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CS583 Lecture 13	

                               Jana Kosecka	

	

                        Max Flow Algorithm 	


2	


Maximum Flow and Minimum Cut	

Max flow and min cut.	

  Two very rich algorithmic problems.	

  Cornerstone problems in combinatorial optimization.	

  Beautiful mathematical duality.	

	

	

Nontrivial applications / reductions.	

  Data mining.	

  Open-pit mining. 	

  Project selection.	

  Airline scheduling.	

  Bipartite matching.	

  Baseball elimination.	

  Image segmentation.	

  Network connectivity.	


  Network reliability.	

  Distributed computing.	

  Egalitarian stable matching.	

  Security of statistical data.	

  Network intrusion detection.	

  Multi-camera scene reconstruction.	

  Many many more . . .	
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Flow network.	

  Abstraction for material flowing through the edges.	

  G = (V, E) = directed graph, no parallel edges.	

  Two distinguished nodes:  s = source, t = sink.	

  c(e) = capacity of edge e.	

	


Minimum Cut Problem	
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Def.  An s-t cut is a partition (A, B) of V with s ∈ A and t ∈ 
B.	

	

Def. The capacity of a cut (A, B) is:	

	


Cuts	
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Def.  An s-t cut is a partition (A, B) of V with s ∈ A and t ∈ 
B.	


	

Def. The capacity of a cut (A, B) is:	
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 Capacity = 9 + 15 + 8 + 30���
              = 62	
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Min s-t cut problem.  Find an s-t cut of minimum capacity.	


Minimum Cut Problem	
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 Capacity = 10 + 8 + 10���
              = 28	
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Def.  An s-t flow is a function that satisfies:	

  For each e ∈ E: 	
 	
 	
 	
 (capacity)	

  For each v ∈ V – {s, t}: 	
 	
 	
(conservation)	


Def.  The value of a flow f is:       	
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Max flow problem.  Find s-t flow of maximum value.	


Maximum Flow Problem	
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Towards a Max Flow Algorithm	


Greedy algorithm.	

  Start with f(e) = 0 for all edge e ∈ E.	

  Find an s-t path P where each edge has f(e) < c(e).	

  Augment flow along path P.	

  Repeat until you get stuck.	


s	


1	


2	


t	


10	


10	


0	
 0	


0	
 0	


0	


20	


20	


30	


Flow value = 0	


10	


Towards a Max Flow Algorithm	


Greedy algorithm.	

  Start with f(e) = 0 for all edge e ∈ E.	

  Find an s-t path P where each edge has f(e) < c(e).	

  Augment flow along path P.	

  Repeat until you get stuck.	
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Towards a Max Flow Algorithm	


Greedy algorithm.	

  Start with f(e) = 0 for all edge e ∈ E.	

  Find an s-t path P where each edge has f(e) < c(e).	

  Augment flow along path P.	

  Repeat until you get stuck.	
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Residual Graph	


Original edge:  e = (u, v)  ∈ E.	

  Flow f(e), capacity c(e).	

	

	

	

Residual edge.	

  "Undo" flow sent.	

  e = (u, v) and eR = (v, u).	

  Residual capacity:	


	

Residual graph:  Gf = (V, Ef ).	

  Residual edges with positive residual capacity.	

  Ef = {e : f(e) < c(e)}  ∪  {eR : c(e) > 0}.	
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Ford-Fulkerson Algorithm	
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Augmenting Path Algorithm	


Augment(f, c, P) { 
   b ← bottleneck(P)  
   foreach e ∈ P { 
      if (e ∈ E) f(e) ← f(e) + b 
      else       f(eR) ← f(e) - b 
   } 
   return f 
} 

Ford-Fulkerson(G, s, t, c) { 
   foreach e ∈ E  f(e) ← 0 
   Gf ← residual graph 
 
   while (there exists augmenting path P) { 
      f ← Augment(f, c, P) 
      update Gf 
   } 
   return f 
} 

forward edge	


reverse edge	
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Flow value lemma.  Let f be any flow, and let (A, B) be any s-t 
cut.  Then, the net flow sent across the cut is equal to the 
amount leaving s.	


Flows and Cuts	
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Flow value lemma.  Let f be any flow, and let (A, B) be any s-t 
cut.  Then, the net flow sent across the cut is equal to the 
amount leaving s.	
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Flow value lemma.  Let f be any flow, and let (A, B) be any s-t 
cut.  Then, the net flow sent across the cut is equal to the 
amount leaving s.	


Flows and Cuts	
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Flows and Cuts	


Weak duality.  Let f be any flow, and let (A, B) be any s-t cut.  
Then the value of the flow is at most the capacity of the cut.	

	


Cut capacity = 30   ⇒    Flow value ≤ 30 	
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Weak duality.  Let f be any flow.  Then, for any s-t cut (A, B) 
we have���
v(f) ≤ cap(A, B).	

	

Pf.	


	
 	
 	
▪	

	

	

	


Flows and Cuts	
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Certificate of Optimality	

Corollary.  Let f be any flow, and let (A, B) be any cut.���
If v(f) = cap(A, B), then f is a max flow and (A, B) is a min 
cut.	


	

Value of flow = 28���
Cut capacity  = 28   ⇒    Flow value ≤ 28	
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Max-Flow Min-Cut Theorem	

Augmenting path theorem.  Flow f is a max flow iff there are 
no augmenting paths. 	

	

Max-flow min-cut theorem.  [Ford-Fulkerson 1956]  The 
value of the max flow is equal to the value of the min cut.	

	

Proof strategy.  We prove both simultaneously by showing the 
TFAE:	

    (i) 	
There exists a cut (A, B) such that v(f) = cap(A, B).	

   (ii) 	
Flow f is a max flow.	

  (iii) 	
There is no augmenting path relative to f.	

	


(i)  ⇒ (ii)  This was the corollary to weak duality lemma. 	

	

(ii)  ⇒ (iii)  We show contrapositive.	

  Let f be a flow. If there exists an augmenting path, then we 

can improve f by sending flow along path.	

23	


Proof of Max-Flow Min-Cut Theorem	


(iii)  ⇒ (i)	

  Let f be a flow with no augmenting paths.	

  Let A be set of vertices reachable from s in residual graph.	

  By definition of A, s ∈ A.	

  By definition of f, t ∉ A.	
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v( f ) = f (e)
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∑ − f (e)

e in to A
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e out of A
∑
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Running Time	


Assumption.  All capacities are integers between 1 and C.	

	

Invariant.  Every flow value f(e) and every residual capacities 
cf (e) remains an integer throughout the algorithm.	

	

Theorem.  The algorithm terminates in at most v(f*) ≤ nC 
iterations.	

Pf.  Each augmentation increase value by at least 1.   ▪	

	

Corollary.  If C = 1, Ford-Fulkerson runs in O(m) time.	

	

Integrality theorem.  If all capacities are integers, then there 
exists a max flow f for which every flow value f(e) is an 
integer.	

Pf.  Since algorithm terminates, theorem follows from 
invariant.   ▪	


7.3  Choosing Good Augmenting Paths	
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Ford-Fulkerson:  Exponential Number of 
Augmentations	


Q.   Is generic Ford-Fulkerson algorithm polynomial in input 
size?	

	

	

A.   No.  If max capacity is C, then algorithm can take C 
iterations.  	
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Matching.	

  Input:  undirected graph G = (V, E).	

  M ⊆ E is a matching if each node appears in at most edge 

in M.	

  Max matching:  find a max cardinality matching.	


Matching	
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Bipartite Matching	


Bipartite matching.	

  Input:  undirected, bipartite graph G = (L ∪ R, E).	

  M ⊆ E is a matching if each node appears in at most edge 

in M.	

  Max matching:  find a max cardinality matching.	
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Bipartite Matching	


Bipartite matching.	

  Input:  undirected, bipartite graph G = (L ∪ R, E).	

  M ⊆ E is a matching if each node appears in at most edge 

in M.	

  Max matching:  find a max cardinality matching.	
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Max flow formulation.	

  Create digraph G' = (L ∪ R ∪ {s, t},  E' ).	

  Direct all edges from L to R, and assign infinite (or unit) 

capacity.	

  Add source s, and unit capacity edges from s to each node in L.	

  Add sink t, and unit capacity edges from each node in R to t.	


Bipartite Matching	
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Theorem.  Max cardinality matching in G = value of max flow 
in G'.	

Pf.  ≤	

  Given max matching M of cardinality k.	

  Consider flow f that sends 1 unit along each of k paths.	

  f is a flow, and has cardinality k.   ▪	


Bipartite Matching:  Proof of Correctness	
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Theorem.  Max cardinality matching in G = value of max flow in G'.	

Pf.  ≥	

  Let f be a max flow in G' of value k.	

  Integrality theorem  ⇒  k is integral and can assume f is 0-1.	

  Consider M = set of edges from L to R with f(e) = 1.	


– each node in L and R participates in at most one edge in M	

– |M| = k:  consider cut (L ∪ s, R ∪ t)   ▪	


Bipartite Matching:  Proof of Correctness	
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7.6  Disjoint Paths	




4/24/14	


Copyright 2000, Kevin Wayne	
 17	


45	


Disjoint path problem.  Given a digraph G = (V, E) and two 
nodes s and t, find the max number of edge-disjoint s-t paths.	

	

Def.  Two paths are edge-disjoint if they have no edge in 
common.	

	

Ex:  communication networks.	
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Disjoint path problem.  Given a digraph G = (V, E) and two 
nodes s and t, find the max number of edge-disjoint s-t paths.	

	

Def.  Two paths are edge-disjoint if they have no edge in 
common.	


Ex:  communication networks.	
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Max flow formulation:  assign unit capacity to every edge.	

	

	

	

	

	

	

	

Theorem.  Max number edge-disjoint s-t paths equals max 
flow value.	

Pf.   ≤ 	

  Suppose there are k edge-disjoint paths P1, . . . , Pk.	

  Set f(e) = 1 if e participates in some path Pi ;  else set f(e) = 

0.	

  Since paths are edge-disjoint, f is a flow of value k.   ▪	


Edge Disjoint Paths	
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Max flow formulation:  assign unit capacity to every edge.	

	

	

	

	

	

	

	

Theorem.  Max number edge-disjoint s-t paths equals max 
flow value.	

Pf.   ≥ 	

  Suppose max flow value is k.	

  Integrality theorem  ⇒  there exists 0-1 flow f of value k.	

  Consider edge (s, u) with f(s, u) = 1.	


– by conservation, there exists an edge (u, v) with f(u, v) = 
1	


– continue until reach t, always choosing a new edge	

  Produces k (not necessarily simple) edge-disjoint paths.   ▪	
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Network connectivity.  Given a digraph G = (V, E) and two 
nodes s and t,  find min number of edges whose removal 
disconnects t from s.	

	

Def.  A set of edges F ⊆ E disconnects t from s if all s-t paths 
uses at least on edge in F.	


Network Connectivity	
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Edge Disjoint Paths and Network Connectivity	

Theorem.  [Menger 1927]  The max number of edge-disjoint s-t 
paths is equal to the min number of edges whose removal 
disconnects t from s.	

	

Pf.  ≤ 	

  Suppose the removal of F ⊆ E disconnects t from s, and |F| = 

k.	

  All s-t paths use at least one edge of F. Hence, the number of 

edge-disjoint paths is at most k.  ▪	
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Disjoint Paths and Network Connectivity	

Theorem.  [Menger 1927]  The max number of edge-disjoint s-t 
paths is equal to the min number of edges whose removal 
disconnects t from s.	

	

Pf.  ≥	

  Suppose max number of edge-disjoint paths is k.	

  Then max flow value is k.	

  Max-flow min-cut  ⇒  cut (A, B) of capacity k.	

  Let F be set of edges going from A to B.	

  |F| = k and disconnects t from s.   ▪	
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7.10  Image Segmentation	
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Image Segmentation	


Image segmentation.	

  Central problem in image processing.	

  Divide image into coherent regions.	


Ex:  Three people standing in front of complex background 
scene. Identify each person as a coherent object.	


65	


Image Segmentation	


Foreground / background segmentation.	

  Label each pixel in picture as belonging to���

foreground or background.	

  V = set of pixels, E = pairs of neighboring pixels.	

  ai ≥ 0 is likelihood pixel i in foreground.	

  bi ≥ 0 is likelihood pixel i in background.	

  pij ≥ 0 is separation penalty for labeling one of i���

and j as foreground, and the other as background.	


Goals.	

  Accuracy:  if ai  > bi in isolation, prefer to label i in 

foreground.	

  Smoothness: if many neighbors of i are labeled foreground, 

we should be inclined to label i as foreground.	

  Find partition (A, B) that maximizes:  	
    

€ 

a i +
i∈ A
∑ bj

j∈B
∑ − pij

(i, j) ∈ E
A{i, j} = 1

∑

foreground	
 background	
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Image Segmentation	


Formulate as min cut problem.	

  Maximization.	

  No source or sink.	

  Undirected graph.	


Turn into minimization problem.	


  Maximizing���
���
���
is equivalent to minimizing	


  or alternatively	

    

€ 

a j +
j∈B
∑ bi

i∈ A
∑ + pij

(i, j) ∈ E
A{i, j} = 1

∑

    

€ 

a i +
i∈ A
∑ bj

j∈B
∑ − pij

(i, j) ∈ E
A{i, j} = 1

∑

  

€ 

a ii ∈ V∑  + b jj ∈ V∑( )
a constant

         
  −  a i

i∈ A
∑  − bj

j∈B
∑  + pij

(i, j) ∈ E
A{i, j} = 1

∑

67	


Image Segmentation	


Formulate as min cut problem.	

  G' = (V', E').	

  Add source to correspond to foreground;���

add sink to correspond to background	

  Use two anti-parallel edges instead of���

undirected edge.	
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Image Segmentation	


Consider min cut (A, B) in G'.	

   A = foreground.	


  Precisely the quantity we want to minimize.	

€ 

cap(A, B) = a j +
j∈B
∑ bi  +

i∈ A
∑ pij

(i, j) ∈ E
i∈ A, j∈B

∑

G'	


s	
 t	
i	
 j	


A	


if i and j on different sides,	

pij counted exactly once	


pij	


bi	


aj	


Graph Cut 

Formulated as maximum cost flow -  
Network flow problem from Graph Theory 
Kolmogorov, Boykov (et al)  
efficient solvers available 
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Ex: Interactive Foreground Segmentation 

Interaction Foreground Segmentation: Grab Cuts 
Rother, Kolmogorov, Blake, SIGRAPH 2005 


