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CS583 Lecture 12	


                                    Jana Kosecka	

	

                        Amortized/Accounting Analysis                                	

                                  Disjoint Sets	


 	


Previously	


•  Dynamic Programming 	

•  Greedy Algorithms	


Slight digression	

	

•  Amortized analysis	

•  Disjoint sets  	
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Amortized Analysis	

•  Amortized analysis computes running time of a sequence of n 	

operations	

	

•  Different then average analysis 	


Three techniques	

•  Aggregate analysis	

•  Accounting method	

•  Potential method	


Aggregate analysis	


•  Stack example PUSH(S,x) and POP(x) each takes O(1)	


•  Add operation MULTI-POP(S,k) pop multiple elements	


•  Cost of MULTI-POP(S,k)   min(s,k), where  s is the number of 
elements in the stack 	


•  Cost of a sequence of n operations PUSH, POP, MULTIPOP	

	

•  Worst case  for n operation O(n2) (why ? ) – not tight 	

•  Better cost  for n operations O(n)  (why ? )	

•  Amortized cost per operation O(n)/n = O(1).  	
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Accounting Analysis	

•  Another method for analyzing time to perform sequence	

   of operations	

•  If we have more then one type of operation, each operation 	

   can have different amortized cost	

•  Accounting method	


Charge each operation an amortized cost	

Amount not used stored in “bank”	

Later operations can used stored money	

Balance must not go negative	


•  Book also discusses potential method	

But we will not discuss it here	


•  Example: Dynamic Tables 	

•  Adjust the size of the table on the fly	

	


Accounting Method Example: ���
Dynamic Tables	


•  Implementing a table (e.g., hash table) for dynamic data, want 
to make it small as possible	

•  Problem: if too many items inserted, table may be too small	

•  Idea: allocate more memory as needed	
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Dynamic Tables	


1. Init table size m = 1	

2. Insert elements until number n > m	

3. Generate new table of size 2m (double the size)	

4. Reinsert old elements into new table (need table to be in 

continuous block of memory) 	

5. (back to step 2)	

•  What is the worst-case cost of an insert?	

•  One insert can be costly, but the total?	


•  Analyze cost on n Insert() ’s of initially empty table	


Analysis Of Dynamic Tables	

•  Let ci = cost of i-th insert	

•  ci = i if i-1 is exact power of 2, 1 otherwise	

•  Example:	


    Operation 	
Table Size 	
   Cost	


Insert(1) 1 1 1 
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Analysis Of Dynamic Tables	

•  Let ci = cost of i-th insert	

•  ci = i if i-1 is exact power of 2, 1 otherwise	

•  Example:	


    Operation 	
Table Size 	
   Cost	


Insert(1) 1 1 1 
Insert(2) 2 1 + 1 2 

Analysis Of Dynamic Tables	

•  Let ci = cost of i-th insert	

•  ci = i if i-1 is exact power of 2, 1 otherwise	

•  Example:	


    Operation 	
Table Size 	
   Cost	


Insert(1) 1 1 1 
Insert(2) 2 1 + 1 2 
Insert(3) 4 1 + 2 3 
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Analysis Of Dynamic Tables	

•  Let ci = cost of i-th insert	

•  ci = i if i-1 is exact power of 2, 1 otherwise	

•  Example:	


   Operation 	
Table Size 	
   Cost	


Insert(1) 1 1 1 
Insert(2) 2 1 + 1 2 
Insert(3) 4 1 + 2 3 
Insert(4) 4 1 4 

Analysis Of Dynamic Tables	

•  Let ci = cost of i-th insert	

•  ci = i if i-1 is exact power of 2, 1 otherwise	

•  Example:	


   Operation 	
Table Size 	
   Cost	


Insert(1) 1 1 1 
Insert(2) 2 1 + 1 2 
Insert(3) 4 1 + 2 3 
Insert(4) 4 1 4 
Insert(5) 8 1 + 4 5 
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Analysis Of Dynamic Tables	

•  Let ci = cost of i-th insert	

•  ci = i if i-1 is exact power of 2, 1 otherwise	

•  Example:	


   Operation 	
Table Size 	
   Cost	


Insert(1) 1 1 1 
Insert(2) 2 1 + 1 2 
Insert(3) 4 1 + 2 3 
Insert(4) 4 1 4 
Insert(5) 8 1 + 4 5 
Insert(6) 8 1 6 

  
  

Analysis Of Dynamic Tables	

•  Let ci = cost of i-th insert	

•  ci = i if i-1 is exact power of 2, 1 otherwise	

•  Example:	


   Operation 	
Table Size 	
   Cost	


Insert(1) 1 1 1 
Insert(2) 2 1 + 1 2 
Insert(3) 4 1 + 2 3 
Insert(4) 4 1 4 
Insert(5) 8 1 + 4 5 
Insert(6) 8 1 6 
Insert(7) 8 1 7 
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Analysis Of Dynamic Tables	

•  Let ci = cost of i-th insert	

•  ci = i if i-1 is exact power of 2, 1 otherwise	

•  Example:	


   Operation 	
Table Size 	
   Cost	


Insert(1) 1 1 1 
Insert(2) 2 1 + 1 2 
Insert(3) 4 1 + 2 3 
Insert(4) 4 1 4 
Insert(5) 8 1 + 4 5 
Insert(6) 8 1 6 
Insert(7) 8 1 7 
Insert(8) 8 1 8 

Analysis Of Dynamic Tables	

•  Let ci = cost of i-th insert	

•  ci = i if i-1 is exact power of 2, 1 otherwise	

•  Example:	


   Operation 	
Table Size 	
   Cost	


Insert(1) 1 1 1 
Insert(2) 2 1 + 1 2 
Insert(3) 4 1 + 2 
Insert(4) 4 1 
Insert(5) 8 1 + 4 
Insert(6) 8 1 
Insert(7) 8 1 
Insert(8) 8 1 
Insert(9) 16 1 + 8 

1 
2 
3 
4 
5 
6 
7 
8 
9 
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Aggregate Analysis	


•  n Insert() operations cost	


•  At most n operations are of cost 1 + costs of expansions	

•  Expansion happens only where (i-1) is power of 2	

•  Average cost of operation ���

= (total cost)/(# operations) < 3	

•  Asymptotically, then, a dynamic table costs the same as a 

fixed-size table	

•  Both O(1) per Insert() operation	
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Accounting Analysis	


•  We have shown that amortized cost is 3 per Insert()	

•  Each Insert() ‘pays’ 3 	

•  By the time the table is full – each item paid some amount	

•  There is enough credit to expand the table and re-insert each	

   element	
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Disjoint Sets	


Chap 21	


Disjoint Set Union	


•  So how do we implement disjoint-set union?	

Naïve implementation: use a linked list to represent each set:	

	

	

	

	

	


MakeSet(): ??? time	

FindSet(): ??? time	

Union(A,B): “copy” elements of A into B: ??? time	


Set representative	
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Disjoint Set Union	


•  So how do we implement disjoint-set union?	

Naïve implementation: use a linked list to represent each set:	

	

	

	

	

	

MakeSet(): O(1) time	

FindSet(): O(1) time	

Union(A,B): “copy” elements of A into B: O(A) time	

Why ? 	


    How long can a single Union() take?	

   How long will n Union()’s take?	


Disjoint Set Union: Analysis	

•  Worst-case analysis: O(n2) time for n Union’s	


Union(S1, S2) 	
 	
“copy” 	
1 element	

Union(S2, S3) 	
 	
“copy”	
 	
2 elements	

…	

Union(Sn-1, Sn) 	
           “copy”	
 	
n-1 elements	

	
 	
 	
 	
 	
 	
O(n2)	


• Appending largest set to smaller – worst case	

• Average per operation O(n) 	

• (2n-1) operations total cost  O(n2) (n MakeSet(s) and n-1 Union(s))	


•  Improvement: always copy smaller into larger	

Why will this make things better?	

What is the worst-case time of Union()?	


•  But now n Union’s take only O(n lg n) time!	
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Amortized Analysis	

•  Amortized analysis computes average times without using 

probabilities 	

•  Worst case: Each time element is copied, element in smaller set 

must have the pointer updated	

    1st time 	
resulting set size at least 2 members 	
≥ 2	

    2nd time 	
 	
 	
 	
                                   ≥ 4	

	

   (lg n)-th time 	
 	
 	
 	
                        ≥ n	

	

•  With our new Union(), any individual element is copied at most 

lg n times when forming the complete set from 1-element sets	

•  After lg n times the resulting set will  have already n numbers	

•  For n Union operations time spent updating objects pointers 	

•  O(n lg n)	


Amortized Analysis of Disjoint Sets	


•  Since we have n elements each copied at most lg n times, n 
Union()’s takes O(n lg n) time	

•  We say that each Union() takes O(lg n) amortized time	


Financial term: imagine paying $(lg n) per Union() operation	

	

At first we are overpaying; initial Union $O(1)	

But we accumulate enough $ in bank to pay for later	

expensive O(n) operation.  	

	

Important: amount in bank never goes negative	
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Amortized Analysis of Disjoint Sets	


•  Since we have n elements each copied at most lg n times, n 
Union()’s takes O(n lg n) time	

•  Therefore we say the amortized cost of a Union() operation is 

O(lg n)	

•  This is the aggregate method of amortized analysis:	

•   n operations take time T(n)	

•  Average cost of an operation = T(n)/n	


•  In this style of analysis the amortized cost is applied to each 
operation, although different operations may have different 
costs	

	



