
4/17/14	

1	

CS583 Lecture 12	

 Jana Kosecka	

	

 Amortized/Accounting Analysis 	

 Disjoint Sets	

 	

Previously	

•  Dynamic Programming 	

•  Greedy Algorithms	

Slight digression	

	

•  Amortized analysis	

•  Disjoint sets 	

4/17/14	

2	

Amortized Analysis	

•  Amortized analysis computes running time of a sequence of n 	

operations	

	

•  Different then average analysis 	

Three techniques	

•  Aggregate analysis	

•  Accounting method	

•  Potential method	

Aggregate analysis	

•  Stack example PUSH(S,x) and POP(x) each takes O(1)	

•  Add operation MULTI-POP(S,k) pop multiple elements	

•  Cost of MULTI-POP(S,k) min(s,k), where s is the number of
elements in the stack 	

•  Cost of a sequence of n operations PUSH, POP, MULTIPOP	

	

•  Worst case for n operation O(n2) (why ?) – not tight 	

•  Better cost for n operations O(n) (why ?)	

•  Amortized cost per operation O(n)/n = O(1). 	

4/17/14	

3	

Accounting Analysis	

•  Another method for analyzing time to perform sequence	

 of operations	

•  If we have more then one type of operation, each operation 	

 can have different amortized cost	

•  Accounting method	

Charge each operation an amortized cost	

Amount not used stored in “bank”	

Later operations can used stored money	

Balance must not go negative	

•  Book also discusses potential method	

But we will not discuss it here	

•  Example: Dynamic Tables 	

•  Adjust the size of the table on the fly	

	

Accounting Method Example: ���
Dynamic Tables	

•  Implementing a table (e.g., hash table) for dynamic data, want
to make it small as possible	

•  Problem: if too many items inserted, table may be too small	

•  Idea: allocate more memory as needed	

4/17/14	

4	

Dynamic Tables	

1. Init table size m = 1	

2. Insert elements until number n > m	

3. Generate new table of size 2m (double the size)	

4. Reinsert old elements into new table (need table to be in

continuous block of memory) 	

5. (back to step 2)	

•  What is the worst-case cost of an insert?	

•  One insert can be costly, but the total?	

•  Analyze cost on n Insert() ’s of initially empty table	

Analysis Of Dynamic Tables	

•  Let ci = cost of i-th insert	

•  ci = i if i-1 is exact power of 2, 1 otherwise	

•  Example:	

 Operation 	
Table Size 	
 Cost	

Insert(1) 1 1 1

4/17/14	

5	

Analysis Of Dynamic Tables	

•  Let ci = cost of i-th insert	

•  ci = i if i-1 is exact power of 2, 1 otherwise	

•  Example:	

 Operation 	
Table Size 	
 Cost	

Insert(1) 1 1 1
Insert(2) 2 1 + 1 2

Analysis Of Dynamic Tables	

•  Let ci = cost of i-th insert	

•  ci = i if i-1 is exact power of 2, 1 otherwise	

•  Example:	

 Operation 	
Table Size 	
 Cost	

Insert(1) 1 1 1
Insert(2) 2 1 + 1 2
Insert(3) 4 1 + 2 3

4/17/14	

6	

Analysis Of Dynamic Tables	

•  Let ci = cost of i-th insert	

•  ci = i if i-1 is exact power of 2, 1 otherwise	

•  Example:	

 Operation 	
Table Size 	
 Cost	

Insert(1) 1 1 1
Insert(2) 2 1 + 1 2
Insert(3) 4 1 + 2 3
Insert(4) 4 1 4

Analysis Of Dynamic Tables	

•  Let ci = cost of i-th insert	

•  ci = i if i-1 is exact power of 2, 1 otherwise	

•  Example:	

 Operation 	
Table Size 	
 Cost	

Insert(1) 1 1 1
Insert(2) 2 1 + 1 2
Insert(3) 4 1 + 2 3
Insert(4) 4 1 4
Insert(5) 8 1 + 4 5

4/17/14	

7	

Analysis Of Dynamic Tables	

•  Let ci = cost of i-th insert	

•  ci = i if i-1 is exact power of 2, 1 otherwise	

•  Example:	

 Operation 	
Table Size 	
 Cost	

Insert(1) 1 1 1
Insert(2) 2 1 + 1 2
Insert(3) 4 1 + 2 3
Insert(4) 4 1 4
Insert(5) 8 1 + 4 5
Insert(6) 8 1 6

Analysis Of Dynamic Tables	

•  Let ci = cost of i-th insert	

•  ci = i if i-1 is exact power of 2, 1 otherwise	

•  Example:	

 Operation 	
Table Size 	
 Cost	

Insert(1) 1 1 1
Insert(2) 2 1 + 1 2
Insert(3) 4 1 + 2 3
Insert(4) 4 1 4
Insert(5) 8 1 + 4 5
Insert(6) 8 1 6
Insert(7) 8 1 7

4/17/14	

8	

Analysis Of Dynamic Tables	

•  Let ci = cost of i-th insert	

•  ci = i if i-1 is exact power of 2, 1 otherwise	

•  Example:	

 Operation 	
Table Size 	
 Cost	

Insert(1) 1 1 1
Insert(2) 2 1 + 1 2
Insert(3) 4 1 + 2 3
Insert(4) 4 1 4
Insert(5) 8 1 + 4 5
Insert(6) 8 1 6
Insert(7) 8 1 7
Insert(8) 8 1 8

Analysis Of Dynamic Tables	

•  Let ci = cost of i-th insert	

•  ci = i if i-1 is exact power of 2, 1 otherwise	

•  Example:	

 Operation 	
Table Size 	
 Cost	

Insert(1) 1 1 1
Insert(2) 2 1 + 1 2
Insert(3) 4 1 + 2
Insert(4) 4 1
Insert(5) 8 1 + 4
Insert(6) 8 1
Insert(7) 8 1
Insert(8) 8 1
Insert(9) 16 1 + 8

1
2
3
4
5
6
7
8
9

4/17/14	

9	

Aggregate Analysis	

•  n Insert() operations cost	

•  At most n operations are of cost 1 + costs of expansions	

•  Expansion happens only where (i-1) is power of 2	

•  Average cost of operation ���

= (total cost)/(# operations) < 3	

•  Asymptotically, then, a dynamic table costs the same as a

fixed-size table	

•  Both O(1) per Insert() operation	

nnnnc
n

j

j
n

i
i 3)12(2

lg

01
<−+=+≤ ∑∑

==

Accounting Analysis	

•  We have shown that amortized cost is 3 per Insert()	

•  Each Insert() ‘pays’ 3 	

•  By the time the table is full – each item paid some amount	

•  There is enough credit to expand the table and re-insert each	

 element	

4/17/14	

10	

Disjoint Sets	

Chap 21	

Disjoint Set Union	

•  So how do we implement disjoint-set union?	

Naïve implementation: use a linked list to represent each set:	

	

	

	

	

	

MakeSet(): ??? time	

FindSet(): ??? time	

Union(A,B): “copy” elements of A into B: ??? time	

Set representative	

4/17/14	

11	

Disjoint Set Union	

•  So how do we implement disjoint-set union?	

Naïve implementation: use a linked list to represent each set:	

	

	

	

	

	

MakeSet(): O(1) time	

FindSet(): O(1) time	

Union(A,B): “copy” elements of A into B: O(A) time	

Why ? 	

 How long can a single Union() take?	

 How long will n Union()’s take?	

Disjoint Set Union: Analysis	

•  Worst-case analysis: O(n2) time for n Union’s	

Union(S1, S2) 	
 	
“copy” 	
1 element	

Union(S2, S3) 	
 	
“copy”	
 	
2 elements	

…	

Union(Sn-1, Sn) 	
 “copy”	
 	
n-1 elements	

	
 	
 	
 	
 	
 	
O(n2)	

• Appending largest set to smaller – worst case	

• Average per operation O(n) 	

• (2n-1) operations total cost O(n2) (n MakeSet(s) and n-1 Union(s))	

•  Improvement: always copy smaller into larger	

Why will this make things better?	

What is the worst-case time of Union()?	

•  But now n Union’s take only O(n lg n) time!	

4/17/14	

12	

Amortized Analysis	

•  Amortized analysis computes average times without using

probabilities 	

•  Worst case: Each time element is copied, element in smaller set

must have the pointer updated	

 1st time 	
resulting set size at least 2 members 	
≥ 2	

 2nd time 	
 	
 	
 	
 ≥ 4	

	

 (lg n)-th time 	
 	
 	
 	
 ≥ n	

	

•  With our new Union(), any individual element is copied at most

lg n times when forming the complete set from 1-element sets	

•  After lg n times the resulting set will have already n numbers	

•  For n Union operations time spent updating objects pointers 	

•  O(n lg n)	

Amortized Analysis of Disjoint Sets	

•  Since we have n elements each copied at most lg n times, n
Union()’s takes O(n lg n) time	

•  We say that each Union() takes O(lg n) amortized time	

Financial term: imagine paying $(lg n) per Union() operation	

	

At first we are overpaying; initial Union $O(1)	

But we accumulate enough $ in bank to pay for later	

expensive O(n) operation. 	

	

Important: amount in bank never goes negative	

4/17/14	

13	

Amortized Analysis of Disjoint Sets	

•  Since we have n elements each copied at most lg n times, n
Union()’s takes O(n lg n) time	

•  Therefore we say the amortized cost of a Union() operation is

O(lg n)	

•  This is the aggregate method of amortized analysis:	

•  n operations take time T(n)	

•  Average cost of an operation = T(n)/n	

•  In this style of analysis the amortized cost is applied to each
operation, although different operations may have different
costs	

	

