algorithm works on the following example:

- $\mathrm{X}=\mathrm{ABCB}$
- $\mathrm{Y}=\mathrm{BDCAB}$

What is the Longest Common Subsequence of X and Y ?
$\operatorname{LCS}(X, Y)=B C B$
$X=A \quad \mathbf{B} \quad \mathbf{B}$
$Y=B D C A B$

i	LCS Example (3)							$\begin{gathered} \mathrm{ABCB} \\ \mathrm{BDCAB} \end{gathered}$
		Yj	B	D	C	A	B	
0	Xi	0	0	0	0	0	0	
1	A	0	0	0	0			
2	B	0						
3	C	0						
4	B	0						
	$\begin{aligned} & \text { if }\left(X_{i}==Y_{i}\right) \\ & \text { else } c[i, i, j]=\max (c[i-1, j-I,]]+c[i, j-I]) \end{aligned}$							

LCS Algorithm Running Time

- LCS algorithm calculates the values of each entry of the array c[m,n]
- So what is the running time?

$$
\mathrm{O}\left(\mathrm{~m}^{*} \mathrm{n}\right)
$$

since each $c[i, j]$ is calculated in constant time, and there are $\mathrm{m}^{*} \mathrm{n}$ elements in the array

How to find actual LCS

- So far, we have just found the length of LCS, but not LCS itself.
- We want to modify this algorithm to make it output Longest Common Subsequence of X and Y
Each $c[i, j]$ depends on $c[i-1, j]$ and $c[i, j-1]$ or $c[i-1, j-1]$
For each $c[i, j]$ we can say how it was acquired:

For example, here $c[i, j]=c[i-I, j-I]+I=2+I=3$

How to find actual LCS - continued

- Remember that

$$
c[i, j]= \begin{cases}c[i-1, j-1]+1 & \text { if } x[i]=y[j] \\ \max (c[i, j-1], c[i-1, j]) & \text { otherwise }\end{cases}
$$

So we can start from $c[m, n]$ and go backwards

- Whenever $c[i, j]=c[i-1, j-1]+1$, remember $x[i]$
- (because $x[i]$ is a part of LCS)
- When $\mathrm{i}=0$ or $\mathrm{j}=0$ (i.e. we reached the beginning), output remembered letters in reverse order

Finding LCS

0
I
2

3

4

0	0	0	0	0	0
0	0	0	0	1	1
0	1	1	1	1	2
0	1	1	2	2	2
0	1	1	2	2	3

Review: Dynamic Programming

- Summary of the basic idea:
- Optimal substructure: optimal solution to problem consists of optimal solutions to subproblems
- Overlapping subproblems: few subproblems in total, many recurring instances of each
- Solve bottom-up, building a table of solved subproblems that are used to solve larger ones
- Variations:
"Table" could be 3-dimensional, triangular, a tree, etc.

Computer Vision: Energy minimization: dynamic programming

With this form of the energy function, we can minimize using dynamic programming, with the Viterbi algorithm.

Iterate until optimal position for each point is the center of the box, i.e., the snake is optimal in the local search space constrained by boxes.

Energy minimization: dynamic programming

- Possible because snake energy can be rewritten as a sum of pair-wise interaction potentials:
$E_{\text {total }}\left(v_{1}, \ldots, v_{n}\right)=\sum_{i=1}^{n-1} E_{i}\left(v_{i}, v_{i+1}\right)$
- Or sum of triple-interaction potentials.

$$
E_{\text {total }}\left(\nu_{1}, \ldots, \nu_{n}\right)=\sum_{i=1}^{n-1} E_{i}\left(v_{i-1}, v_{i}, v_{i+1}\right)
$$

Viterbi algorithm

Main idea: determine optimal position (state) of predecessor, for each possible position of self. Then backtrack from best state for last vertex.

Viterbi alg, dynamic programming

- We are interested in the assignment of states for vertices, $v_{1}, v_{2}, \ldots v_{n}$ such that total energy is minimized. Each vertex can be in one of the m states $s_{1}, s_{2}, \ldots s_{m}$

$$
\begin{aligned}
& \min _{v_{n}} \min _{v_{n-1}} \ldots \min _{v_{1}}=\left[E_{1}\left(v_{1}, v_{2}\right)+E_{2}\left(v_{2}, v_{3}\right)+\ldots+E_{n-1}\left(v_{n-1}, v_{n}\right)\right] \\
& \min _{v_{n}} \min _{v_{n-1}}=\left[E_{n-1}\left(v_{n-1}, v_{n}\right)+\ldots+E_{1}\left(v_{2}, v_{3}\right)+\min _{v_{1}} E_{2}\left(v_{1}, v_{2}\right)\right] \\
& \min _{v_{n}} \min _{v_{n-1}}=\left[E_{n-1}\left(v_{n-1}, v_{n}\right)+\ldots+E_{1}\left(v_{2}, v_{3}\right)+M_{1,2}\left(v_{1}\right)\right]
\end{aligned}
$$ memoize the partial solution

$\min _{v_{n}}=\left[E_{n-1}\left(v_{n-1}, v_{n}\right)+M_{n-2, n-1}\left(x_{n-1}\right)\right]$

Matrix Chain Multiplication

- Given sequence of matrices $A_{1} A_{2} \cdots A_{n}$
- And their dimensions $p_{0}, p_{1,} p_{2}, \cdots p_{n}$
- What is the optimal order of multiplication
- Example: why two different orders matter ?
- Brute force strategy - examine all possible parenthezations

$$
P(n)=\sum_{k=1}^{n-1} P(k) P(n-k)
$$

- Solution to the recurrence

$$
P(n)=\Omega\left(4^{n} / n^{3 / 2}\right)
$$

Matrix Chain Multiplication

- Substructure property

$$
A_{1} A_{2} \cdots A_{k} A_{k+1} \cdots A_{n}
$$

- Total cost will be cost of solving the two subproblems and multiplying the two resulting matrices

$$
\left(A_{1} A_{2} \cdots A_{k}\right)\left(A_{k+1} \cdots A_{n}\right)
$$

- Optimal substructure find the split which will yield the minimal total cost
- Idea: try to define it recursively

Matrix Chain Multiplication

- Define the cost recursively $\mathrm{m}[\mathrm{i}, \mathrm{j}]$ cost of multiplying

$$
\begin{gathered}
A_{i} \cdots A_{j} \\
m[i, j]=\left\{\begin{array}{cl}
0 & \text { if } i=j \\
\min _{i \leq k<j}\left\{m[i, k]+m[k+1, j]+p_{i-1} p_{k} p_{j}\right\} & \text { otherwise }
\end{array}\right.
\end{gathered}
$$

Matrix Chain Multiplication

- Option 1: Compute the cost recursively, remember good splits
$A_{1} \cdots A_{4}$
- Draw the recurrence tree for

Matrix Chain Multiplication

- Look up the pseudo-code in the textbook
- Core is the recursive call
$C=$ RecursiveMatrixChain(p,i,k) +
RecursiveMatrixChain $(p, k+1, j)+p_{i-1} p_{k} p_{j}$
$T(n) \geq 1+\sum_{k=1}^{n-1}(T(k)+T(n-k)+1)$
$T(n) \geq 1+2 \sum_{i=1}^{n-1} T(i)+n$
- Prove by substitution

$$
T(n)=\Omega\left(2^{n}\right)
$$

- Recursive solution would still take exponential time $)^{\circ}$

Matrix Chain Multiplication

- Idea: memoization
- Look at the recursion tree, many of the sub-problems repeat
- Remember then and reuse in the $\quad\binom{n}{2}+n$
- Why ?

$$
T(n)=\Theta\left(n^{2}\right)
$$

- Compute the solution to all subproblems bottom up
- Memoize in the table store intermediate cost $m[i, j]$

Matrix Chain Multiplication

```
n = length(p)-1
for i=1 to n m[i,i] = 0; % initialize
for l=2 to n % l is the chain length
    for i=1 to n-l+1 % first compute all m[i,i
+1], then m[i,i+2]
                do j := i+1-1
                    m[i,j] & inf
                        for k = i to j-1
                        do q = m[i,k] + m[k+1,j] +
p(i-1)p(k)p(j)
    if q < m[i,j] then
                        m[i,j] = q;
                        s[i,j] = k; % remember k with min
    cost
                                end
            end
            end
.Return m and s
```


Matrix Chain Multiplication

- Example

Dynamic Programming

- What is the structure of the sub-problem
- Common pattern:
- Optimal solution requires making a choice which leads to optimal solution
- Hard part: what is the optimal subproblem structure

How many subproblems?
How many choices we have which sub-problem to use ?

- Matrix chain multiplication
- LCS

Dynamic Programming

- What is the structure of the sub-problem
- Common pattern:
- Optimal solution requires making a choice which leads to optimal solution
- Hard part: what is the optimal subproblem structure How many sub-problems?
How many choices we have which sub-problem to use ?
- Matrix chain multiplication: 2 subproblems, j-i choices
- LCS: 3 suproblems 3 choices
- Subtleties (graph examples) shortest path, longest path

Previously

- Shortest path algorithms: given single source compute shortest path to all other vertices.
- Dijkstra $O(E+V \lg V)$
- Bellman-Ford $O(V E)$
- DAG $O(V+E)$
- All pairs shortest path: compute shortest path between each pair of nodes
- Option 1. Run single source shortest path from each node using previous algorithms
- Run Bellman-Ford once for each vertex $O\left(V^{2} E\right)$
- Can we do better ?

All pairs shortest path

- Final representation of the solution is in adjacency matrix
- $\delta(i, j)$ will be the length of the shortest path from i to j
- Structure of the optimal solution

$$
\begin{gathered}
d_{i j}^{0}= \begin{cases}0 & \text { if } i=j \\
\infty \quad \text { otherwise }\end{cases} \\
d_{i j}^{(m)}=\min \left(d_{i j}^{(m-1)}, \min _{1 \leq k \leq n}\left\{d_{i k}^{(m-1)}+w_{k j}\right\}\right)
\end{gathered}
$$

- Weight of the shortest path with m - 1 edges and minimum of the weight of any path consisting of at most m edges

Note: No negative-weight cycles implies

$$
\delta(i, j)=d_{i j}(n-1)=d_{i j}^{(n)}=d_{i j}(n+1)=\cdots
$$

Example all shortest paths

0	3	8	∞	-4	
∞	0	∞	1	7	
∞	4	0	∞	∞	
2	∞	-5	0	∞	
∞	∞	∞	6	0	
	$D^{(0)}$				

0	3	8	2	-4	
3	0	-4	1	7	
∞	4	0	5	11	
2	-1	-5	0	-2	
8	∞	1	6	0	
	$D^{(1)}$				

Like matrix multiplication $+=>$ min.$=>+$

