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CS583 Lecture 12	



                                    Jana Kosecka	


	


                        Amortized/Accounting Analysis                                	


                                  Disjoint Sets	



 	



Previously	



•  Dynamic Programming 	


•  Greedy Algorithms	



Slight digression	


	


•  Amortized analysis	


•  Disjoint sets  	
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Amortized Analysis	


•  Amortized analysis computes running time of a sequence of n 	


operations	


	


•  Different then average analysis 	



Three techniques	


•  Aggregate analysis	


•  Accounting method	


•  Potential method	



Aggregate analysis	



•  Stack example PUSH(S,x) and POP(x) each takes O(1)	



•  Add operation MULTI-POP(S,k) pop multiple elements	



•  Cost of MULTI-POP(S,k)   min(s,k), where  s is the number of 
elements in the stack 	



•  Cost of a sequence of n operations PUSH, POP, MULTIPOP	


	


•  Worst case  for n operation O(n2) (why ? ) – not tight 	


•  Better cost  for n operations O(n)  (why ? )	


•  Amortized cost per operation O(n)/n = O(1).  	
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Accounting Analysis	


•  Another method for analyzing time to perform sequence	


   of operations	


•  If we have more then one type of operation, each operation 	


   can have different amortized cost	


•  Accounting method	



Charge each operation an amortized cost	


Amount not used stored in “bank”	


Later operations can used stored money	


Balance must not go negative	



•  Book also discusses potential method	


But we will not discuss it here	



•  Example: Dynamic Tables 	


•  Adjust the size of the table on the fly	


	



Accounting Method Example: ���
Dynamic Tables	



•  Implementing a table (e.g., hash table) for dynamic data, want 
to make it small as possible	


•  Problem: if too many items inserted, table may be too small	


•  Idea: allocate more memory as needed	
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Dynamic Tables	



1. Init table size m = 1	


2. Insert elements until number n > m	


3. Generate new table of size 2m (double the size)	


4. Reinsert old elements into new table (need table to be in 

continuous block of memory) 	


5. (back to step 2)	


•  What is the worst-case cost of an insert?	


•  One insert can be costly, but the total?	



•  Analyze cost on n Insert() ’s of initially empty table	



Analysis Of Dynamic Tables	


•  Let ci = cost of i-th insert	


•  ci = i if i-1 is exact power of 2, 1 otherwise	


•  Example:	



    Operation 	

Table Size 	

   Cost	



Insert(1) 1 1 1 
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Analysis Of Dynamic Tables	


•  Let ci = cost of i-th insert	


•  ci = i if i-1 is exact power of 2, 1 otherwise	


•  Example:	



    Operation 	

Table Size 	

   Cost	



Insert(1) 1 1 1 
Insert(2) 2 1 + 1 2 

Analysis Of Dynamic Tables	


•  Let ci = cost of i-th insert	


•  ci = i if i-1 is exact power of 2, 1 otherwise	


•  Example:	



    Operation 	

Table Size 	

   Cost	



Insert(1) 1 1 1 
Insert(2) 2 1 + 1 2 
Insert(3) 4 1 + 2 3 
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Analysis Of Dynamic Tables	


•  Let ci = cost of i-th insert	


•  ci = i if i-1 is exact power of 2, 1 otherwise	


•  Example:	



   Operation 	

Table Size 	

   Cost	



Insert(1) 1 1 1 
Insert(2) 2 1 + 1 2 
Insert(3) 4 1 + 2 3 
Insert(4) 4 1 4 

Analysis Of Dynamic Tables	


•  Let ci = cost of i-th insert	


•  ci = i if i-1 is exact power of 2, 1 otherwise	


•  Example:	



   Operation 	

Table Size 	

   Cost	



Insert(1) 1 1 1 
Insert(2) 2 1 + 1 2 
Insert(3) 4 1 + 2 3 
Insert(4) 4 1 4 
Insert(5) 8 1 + 4 5 
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Analysis Of Dynamic Tables	


•  Let ci = cost of i-th insert	


•  ci = i if i-1 is exact power of 2, 1 otherwise	


•  Example:	



   Operation 	

Table Size 	

   Cost	



Insert(1) 1 1 1 
Insert(2) 2 1 + 1 2 
Insert(3) 4 1 + 2 3 
Insert(4) 4 1 4 
Insert(5) 8 1 + 4 5 
Insert(6) 8 1 6 

  
  

Analysis Of Dynamic Tables	


•  Let ci = cost of i-th insert	


•  ci = i if i-1 is exact power of 2, 1 otherwise	


•  Example:	



   Operation 	

Table Size 	

   Cost	



Insert(1) 1 1 1 
Insert(2) 2 1 + 1 2 
Insert(3) 4 1 + 2 3 
Insert(4) 4 1 4 
Insert(5) 8 1 + 4 5 
Insert(6) 8 1 6 
Insert(7) 8 1 7 
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Analysis Of Dynamic Tables	


•  Let ci = cost of i-th insert	


•  ci = i if i-1 is exact power of 2, 1 otherwise	


•  Example:	



   Operation 	

Table Size 	

   Cost	



Insert(1) 1 1 1 
Insert(2) 2 1 + 1 2 
Insert(3) 4 1 + 2 3 
Insert(4) 4 1 4 
Insert(5) 8 1 + 4 5 
Insert(6) 8 1 6 
Insert(7) 8 1 7 
Insert(8) 8 1 8 

Analysis Of Dynamic Tables	


•  Let ci = cost of i-th insert	


•  ci = i if i-1 is exact power of 2, 1 otherwise	


•  Example:	



   Operation 	

Table Size 	

   Cost	



Insert(1) 1 1 1 
Insert(2) 2 1 + 1 2 
Insert(3) 4 1 + 2 
Insert(4) 4 1 
Insert(5) 8 1 + 4 
Insert(6) 8 1 
Insert(7) 8 1 
Insert(8) 8 1 
Insert(9) 16 1 + 8 

1 
2 
3 
4 
5 
6 
7 
8 
9 
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Aggregate Analysis	



•  n Insert() operations cost	



•  At most n operations are of cost 1 + costs of expansions	


•  Expansion happens only where (i-1) is power of 2	


•  Average cost of operation ���

= (total cost)/(# operations) < 3	


•  Asymptotically, then, a dynamic table costs the same as a 

fixed-size table	


•  Both O(1) per Insert() operation	
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Accounting Analysis	



•  We have shown that amortized cost is 3 per Insert()	


•  Each Insert() ‘pays’ 3 	


•  By the time the table is full – each item paid some amount	


•  There is enough credit to expand the table and re-insert each	


   element	
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Disjoint Sets	



Chap 21	



Disjoint Set Union	



•  So how do we implement disjoint-set union?	


Naïve implementation: use a linked list to represent each set:	


	


	


	


	


	



MakeSet(): ??? time	


FindSet(): ??? time	


Union(A,B): “copy” elements of A into B: ??? time	



Set representative	
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Disjoint Set Union	



•  So how do we implement disjoint-set union?	


Naïve implementation: use a linked list to represent each set:	


	


	


	


	


	


MakeSet(): O(1) time	


FindSet(): O(1) time	


Union(A,B): “copy” elements of A into B: O(A) time	


Why ? 	



    How long can a single Union() take?	


   How long will n Union()’s take?	



Disjoint Set Union: Analysis	


•  Worst-case analysis: O(n2) time for n Union’s	



Union(S1, S2) 	

 	

“copy” 	

1 element	


Union(S2, S3) 	

 	

“copy”	

 	

2 elements	


…	


Union(Sn-1, Sn) 	

           “copy”	

 	

n-1 elements	


	

 	

 	

 	

 	

 	

O(n2)	



• Appending largest set to smaller – worst case	


• Average per operation O(n) 	


• (2n-1) operations total cost  O(n2) (n MakeSet(s) and n-1 Union(s))	



•  Improvement: always copy smaller into larger	


Why will this make things better?	


What is the worst-case time of Union()?	



•  But now n Union’s take only O(n lg n) time!	





4/17/14	



12	



Amortized Analysis	


•  Amortized analysis computes average times without using 

probabilities 	


•  Worst case: Each time element is copied, element in smaller set 

must have the pointer updated	


    1st time 	

resulting set size at least 2 members 	

≥ 2	


    2nd time 	

 	

 	

 	

                                   ≥ 4	


	


   (lg n)-th time 	

 	

 	

 	

                        ≥ n	


	


•  With our new Union(), any individual element is copied at most 

lg n times when forming the complete set from 1-element sets	


•  After lg n times the resulting set will  have already n numbers	


•  For n Union operations time spent updating objects pointers 	


•  O(n lg n)	



Amortized Analysis of Disjoint Sets	



•  Since we have n elements each copied at most lg n times, n 
Union()’s takes O(n lg n) time	


•  We say that each Union() takes O(lg n) amortized time	



Financial term: imagine paying $(lg n) per Union() operation	


	


At first we are overpaying; initial Union $O(1)	


But we accumulate enough $ in bank to pay for later	


expensive O(n) operation.  	


	


Important: amount in bank never goes negative	
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Amortized Analysis of Disjoint Sets	



•  Since we have n elements each copied at most lg n times, n 
Union()’s takes O(n lg n) time	


•  Therefore we say the amortized cost of a Union() operation is 

O(lg n)	


•  This is the aggregate method of amortized analysis:	


•   n operations take time T(n)	


•  Average cost of an operation = T(n)/n	



•  In this style of analysis the amortized cost is applied to each 
operation, although different operations may have different 
costs	


	




