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CS583 Lecture 11	


                                    Jana Kosecka	


                               	

Dynamic Programming                                	


Greedy Algorithms	

 	


Many slides here are based on D. Luebke slides	


Review: Dynamic Programming	


•  A meta-technique, not an algorithm ���
(like divide & conquer)	

•  Applicable when problem breaks down into recurring small 

sub-problems	
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Review: Dynamic Programming	


•  Problem solving methodology (as divide and conquer)	


•  Idea: divide into sub-problems, solve sub-problems	


•  Applicable to optimization problems 	

•  Ingredients	


1. Characterize the optimal solution	

2. Recursively define a value of the optimal solution	

3. Compute values of optimal solution bottom up	

4. Construct an optimal solution from computed inf. 	


Greedy Algorithms	


•  A greedy algorithm always makes the choice that looks best 
at the moment	

	

•  The hope: a locally optimal choice will lead to a globally 

optimal solution	

•  Minimum weight spanning tree, Dijstra’s algorithm (greedy)	


•  For many problems dynamic programming can be overkill; 
greedy algorithms tend to be easier to code	
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Activity-Selection Problem	


•  Problem: get your money’s worth out of a carnival	


•  Buy a wristband that lets you onto any ride	

•  Lots of rides, each starting and ending at different times	

•  Your goal: ride as many rides as possible	

•  Another, alternative goal that we don’t solve here: maximize 

time spent on rides	

•  Welcome to the activity selection problem	


•  General: how to schedule activities which require use of a 
common resource – goal select maximal set of compatible 
activities	


Activity-Selection	


•  Formally:	

•  Given a set S of n activities	


si = start time of activity I	

fi = finish time of activity I	

Find max-size subset A of compatible activities	

	


•  Assume (wlog) that f1 ≤ f2 ≤ … ≤ fn  

•  Final times are sorted  
•  Compatible activities - if their intervals do not overlap 

1 
2 

3 

4 

5 

6 
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Activity Selection	


•  Example	


	
 i	
 1 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	


si	
 1	
 3	
 0	
 5	
 3	
 5	
 6	
 8	
 8	
 2	
 12	


fi	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	
 12	
 13	
 14	


€ 

a3,a9,a11

€ 

a1,a4 ,a8,a11

€ 

a2,a4 ,a9,a11

Compatible activities	


Activity Selection	


•  Optimal substructure (as in dynamic programming)	

•  Set of activities compatible with	


•  Need to find a maximal set	

•  Suppose the set contains activity	


•  Recursive definition 	
	

€ 

Sij = {ak ∈ S; f i ≤ sk < fk ≤ s j}

€ 

fi,s j

€ 

ak

€ 

Sij = Sik + Skj +1

€ 

c[i, j] =
0 if Sij = 0

max
i<k< j

{c[i,k] + c[k, j] +1} otherwise

" 
# 
$ 

% $ 
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Activity Selection: Optimal Substructure 	


•  Suppose A is the solution set of the problem	

•  Let k be the minimum activity in A (i.e., the one with the 

earliest finish time).  Then A’=  A - {k} is an optimal solution 
to S’ = {i ∈ S: si ≥ fk}	

•  In words: once activity #1 is selected, the problem reduces to	

finding an optimal solution for activity-selection over activities	

in S compatible with #1	

•  Proof: if we could find optimal solution B’ to S’ 	

•  with |B| > |A - {k}|,	

•  Then B U {k} is compatible 	

•  And |B U {k}| > |A|  contradition since we said A is the 

optimal solution to the problem	


Activity Selection	


•  Dynamic Programming Strategy	

1.  Identify sub-problems	

2.  Recursively define the cost 	

3.  Fill in the cost table in the tabular form	


	

4.  Need to solve all sub-problems	

	


	

 	


€ 

c[i, j] =
0 if Sij = 0

max
i<k< j

{c[i,k] + c[k, j] +1} otherwise

" 
# 
$ 

% $ 
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Activity Selection	

Converting dynamic programming to greedy solution	

Greedy choice property:	

Observation: given        activity with the earliest finishing time, 	

In      then that activity will be in some maximal size subset of 

mutually compatible activities of 	

(sketch the proof: more details in the  book)	

             	

Conclusion: 	

•  The activity we choose is always the one with earliest 

finishing time	

•  Greedy choice 	

•  Show that it always will maximize the amount of scheduled 

activities	


€ 

am

€ 

Sij

€ 

Sij

Recursive Alg.	


RecursiveActivitySelect(s,f,k,n)!
1.  m = k+1!
2.  while m < n and !
3.    do m = m+1!
4.  if m < n!
5.  then return                        !
        RecursiveActivitySelector(s,f,m,n)!

Call RecursiveActivitySelector(s,f,0,n)!

€ 

am ∪
€ 

sm < fk
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Recursive Alg. 	

i	
 1 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	


si	
 1	
 3	
 0	
 5	
 3	
 5	
 6	
 8	
 8	
 2	
 12	


fi	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	
 12	
 13	
 14	


RecursiveActivitySelector(s,f,0,n)!

RecursiveActivitySelect(s,f,k,n)!
1.  m = k+1!
2.  While m =< n and !
3.    do m = m+1!
4.  if m =< n!
5.  then return                 !
       RecursiveActivitySelector(s,f,m,n)!

Selected: !

€ 

am ∪
€ 

sm < fk % m=1 

€ 

sm

€ 

a1,a4 ,a8,a11

Activity Selection:���
Repeated Subproblems	


•  Consider a recursive algorithm that tries all possible 
compatible subsets to find a maximal set, and notice repeated 
subproblems:	


S 
1∈A? 

S’ 
2∈A? 

S-{1} 
2∈A? 

S-{1,2} S’’ S’-{2} S’’ 

yes no 

no no yes yes 
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Greedy Choice Property	


•  Dynamic programming? Memoize? Yes, but…	

•  Activity selection problem also exhibits the greedy choice 

property:	

•  Locally optimal choice ⇒ globally optimal sol’n	


•  Them 16.1: if S is an activity selection problem sorted by 
finish time, then ∃ optimal solution A ⊆ S such that {1} ∈ A	


•  Sketch of proof: if ∃ optimal solution B that does not contain 
{1}, can always replace first activity in B with {1} (Why?).  
Same number of activities, thus optimal.	


Activity Selection:A Greedy Algorithm	

•  So actual algorithm is simple:	

	

•  Sort the activities by finish time	


•  Schedule the first activity	

•  Then schedule the next activity in sorted list which starts 

after previous activity finishes	

•  Repeat until no more activities	


•  Easy iterative algorithm	

	

•  Intuition is even more simple:	


Always pick the shortest ride available at the time	
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Huffman coding 	

•  Design of optimal codes	

•  Example: 	


•  Idea how to design optimal code ? 	

•  Notion of prefix code	

•  Greedy Algorithm for constructing optimal codes	


Huffman coding	


Algorithm:	

1. Keep the frequencies in Priority Queue (build heap)	

2. Take two minimal elements (extract min) 	

3. Insert their sum to queue	

4. Until queue is empty	










Running time O(n lgn)	
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Huffman coding	


•  What is the optimal substructure and greedy choice property ?	

•  Given alphabet C each character has frequency f[c]	

•  Suppose x and y are characters with lowest frequencies	

•  Then there exist an optimal code where x and y have same 

length and differ only in last bit.	


•  Optimal substructure property	

•  Given C and C’ with the x and y removed and new symbol 	

•  Added where f[z] = f[x]+f[y]. If we have a tree T’ which 

represents optimal code for C’ then replacing node z with two 
children x and y will yield optimal code for C	


Review:���
The Knapsack Problem	


•  The famous knapsack problem:	

A thief breaks into a museum.  Fabulous paintings,	

sculptures, and jewels are everywhere.  The thief has a good	

eye for the value of these objects, and knows that each will	

fetch hundreds or thousands of dollars on the clandestine art	

collector’s market.  But, the thief has only brought a single	

knapsack to the scene of the robbery, and can take away	

only what he can carry.  What items should the thief take to	

maximize the haul?	
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Review: The Knapsack Problem	


•  More formally, the 0-1 knapsack problem:	

• The thief must choose among n items, where the ith item 

worth vi dollars and weighs wi pounds	

• Carrying at most W pounds, maximize value	


Note: assume vi, wi, and W are all integers	

“0-1” b/c each item must be taken or left in entirety	


•  A variation, the fractional knapsack problem:	

Thief can take fractions of items	

Think of items in 0-1 problem as gold ingots, in fractional 

problem as buckets of gold dust	


Solving The Knapsack Problem	


•  The optimal solution to the fractional knapsack problem can 
be found with a greedy algorithm	

How?	


•  The optimal solution to the 0-1 problem cannot be found with 
the same greedy strategy	


•  Greedy strategy: take in order of dollars/pound	

Example: 3 items weighing 10, 20, and 30 pounds, knapsack	

can hold 50 pounds	

	

Suppose item 2 is worth $100.  Assign values to the other 

items so that the greedy strategy will fail 	
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The Knapsack Problem: ���
Greedy Vs. Dynamic	


•  The fractional problem can be solved greedily	

•  The 0-1 problem cannot be solved with a greedy approach	

•  0-1 can be solved with dynamic programming	


0-1 Knapsack problem:���
a picture	


W = 20	


wi	
 bi	


10	
9	


8	
5	


5	
4	

4	
3	

3	
2	


Weight	
 Benefit value	


This is a knapsack	

Max weight: W = 20	


Items	
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0-1 Knapsack problem	

•  Problem, in other words, is to find 

∑∑
∈∈

≤
Ti

i
Ti

i Wwb  subject to max

  The problem is called a “0-1” problem, because each item 
must be entirely accepted or rejected.	


0-1 Knapsack problem: brute-force 
approach	


Let’s first solve this problem with a straightforward algorithm 
•  Since there are n items, there are 2n possible combinations of 

items. 
•  We go through all combinations and find the one with the 

most total value and with total weight less or equal to W 
•  Running time will be O(2n) 

•  Can we do better?  
•  Yes, with an algorithm based on dynamic programming 
•  We need to carefully identify the subproblems 
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Defining a Subproblem 	


If items are labeled 1..n, then a subproblem would be to find 
an optimal solution for Sk = {items labeled 1, 2, .. k} 
 
•  This is a valid subproblem definition. 
•  The question is: can we describe the final solution (Sn ) in 

terms of subproblems (Sk)?  
•  Unfortunately, we can’t do that. Explanation follows…. 

Defining a Subproblem	


Max weight: W = 20	

For S4:	


Total weight: 14;	

total benefit: 20	


w1 =2	

b1 =3	


w2 =4	

b2 =5	


w3 =5	

b3 =8	


w4 =3	

b4 =4	


wi	
 bi	


10	


8	
5	


5	
4	


4	
3	


3	
2	


Weight	
 Benefit	


9	


Item	

#	


4	


3	


2	


1	


5	


S4	

S5	


w1 =2	

b1 =3	


w2 =4	

b2 =5	


w3 =5	

b3 =8	


w4 =9	

b4 =10	


For S5:	

Total weight: 20	

total benefit: 26	


Solution for S4 is not part of 
the solution for S5!!!	


?	
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The Knapsack Problem  ���
And Optimal Substructure	


•  To show this for the 0-1 problem, consider the most valuable 
load weighing at most W pounds	


•  If we remove item j from the load, what do we know about the 
remaining load?	


•  A: remainder must be the most valuable load weighing at 
most W - wj that thief could take from museum, excluding 
item j 	


Defining a Subproblem (continued)	

•  As we have seen, the solution for S4 is not part of the 

solution for S5 
•  So our definition of a subproblem is flawed and we need 

another one! 
•  Let’s add another parameter: w, which will represent the 

exact weight for each subset of items 
•  The subproblem then will be to compute B[k,w]	
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Recursive Formula for subproblems	


•  It means, that the best subset of Sk that has total weight w 
is one of the two: 

1) the best subset of Sk-1 that has total weight w,    or 
2) the best subset of Sk-1 that has total weight w-wk plus the 

item k 

⎩
⎨
⎧

+−−−

>−
=

else  }],1[],,1[max{
 if         ],1[

],[
kk

k

bwwkBwkB
wwwkB

wkB

  Recursive formula for subproblems:	


Recursive Formula	


•  The best subset of Sk that has the total weight w, either 
contains item k or not. 
•  First case: wk>w. Item k can’t be part of the solution, 

since if it was, the total weight would be > w, which is 
unacceptable 
•  Second case: wk <=w. Then the item k can be in the 

solution, and we choose the case with greater value 

⎩
⎨
⎧

+−−−

>−
=

else  }],1[],,1[max{
 if         ],1[

],[
kk

k

bwwkBwkB
wwwkB

wkB
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0-1 Knapsack Algorithm	

for w = 0 to W!
!B[0,w] = 0!
for i = 0 to n!
!B[i,0] = 0!
!for w = 0 to W!
! !if wi <= w // item i can be part of the solution!
! ! !if bi + B[i-1,w-wi] > B[i-1,w]!
! ! ! !B[i,w] = bi + B[i-1,w- wi]!
! ! !else!
! ! ! !B[i,w] = B[i-1,w]!
! !else B[i,w] = B[i-1,w]  // wi > w !

Running time	

for w = 0 to W!
!B[0,w] = 0!
for i = 0 to n!
!B[i,0] = 0!
!for w = 0 to W!
! !< the rest of the code >!

What is the running time of this algorithm?	


O(W)	


O(W)	


Repeat n times	


O(nW)	


Remember that the brute-force algorithm 	

takes O(2n)	
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Example	

Let’s run our algorithm on the 	

following data:	

	

n = 4 (# of elements)	

W = 5 (max weight)	

Elements (weight, benefit):	

(2,3), (3,4), (4,5), (5,6)	


Example (2)	


for w = 0 to W	

	
B[0,w] = 0	


0	

0	

0	

0	


0	

0	


W	

0	

1	

2	

3	


4	


5	


i	
 0	
 1	
 2	
 3	


4	




4/10/14	


19	


Example (3)	


for i = 0 to n	

	
B[i,0] = 0	


0	

0	

0	

0	


0	

0	


W	

0	

1	

2	

3	


4	


5	


i	
 0	
 1	
 2	
 3	


0	
 0	
 0	
 0	


4	


Example (4)	


    if wi <= w // item i can be part of the solution	

        if bi + B[i-1,w-wi] > B[i-1,w]	

            B[i,w] = bi + B[i-1,w- wi]	

        else	

            B[i,w] = B[i-1,w]	

    else B[i,w] = B[i-1,w]  // wi > w 	


0	

0	

0	

0	


0	

0	


W	

0	

1	

2	

3	


4	


5	


i	
 0	
 1	
 2	
 3	


0	
 0	
 0	
 0	

i=1	

bi=3	

wi=2	

w=1	


w-wi =-1	


Items:	

1: (2,3)	

2: (3,4)	

3: (4,5) 	

4: (5,6)	


4	


0	
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Example (5)	


    if wi <= w // item i can be part of the solution	

        if bi + B[i-1,w-wi] > B[i-1,w]	

            B[i,w] = bi + B[i-1,w- wi]	

        else	

            B[i,w] = B[i-1,w]	

    else B[i,w] = B[i-1,w]  // wi > w 	


0	

0	

0	

0	


0	

0	


W	

0	

1	

2	

3	


4	


5	


i	
 0	
 1	
 2	
 3	


0	
 0	
 0	
 0	

i=1	

bi=3	

wi=2	

w=2	


w-wi =0	


Items:	

1: (2,3)	

2: (3,4)	

3: (4,5) 	

4: (5,6)	


4	


0	

3	


Example (6)	


    if wi <= w // item i can be part of the solution	

        if bi + B[i-1,w-wi] > B[i-1,w]	

            B[i,w] = bi + B[i-1,w- wi]	

        else	

            B[i,w] = B[i-1,w]	

    else B[i,w] = B[i-1,w]  // wi > w 	


0	

0	

0	

0	


0	

0	


W	

0	

1	

2	

3	


4	


5	


i	
 0	
 1	
 2	
 3	


0	
 0	
 0	
 0	

i=1	

bi=3	

wi=2	

w=3	


w-wi=1	


Items:	

1: (2,3)	

2: (3,4)	

3: (4,5) 	

4: (5,6)	


4	


0	

3	

3	
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Example (7)	


    if wi <= w // item i can be part of the solution	

        if bi + B[i-1,w-wi] > B[i-1,w]	

            B[i,w] = bi + B[i-1,w- wi]	

        else	

            B[i,w] = B[i-1,w]	

    else B[i,w] = B[i-1,w]  // wi > w 	


0	

0	

0	

0	


0	

0	


W	

0	

1	

2	

3	


4	


5	


i	
 0	
 1	
 2	
 3	


0	
 0	
 0	
 0	

i=1	

bi=3	

wi=2	

w=4	


w-wi=2	


Items:	

1: (2,3)	

2: (3,4)	

3: (4,5) 	

4: (5,6)	


4	


0	

3	

3	

3	


Example (8)	


    if wi <= w // item i can be part of the solution	

        if bi + B[i-1,w-wi] > B[i-1,w]	

            B[i,w] = bi + B[i-1,w- wi]	

        else	

            B[i,w] = B[i-1,w]	

    else B[i,w] = B[i-1,w]  // wi > w 	


0	

0	

0	

0	


0	

0	


W	

0	

1	

2	

3	


4	


5	


i	
 0	
 1	
 2	
 3	


0	
 0	
 0	
 0	

i=1	

bi=3	

wi=2	

w=5	


w-wi=2	


Items:	

1: (2,3)	

2: (3,4)	

3: (4,5) 	

4: (5,6)	


4	


0	

3	

3	

3	

3	
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Example (9)	


    if wi <= w // item i can be part of the solution	

        if bi + B[i-1,w-wi] > B[i-1,w]	

            B[i,w] = bi + B[i-1,w- wi]	

        else	

            B[i,w] = B[i-1,w]	

    else B[i,w] = B[i-1,w]  // wi > w 	


0	

0	

0	

0	


0	

0	


W	

0	

1	

2	

3	


4	


5	


i	
 0	
 1	
 2	
 3	


0	
 0	
 0	
 0	

i=2	

bi=4	

wi=3	

w=1	


w-wi=-2	


Items:	

1: (2,3)	

2: (3,4)	

3: (4,5) 	

4: (5,6)	


4	


0	

3	

3	

3	

3	


0	


Example (10)	


    if wi <= w // item i can be part of the solution	

        if bi + B[i-1,w-wi] > B[i-1,w]	

            B[i,w] = bi + B[i-1,w- wi]	


        else	

            B[i,w] = B[i-1,w]	


    else B[i,w] = B[i-1,w]  // wi > w 	


0	

0	

0	

0	


0	

0	


W	

0	

1	

2	

3	


4	


5	


i	
 0	
 1	
 2	
 3	


0	
 0	
 0	
 0	

i=2	

bi=4	

wi=3	

w=2	


w-wi=-1	


Items:	

1: (2,3)	

2: (3,4)	

3: (4,5) 	

4: (5,6)	


4	


0	

3	

3	

3	

3	


0	

3	
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Example (11)	


    if wi <= w // item i can be part of the solution	

        if bi + B[i-1,w-wi] > B[i-1,w]	

            B[i,w] = bi + B[i-1,w- wi]	

        else	

            B[i,w] = B[i-1,w]	

    else B[i,w] = B[i-1,w]  // wi > w 	


0	

0	

0	

0	


0	

0	


W	

0	

1	

2	

3	


4	


5	


i	
 0	
 1	
 2	
 3	


0	
 0	
 0	
 0	

i=2	

bi=4	

wi=3	

w=3	


w-wi=0	


Items:	

1: (2,3)	

2: (3,4)	

3: (4,5) 	

4: (5,6)	


4	


0	

3	

3	

3	

3	


0	

3	

4	


Example (12)	


    if wi <= w // item i can be part of the solution	

        if bi + B[i-1,w-wi] > B[i-1,w]	

            B[i,w] = bi + B[i-1,w- wi]	

        else	

            B[i,w] = B[i-1,w]	

    else B[i,w] = B[i-1,w]  // wi > w 	


0	

0	

0	

0	


0	

0	


W	

0	

1	

2	

3	


4	


5	


i	
 0	
 1	
 2	
 3	


0	
 0	
 0	
 0	

i=2	

bi=4	

wi=3	

w=4	


w-wi=1	


Items:	

1: (2,3)	

2: (3,4)	

3: (4,5) 	

4: (5,6)	


4	


0	

3	

3	

3	

3	


0	

3	

4	

4	
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Example (13)	


    if wi <= w // item i can be part of the solution	

        if bi + B[i-1,w-wi] > B[i-1,w]	

            B[i,w] = bi + B[i-1,w- wi]	

        else	

            B[i,w] = B[i-1,w]	

    else B[i,w] = B[i-1,w]  // wi > w 	


0	

0	

0	

0	


0	

0	


W	

0	

1	

2	

3	


4	


5	


i	
 0	
 1	
 2	
 3	


0	
 0	
 0	
 0	

i=2	

bi=4	

wi=3	

w=5	


w-wi=2	


Items:	

1: (2,3)	

2: (3,4)	

3: (4,5) 	

4: (5,6)	


4	


0	

3	

3	

3	

3	


0	

3	

4	

4	

7	


Example (14)	


    if wi <= w // item i can be part of the solution	

        if bi + B[i-1,w-wi] > B[i-1,w]	

            B[i,w] = bi + B[i-1,w- wi]	

        else	

            B[i,w] = B[i-1,w]	

    else B[i,w] = B[i-1,w]  // wi > w 	


0	

0	

0	

0	


0	

0	


W	

0	

1	

2	

3	


4	


5	


i	
 0	
 1	
 2	
 3	


0	
 0	
 0	
 0	

i=3	

bi=5	

wi=4	


w=1..3	


Items:	

1: (2,3)	

2: (3,4)	

3: (4,5) 	

4: (5,6)	


4	


0	

3	

3	

3	

3	


0	
0	

3	

4	

4	

7	


0	

3	

4	
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Example (15)	


    if wi <= w // item i can be part of the solution	

        if bi + B[i-1,w-wi] > B[i-1,w]	

            B[i,w] = bi + B[i-1,w- wi]	

        else	

            B[i,w] = B[i-1,w]	

    else B[i,w] = B[i-1,w]  // wi > w 	


0	

0	

0	

0	


0	

0	


W	

0	

1	

2	

3	


4	


5	


i	
 0	
 1	
 2	
 3	


0	
 0	
 0	
 0	

i=3	

bi=5	

wi=4	

w=4	


w- wi=0	


Items:	

1: (2,3)	

2: (3,4)	

3: (4,5) 	

4: (5,6)	


4	


0	
 0	
0	

3	

4	

4	

7	


0	

3	

4	

5	


3	

3	

3	

3	


Example (15)	


    if wi <= w // item i can be part of the solution	

        if bi + B[i-1,w-wi] > B[i-1,w]	

            B[i,w] = bi + B[i-1,w- wi]	

        else	

            B[i,w] = B[i-1,w]	

    else B[i,w] = B[i-1,w]  // wi > w 	


0	

0	

0	

0	


0	

0	


W	

0	

1	

2	

3	


4	


5	


i	
 0	
 1	
 2	
 3	


0	
 0	
 0	
 0	

i=3	

bi=5	

wi=4	

w=5	


w- wi=1	


Items:	

1: (2,3)	

2: (3,4)	

3: (4,5) 	

4: (5,6)	


4	


0	
 0	
0	

3	

4	

4	

7	


0	

3	

4	

5	

7	


3	

3	

3	

3	




4/10/14	


26	


Example (16)	


    if wi <= w // item i can be part of the solution	

        if bi + B[i-1,w-wi] > B[i-1,w]	

            B[i,w] = bi + B[i-1,w- wi]	


        else	

            B[i,w] = B[i-1,w]	


    else B[i,w] = B[i-1,w]  // wi > w 	


0	

0	

0	

0	


0	

0	


W	

0	

1	

2	

3	


4	


5	


i	
 0	
 1	
 2	
 3	


0	
 0	
 0	
 0	

i=3	

bi=5	

wi=4	


w=1..4	


Items:	

1: (2,3)	

2: (3,4)	

3: (4,5) 	

4: (5,6)	


4	


0	
 0	
0	

3	

4	

4	

7	


0	

3	

4	

5	

7	


0	

3	

4	

5	


3	

3	

3	

3	


Example (17)	


    if wi <= w // item i can be part of the solution	

        if bi + B[i-1,w-wi] > B[i-1,w]	

            B[i,w] = bi + B[i-1,w- wi]	

        else	

            B[i,w] = B[i-1,w]	

    else B[i,w] = B[i-1,w]  // wi > w 	


0	

0	

0	

0	


0	

0	


W	

0	

1	

2	

3	


4	


5	


i	
 0	
 1	
 2	
 3	


0	
 0	
 0	
 0	

i=3	

bi=5	

wi=4	

w=5	

	


Items:	

1: (2,3)	

2: (3,4)	

3: (4,5) 	

4: (5,6)	


4	


0	
 0	
0	

3	

4	

4	

7	


0	

3	

4	

5	

7	


0	

3	

4	

5	

7	


3	

3	

3	

3	
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Comments	


•  This algorithm only finds the max possible value that can 
be carried in the knapsack 
•  To know the items that make this maximum value, an 

addition to this algorithm is necessary 
•  Please see LCS algorithm from the previous lecture for 

the example how to extract this data from the table we 
built 


