
4/10/14	

1	

CS583 Lecture 11	

 Jana Kosecka	

 	

Dynamic Programming 	

Greedy Algorithms	

 	

Many slides here are based on D. Luebke slides	

Review: Dynamic Programming	

•  A meta-technique, not an algorithm ���
(like divide & conquer)	

•  Applicable when problem breaks down into recurring small

sub-problems	

4/10/14	

2	

Review: Dynamic Programming	

•  Problem solving methodology (as divide and conquer)	

•  Idea: divide into sub-problems, solve sub-problems	

•  Applicable to optimization problems 	

•  Ingredients	

1. Characterize the optimal solution	

2. Recursively define a value of the optimal solution	

3. Compute values of optimal solution bottom up	

4. Construct an optimal solution from computed inf. 	

Greedy Algorithms	

•  A greedy algorithm always makes the choice that looks best
at the moment	

	

•  The hope: a locally optimal choice will lead to a globally

optimal solution	

•  Minimum weight spanning tree, Dijstra’s algorithm (greedy)	

•  For many problems dynamic programming can be overkill;
greedy algorithms tend to be easier to code	

4/10/14	

3	

Activity-Selection Problem	

•  Problem: get your money’s worth out of a carnival	

•  Buy a wristband that lets you onto any ride	

•  Lots of rides, each starting and ending at different times	

•  Your goal: ride as many rides as possible	

•  Another, alternative goal that we don’t solve here: maximize

time spent on rides	

•  Welcome to the activity selection problem	

•  General: how to schedule activities which require use of a
common resource – goal select maximal set of compatible
activities	

Activity-Selection	

•  Formally:	

•  Given a set S of n activities	

si = start time of activity I	

fi = finish time of activity I	

Find max-size subset A of compatible activities	

	

•  Assume (wlog) that f1 ≤ f2 ≤ … ≤ fn

•  Final times are sorted
•  Compatible activities - if their intervals do not overlap

1
2

3

4

5

6

4/10/14	

4	

Activity Selection	

•  Example	

	
 i	
 1 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	

si	
 1	
 3	
 0	
 5	
 3	
 5	
 6	
 8	
 8	
 2	
 12	

fi	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	
 12	
 13	
 14	

€

a3,a9,a11

€

a1,a4 ,a8,a11

€

a2,a4 ,a9,a11

Compatible activities	

Activity Selection	

•  Optimal substructure (as in dynamic programming)	

•  Set of activities compatible with	

•  Need to find a maximal set	

•  Suppose the set contains activity	

•  Recursive definition 	
	

€

Sij = {ak ∈ S; f i ≤ sk < fk ≤ s j}

€

fi,s j

€

ak

€

Sij = Sik + Skj +1

€

c[i, j] =
0 if Sij = 0

max
i<k< j

{c[i,k] + c[k, j] +1} otherwise

"

$

% $

4/10/14	

5	

Activity Selection: Optimal Substructure 	

•  Suppose A is the solution set of the problem	

•  Let k be the minimum activity in A (i.e., the one with the

earliest finish time). Then A’= A - {k} is an optimal solution
to S’ = {i ∈ S: si ≥ fk}	

•  In words: once activity #1 is selected, the problem reduces to	

finding an optimal solution for activity-selection over activities	

in S compatible with #1	

•  Proof: if we could find optimal solution B’ to S’ 	

•  with |B| > |A - {k}|,	

•  Then B U {k} is compatible 	

•  And |B U {k}| > |A| contradition since we said A is the

optimal solution to the problem	

Activity Selection	

•  Dynamic Programming Strategy	

1.  Identify sub-problems	

2.  Recursively define the cost 	

3.  Fill in the cost table in the tabular form	

	

4.  Need to solve all sub-problems	

	

	

 	

€

c[i, j] =
0 if Sij = 0

max
i<k< j

{c[i,k] + c[k, j] +1} otherwise

"

$

% $

4/10/14	

6	

Activity Selection	

Converting dynamic programming to greedy solution	

Greedy choice property:	

Observation: given activity with the earliest finishing time, 	

In then that activity will be in some maximal size subset of

mutually compatible activities of 	

(sketch the proof: more details in the book)	

 	

Conclusion: 	

•  The activity we choose is always the one with earliest

finishing time	

•  Greedy choice 	

•  Show that it always will maximize the amount of scheduled

activities	

€

am

€

Sij

€

Sij

Recursive Alg.	

RecursiveActivitySelect(s,f,k,n)!
1.  m = k+1!
2.  while m < n and !
3.  do m = m+1!
4.  if m < n!
5.  then return !
 RecursiveActivitySelector(s,f,m,n)!

Call RecursiveActivitySelector(s,f,0,n)!

€

am ∪
€

sm < fk

4/10/14	

7	

Recursive Alg. 	

i	
 1 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	

si	
 1	
 3	
 0	
 5	
 3	
 5	
 6	
 8	
 8	
 2	
 12	

fi	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	
 12	
 13	
 14	

RecursiveActivitySelector(s,f,0,n)!

RecursiveActivitySelect(s,f,k,n)!
1.  m = k+1!
2.  While m =< n and !
3.  do m = m+1!
4.  if m =< n!
5.  then return !
 RecursiveActivitySelector(s,f,m,n)!

Selected: !

€

am ∪
€

sm < fk % m=1

€

sm

€

a1,a4 ,a8,a11

Activity Selection:���
Repeated Subproblems	

•  Consider a recursive algorithm that tries all possible
compatible subsets to find a maximal set, and notice repeated
subproblems:	

S
1∈A?

S’
2∈A?

S-{1}
2∈A?

S-{1,2} S’’ S’-{2} S’’

yes no

no no yes yes

4/10/14	

8	

Greedy Choice Property	

•  Dynamic programming? Memoize? Yes, but…	

•  Activity selection problem also exhibits the greedy choice

property:	

•  Locally optimal choice ⇒ globally optimal sol’n	

•  Them 16.1: if S is an activity selection problem sorted by
finish time, then ∃ optimal solution A ⊆ S such that {1} ∈ A	

•  Sketch of proof: if ∃ optimal solution B that does not contain
{1}, can always replace first activity in B with {1} (Why?).
Same number of activities, thus optimal.	

Activity Selection:A Greedy Algorithm	

•  So actual algorithm is simple:	

	

•  Sort the activities by finish time	

•  Schedule the first activity	

•  Then schedule the next activity in sorted list which starts

after previous activity finishes	

•  Repeat until no more activities	

•  Easy iterative algorithm	

	

•  Intuition is even more simple:	

Always pick the shortest ride available at the time	

4/10/14	

9	

Huffman coding 	

•  Design of optimal codes	

•  Example: 	

•  Idea how to design optimal code ? 	

•  Notion of prefix code	

•  Greedy Algorithm for constructing optimal codes	

Huffman coding	

Algorithm:	

1. Keep the frequencies in Priority Queue (build heap)	

2. Take two minimal elements (extract min) 	

3. Insert their sum to queue	

4. Until queue is empty	

Running time O(n lgn)	

4/10/14	

10	

Huffman coding	

•  What is the optimal substructure and greedy choice property ?	

•  Given alphabet C each character has frequency f[c]	

•  Suppose x and y are characters with lowest frequencies	

•  Then there exist an optimal code where x and y have same

length and differ only in last bit.	

•  Optimal substructure property	

•  Given C and C’ with the x and y removed and new symbol 	

•  Added where f[z] = f[x]+f[y]. If we have a tree T’ which

represents optimal code for C’ then replacing node z with two
children x and y will yield optimal code for C	

Review:���
The Knapsack Problem	

•  The famous knapsack problem:	

A thief breaks into a museum. Fabulous paintings,	

sculptures, and jewels are everywhere. The thief has a good	

eye for the value of these objects, and knows that each will	

fetch hundreds or thousands of dollars on the clandestine art	

collector’s market. But, the thief has only brought a single	

knapsack to the scene of the robbery, and can take away	

only what he can carry. What items should the thief take to	

maximize the haul?	

4/10/14	

11	

Review: The Knapsack Problem	

•  More formally, the 0-1 knapsack problem:	

• The thief must choose among n items, where the ith item

worth vi dollars and weighs wi pounds	

• Carrying at most W pounds, maximize value	

Note: assume vi, wi, and W are all integers	

“0-1” b/c each item must be taken or left in entirety	

•  A variation, the fractional knapsack problem:	

Thief can take fractions of items	

Think of items in 0-1 problem as gold ingots, in fractional

problem as buckets of gold dust	

Solving The Knapsack Problem	

•  The optimal solution to the fractional knapsack problem can
be found with a greedy algorithm	

How?	

•  The optimal solution to the 0-1 problem cannot be found with
the same greedy strategy	

•  Greedy strategy: take in order of dollars/pound	

Example: 3 items weighing 10, 20, and 30 pounds, knapsack	

can hold 50 pounds	

	

Suppose item 2 is worth $100. Assign values to the other

items so that the greedy strategy will fail 	

4/10/14	

12	

The Knapsack Problem: ���
Greedy Vs. Dynamic	

•  The fractional problem can be solved greedily	

•  The 0-1 problem cannot be solved with a greedy approach	

•  0-1 can be solved with dynamic programming	

0-1 Knapsack problem:���
a picture	

W = 20	

wi	
 bi	

10	
9	

8	
5	

5	
4	

4	
3	

3	
2	

Weight	
 Benefit value	

This is a knapsack	

Max weight: W = 20	

Items	

4/10/14	

13	

0-1 Knapsack problem	

•  Problem, in other words, is to find

∑∑
∈∈

≤
Ti

i
Ti

i Wwb subject to max

  The problem is called a “0-1” problem, because each item
must be entirely accepted or rejected.	

0-1 Knapsack problem: brute-force
approach	

Let’s first solve this problem with a straightforward algorithm
•  Since there are n items, there are 2n possible combinations of

items.
•  We go through all combinations and find the one with the

most total value and with total weight less or equal to W
•  Running time will be O(2n)

•  Can we do better?
•  Yes, with an algorithm based on dynamic programming
•  We need to carefully identify the subproblems

4/10/14	

14	

Defining a Subproblem 	

If items are labeled 1..n, then a subproblem would be to find
an optimal solution for Sk = {items labeled 1, 2, .. k}

•  This is a valid subproblem definition.
•  The question is: can we describe the final solution (Sn) in

terms of subproblems (Sk)?
•  Unfortunately, we can’t do that. Explanation follows….

Defining a Subproblem	

Max weight: W = 20	

For S4:	

Total weight: 14;	

total benefit: 20	

w1 =2	

b1 =3	

w2 =4	

b2 =5	

w3 =5	

b3 =8	

w4 =3	

b4 =4	

wi	
 bi	

10	

8	
5	

5	
4	

4	
3	

3	
2	

Weight	
 Benefit	

9	

Item	

#	

4	

3	

2	

1	

5	

S4	

S5	

w1 =2	

b1 =3	

w2 =4	

b2 =5	

w3 =5	

b3 =8	

w4 =9	

b4 =10	

For S5:	

Total weight: 20	

total benefit: 26	

Solution for S4 is not part of
the solution for S5!!!	

?	

4/10/14	

15	

The Knapsack Problem ���
And Optimal Substructure	

•  To show this for the 0-1 problem, consider the most valuable
load weighing at most W pounds	

•  If we remove item j from the load, what do we know about the
remaining load?	

•  A: remainder must be the most valuable load weighing at
most W - wj that thief could take from museum, excluding
item j 	

Defining a Subproblem (continued)	

•  As we have seen, the solution for S4 is not part of the

solution for S5
•  So our definition of a subproblem is flawed and we need

another one!
•  Let’s add another parameter: w, which will represent the

exact weight for each subset of items
•  The subproblem then will be to compute B[k,w]	

4/10/14	

16	

Recursive Formula for subproblems	

•  It means, that the best subset of Sk that has total weight w
is one of the two:

1) the best subset of Sk-1 that has total weight w, or
2) the best subset of Sk-1 that has total weight w-wk plus the

item k

⎩
⎨
⎧

+−−−

>−
=

else }],1[],,1[max{
 if],1[

],[
kk

k

bwwkBwkB
wwwkB

wkB

  Recursive formula for subproblems:	

Recursive Formula	

•  The best subset of Sk that has the total weight w, either
contains item k or not.
•  First case: wk>w. Item k can’t be part of the solution,

since if it was, the total weight would be > w, which is
unacceptable
•  Second case: wk <=w. Then the item k can be in the

solution, and we choose the case with greater value

⎩
⎨
⎧

+−−−

>−
=

else }],1[],,1[max{
 if],1[

],[
kk

k

bwwkBwkB
wwwkB

wkB

4/10/14	

17	

0-1 Knapsack Algorithm	

for w = 0 to W!
!B[0,w] = 0!
for i = 0 to n!
!B[i,0] = 0!
!for w = 0 to W!
! !if wi <= w // item i can be part of the solution!
! ! !if bi + B[i-1,w-wi] > B[i-1,w]!
! ! ! !B[i,w] = bi + B[i-1,w- wi]!
! ! !else!
! ! ! !B[i,w] = B[i-1,w]!
! !else B[i,w] = B[i-1,w] // wi > w !

Running time	

for w = 0 to W!
!B[0,w] = 0!
for i = 0 to n!
!B[i,0] = 0!
!for w = 0 to W!
! !< the rest of the code >!

What is the running time of this algorithm?	

O(W)	

O(W)	

Repeat n times	

O(nW)	

Remember that the brute-force algorithm 	

takes O(2n)	

4/10/14	

18	

Example	

Let’s run our algorithm on the 	

following data:	

	

n = 4 (# of elements)	

W = 5 (max weight)	

Elements (weight, benefit):	

(2,3), (3,4), (4,5), (5,6)	

Example (2)	

for w = 0 to W	

	
B[0,w] = 0	

0	

0	

0	

0	

0	

0	

W	

0	

1	

2	

3	

4	

5	

i	
 0	
 1	
 2	
 3	

4	

4/10/14	

19	

Example (3)	

for i = 0 to n	

	
B[i,0] = 0	

0	

0	

0	

0	

0	

0	

W	

0	

1	

2	

3	

4	

5	

i	
 0	
 1	
 2	
 3	

0	
 0	
 0	
 0	

4	

Example (4)	

 if wi <= w // item i can be part of the solution	

 if bi + B[i-1,w-wi] > B[i-1,w]	

 B[i,w] = bi + B[i-1,w- wi]	

 else	

 B[i,w] = B[i-1,w]	

 else B[i,w] = B[i-1,w] // wi > w 	

0	

0	

0	

0	

0	

0	

W	

0	

1	

2	

3	

4	

5	

i	
 0	
 1	
 2	
 3	

0	
 0	
 0	
 0	

i=1	

bi=3	

wi=2	

w=1	

w-wi =-1	

Items:	

1: (2,3)	

2: (3,4)	

3: (4,5) 	

4: (5,6)	

4	

0	

4/10/14	

20	

Example (5)	

 if wi <= w // item i can be part of the solution	

 if bi + B[i-1,w-wi] > B[i-1,w]	

 B[i,w] = bi + B[i-1,w- wi]	

 else	

 B[i,w] = B[i-1,w]	

 else B[i,w] = B[i-1,w] // wi > w 	

0	

0	

0	

0	

0	

0	

W	

0	

1	

2	

3	

4	

5	

i	
 0	
 1	
 2	
 3	

0	
 0	
 0	
 0	

i=1	

bi=3	

wi=2	

w=2	

w-wi =0	

Items:	

1: (2,3)	

2: (3,4)	

3: (4,5) 	

4: (5,6)	

4	

0	

3	

Example (6)	

 if wi <= w // item i can be part of the solution	

 if bi + B[i-1,w-wi] > B[i-1,w]	

 B[i,w] = bi + B[i-1,w- wi]	

 else	

 B[i,w] = B[i-1,w]	

 else B[i,w] = B[i-1,w] // wi > w 	

0	

0	

0	

0	

0	

0	

W	

0	

1	

2	

3	

4	

5	

i	
 0	
 1	
 2	
 3	

0	
 0	
 0	
 0	

i=1	

bi=3	

wi=2	

w=3	

w-wi=1	

Items:	

1: (2,3)	

2: (3,4)	

3: (4,5) 	

4: (5,6)	

4	

0	

3	

3	

4/10/14	

21	

Example (7)	

 if wi <= w // item i can be part of the solution	

 if bi + B[i-1,w-wi] > B[i-1,w]	

 B[i,w] = bi + B[i-1,w- wi]	

 else	

 B[i,w] = B[i-1,w]	

 else B[i,w] = B[i-1,w] // wi > w 	

0	

0	

0	

0	

0	

0	

W	

0	

1	

2	

3	

4	

5	

i	
 0	
 1	
 2	
 3	

0	
 0	
 0	
 0	

i=1	

bi=3	

wi=2	

w=4	

w-wi=2	

Items:	

1: (2,3)	

2: (3,4)	

3: (4,5) 	

4: (5,6)	

4	

0	

3	

3	

3	

Example (8)	

 if wi <= w // item i can be part of the solution	

 if bi + B[i-1,w-wi] > B[i-1,w]	

 B[i,w] = bi + B[i-1,w- wi]	

 else	

 B[i,w] = B[i-1,w]	

 else B[i,w] = B[i-1,w] // wi > w 	

0	

0	

0	

0	

0	

0	

W	

0	

1	

2	

3	

4	

5	

i	
 0	
 1	
 2	
 3	

0	
 0	
 0	
 0	

i=1	

bi=3	

wi=2	

w=5	

w-wi=2	

Items:	

1: (2,3)	

2: (3,4)	

3: (4,5) 	

4: (5,6)	

4	

0	

3	

3	

3	

3	

4/10/14	

22	

Example (9)	

 if wi <= w // item i can be part of the solution	

 if bi + B[i-1,w-wi] > B[i-1,w]	

 B[i,w] = bi + B[i-1,w- wi]	

 else	

 B[i,w] = B[i-1,w]	

 else B[i,w] = B[i-1,w] // wi > w 	

0	

0	

0	

0	

0	

0	

W	

0	

1	

2	

3	

4	

5	

i	
 0	
 1	
 2	
 3	

0	
 0	
 0	
 0	

i=2	

bi=4	

wi=3	

w=1	

w-wi=-2	

Items:	

1: (2,3)	

2: (3,4)	

3: (4,5) 	

4: (5,6)	

4	

0	

3	

3	

3	

3	

0	

Example (10)	

 if wi <= w // item i can be part of the solution	

 if bi + B[i-1,w-wi] > B[i-1,w]	

 B[i,w] = bi + B[i-1,w- wi]	

 else	

 B[i,w] = B[i-1,w]	

 else B[i,w] = B[i-1,w] // wi > w 	

0	

0	

0	

0	

0	

0	

W	

0	

1	

2	

3	

4	

5	

i	
 0	
 1	
 2	
 3	

0	
 0	
 0	
 0	

i=2	

bi=4	

wi=3	

w=2	

w-wi=-1	

Items:	

1: (2,3)	

2: (3,4)	

3: (4,5) 	

4: (5,6)	

4	

0	

3	

3	

3	

3	

0	

3	

4/10/14	

23	

Example (11)	

 if wi <= w // item i can be part of the solution	

 if bi + B[i-1,w-wi] > B[i-1,w]	

 B[i,w] = bi + B[i-1,w- wi]	

 else	

 B[i,w] = B[i-1,w]	

 else B[i,w] = B[i-1,w] // wi > w 	

0	

0	

0	

0	

0	

0	

W	

0	

1	

2	

3	

4	

5	

i	
 0	
 1	
 2	
 3	

0	
 0	
 0	
 0	

i=2	

bi=4	

wi=3	

w=3	

w-wi=0	

Items:	

1: (2,3)	

2: (3,4)	

3: (4,5) 	

4: (5,6)	

4	

0	

3	

3	

3	

3	

0	

3	

4	

Example (12)	

 if wi <= w // item i can be part of the solution	

 if bi + B[i-1,w-wi] > B[i-1,w]	

 B[i,w] = bi + B[i-1,w- wi]	

 else	

 B[i,w] = B[i-1,w]	

 else B[i,w] = B[i-1,w] // wi > w 	

0	

0	

0	

0	

0	

0	

W	

0	

1	

2	

3	

4	

5	

i	
 0	
 1	
 2	
 3	

0	
 0	
 0	
 0	

i=2	

bi=4	

wi=3	

w=4	

w-wi=1	

Items:	

1: (2,3)	

2: (3,4)	

3: (4,5) 	

4: (5,6)	

4	

0	

3	

3	

3	

3	

0	

3	

4	

4	

4/10/14	

24	

Example (13)	

 if wi <= w // item i can be part of the solution	

 if bi + B[i-1,w-wi] > B[i-1,w]	

 B[i,w] = bi + B[i-1,w- wi]	

 else	

 B[i,w] = B[i-1,w]	

 else B[i,w] = B[i-1,w] // wi > w 	

0	

0	

0	

0	

0	

0	

W	

0	

1	

2	

3	

4	

5	

i	
 0	
 1	
 2	
 3	

0	
 0	
 0	
 0	

i=2	

bi=4	

wi=3	

w=5	

w-wi=2	

Items:	

1: (2,3)	

2: (3,4)	

3: (4,5) 	

4: (5,6)	

4	

0	

3	

3	

3	

3	

0	

3	

4	

4	

7	

Example (14)	

 if wi <= w // item i can be part of the solution	

 if bi + B[i-1,w-wi] > B[i-1,w]	

 B[i,w] = bi + B[i-1,w- wi]	

 else	

 B[i,w] = B[i-1,w]	

 else B[i,w] = B[i-1,w] // wi > w 	

0	

0	

0	

0	

0	

0	

W	

0	

1	

2	

3	

4	

5	

i	
 0	
 1	
 2	
 3	

0	
 0	
 0	
 0	

i=3	

bi=5	

wi=4	

w=1..3	

Items:	

1: (2,3)	

2: (3,4)	

3: (4,5) 	

4: (5,6)	

4	

0	

3	

3	

3	

3	

0	
0	

3	

4	

4	

7	

0	

3	

4	

4/10/14	

25	

Example (15)	

 if wi <= w // item i can be part of the solution	

 if bi + B[i-1,w-wi] > B[i-1,w]	

 B[i,w] = bi + B[i-1,w- wi]	

 else	

 B[i,w] = B[i-1,w]	

 else B[i,w] = B[i-1,w] // wi > w 	

0	

0	

0	

0	

0	

0	

W	

0	

1	

2	

3	

4	

5	

i	
 0	
 1	
 2	
 3	

0	
 0	
 0	
 0	

i=3	

bi=5	

wi=4	

w=4	

w- wi=0	

Items:	

1: (2,3)	

2: (3,4)	

3: (4,5) 	

4: (5,6)	

4	

0	
 0	
0	

3	

4	

4	

7	

0	

3	

4	

5	

3	

3	

3	

3	

Example (15)	

 if wi <= w // item i can be part of the solution	

 if bi + B[i-1,w-wi] > B[i-1,w]	

 B[i,w] = bi + B[i-1,w- wi]	

 else	

 B[i,w] = B[i-1,w]	

 else B[i,w] = B[i-1,w] // wi > w 	

0	

0	

0	

0	

0	

0	

W	

0	

1	

2	

3	

4	

5	

i	
 0	
 1	
 2	
 3	

0	
 0	
 0	
 0	

i=3	

bi=5	

wi=4	

w=5	

w- wi=1	

Items:	

1: (2,3)	

2: (3,4)	

3: (4,5) 	

4: (5,6)	

4	

0	
 0	
0	

3	

4	

4	

7	

0	

3	

4	

5	

7	

3	

3	

3	

3	

4/10/14	

26	

Example (16)	

 if wi <= w // item i can be part of the solution	

 if bi + B[i-1,w-wi] > B[i-1,w]	

 B[i,w] = bi + B[i-1,w- wi]	

 else	

 B[i,w] = B[i-1,w]	

 else B[i,w] = B[i-1,w] // wi > w 	

0	

0	

0	

0	

0	

0	

W	

0	

1	

2	

3	

4	

5	

i	
 0	
 1	
 2	
 3	

0	
 0	
 0	
 0	

i=3	

bi=5	

wi=4	

w=1..4	

Items:	

1: (2,3)	

2: (3,4)	

3: (4,5) 	

4: (5,6)	

4	

0	
 0	
0	

3	

4	

4	

7	

0	

3	

4	

5	

7	

0	

3	

4	

5	

3	

3	

3	

3	

Example (17)	

 if wi <= w // item i can be part of the solution	

 if bi + B[i-1,w-wi] > B[i-1,w]	

 B[i,w] = bi + B[i-1,w- wi]	

 else	

 B[i,w] = B[i-1,w]	

 else B[i,w] = B[i-1,w] // wi > w 	

0	

0	

0	

0	

0	

0	

W	

0	

1	

2	

3	

4	

5	

i	
 0	
 1	
 2	
 3	

0	
 0	
 0	
 0	

i=3	

bi=5	

wi=4	

w=5	

	

Items:	

1: (2,3)	

2: (3,4)	

3: (4,5) 	

4: (5,6)	

4	

0	
 0	
0	

3	

4	

4	

7	

0	

3	

4	

5	

7	

0	

3	

4	

5	

7	

3	

3	

3	

3	

4/10/14	

27	

Comments	

•  This algorithm only finds the max possible value that can
be carried in the knapsack
•  To know the items that make this maximum value, an

addition to this algorithm is necessary
•  Please see LCS algorithm from the previous lecture for

the example how to extract this data from the table we
built

