
4/24/14	

Copyright 2000, Kevin Wayne	

 1	

CS583 Lecture 13	

 Jana Kosecka	

	

 Max Flow Algorithm 	

2	

Maximum Flow and Minimum Cut	

Max flow and min cut.	

  Two very rich algorithmic problems.	

  Cornerstone problems in combinatorial optimization.	

  Beautiful mathematical duality.	

	

	

Nontrivial applications / reductions.	

  Data mining.	

  Open-pit mining. 	

  Project selection.	

  Airline scheduling.	

  Bipartite matching.	

  Baseball elimination.	

  Image segmentation.	

  Network connectivity.	

  Network reliability.	

  Distributed computing.	

  Egalitarian stable matching.	

  Security of statistical data.	

  Network intrusion detection.	

  Multi-camera scene reconstruction.	

  Many many more . . .	

4/24/14	

Copyright 2000, Kevin Wayne	

 2	

3	

Flow network.	

  Abstraction for material flowing through the edges.	

  G = (V, E) = directed graph, no parallel edges.	

  Two distinguished nodes: s = source, t = sink.	

  c(e) = capacity of edge e.	

	

Minimum Cut Problem	

s	

2	

3	

4	

5	

6	

7	

t	

 15	

 5	

 30	

 15	

 10	

 8	

 15	

 9	

 6	

 10	

 10	

 10	

 15	

 4	

 4	

capacity	

source	

 sink	

4	

Def. An s-t cut is a partition (A, B) of V with s ∈ A and t ∈
B.	

	

Def. The capacity of a cut (A, B) is:	

	

Cuts	

s	

2	

3	

4	

5	

6	

7	

t	

 15	

 5	

 30	

 15	

 10	

 8	

 15	

 9	

 6	

 10	

 10	

 10	

 15	

 4	

 4	

 Capacity = 10 + 5 + 15���
 = 30	

 A	

€

cap(A, B) = c(e)
e out of A
∑

4/24/14	

Copyright 2000, Kevin Wayne	

 3	

5	

s	

2	

3	

4	

5	

6	

7	

t	

 15	

 5	

 30	

 15	

 10	

 8	

 15	

 9	

 6	

 10	

 10	

 10	

 15	

 4	

 4	

 A	

Cuts	

Def. An s-t cut is a partition (A, B) of V with s ∈ A and t ∈
B.	

	

Def. The capacity of a cut (A, B) is:	

	

	

	

	

	

€

cap(A, B) = c(e)
e out of A
∑

 Capacity = 9 + 15 + 8 + 30���
 = 62	

6	

Min s-t cut problem. Find an s-t cut of minimum capacity.	

Minimum Cut Problem	

s	

2	

3	

4	

5	

6	

7	

t	

 15	

 5	

 30	

 15	

 10	

 8	

 15	

 9	

 6	

 10	

 10	

 10	

 15	

 4	

 4	

 A	

 Capacity = 10 + 8 + 10���
 = 28	

4/24/14	

Copyright 2000, Kevin Wayne	

 4	

7	

Def. An s-t flow is a function that satisfies:	

  For each e ∈ E: 	

 	

 	

 	

 (capacity)	

  For each v ∈ V – {s, t}: 	

 	

 	

(conservation)	

Def. The value of a flow f is: 	

	

Flows	

4	

0	

0	

0	

0	

 0	

0	

 4	

 4	

0	

0	

0	

Value = 4	

0	

€

f (e)
e in to v
∑ = f (e)

e out of v
∑

€

0 ≤ f (e) ≤ c(e)

capacity	

flow	

s	

2	

3	

4	

5	

6	

7	

t	

 15	

 5	

 30	

 15	

 10	

 8	

 15	

 9	

 6	

 10	

 10	

 10	

 15	

 4	

 4	

 0	

€

v(f) = f (e)
e out of s
∑ .

4	

8	

Max flow problem. Find s-t flow of maximum value.	

Maximum Flow Problem	

10	

9	

9	

14	

4	

 10	

4	

 8	

 9	

1	

0	

 0	

0	

14	

capacity	

flow	

s	

2	

3	

4	

5	

6	

7	

t	

 15	

 5	

 30	

 15	

 10	

 8	

 15	

 9	

 6	

 10	

 10	

 10	

 15	

 4	

 4	

 0	

Value = 28	

4/24/14	

Copyright 2000, Kevin Wayne	

 5	

9	

Towards a Max Flow Algorithm	

Greedy algorithm.	

  Start with f(e) = 0 for all edge e ∈ E.	

  Find an s-t path P where each edge has f(e) < c(e).	

  Augment flow along path P.	

  Repeat until you get stuck.	

s	

1	

2	

t	

10	

10	

0	

 0	

0	

 0	

0	

20	

20	

30	

Flow value = 0	

10	

Towards a Max Flow Algorithm	

Greedy algorithm.	

  Start with f(e) = 0 for all edge e ∈ E.	

  Find an s-t path P where each edge has f(e) < c(e).	

  Augment flow along path P.	

  Repeat until you get stuck.	

	

s	

1	

2	

t	

20	

Flow value = 20	

10	

10	

 20	

30	

0	

 0	

0	

 0	

0	

X	

X	

X	

20	

20	

20	

4/24/14	

Copyright 2000, Kevin Wayne	

 6	

11	

Towards a Max Flow Algorithm	

Greedy algorithm.	

  Start with f(e) = 0 for all edge e ∈ E.	

  Find an s-t path P where each edge has f(e) < c(e).	

  Augment flow along path P.	

  Repeat until you get stuck.	

greedy = 20	

s	

1	

2	

t	

20	

 10	

10	

 20	

30	

20	

 0	

0	

20	

20	

opt = 30	

s	

1	

2	

t	

20	

 10	

10	

 20	

30	

20	

 10	

10	

10	

20	

locally optimality ⇒ global optimality	

12	

Residual Graph	

Original edge: e = (u, v) ∈ E.	

  Flow f(e), capacity c(e).	

	

	

	

Residual edge.	

  "Undo" flow sent.	

  e = (u, v) and eR = (v, u).	

  Residual capacity:	

	

Residual graph: Gf = (V, Ef).	

  Residual edges with positive residual capacity.	

  Ef = {e : f(e) < c(e)} ∪ {eR : c(e) > 0}.	

u	

 v	

 17	

6	

capacity	

u	

 v	

 11	

residual capacity	

 6	

residual capacity	

flow	

€

c f (e) =
c(e)− f (e) if e ∈ E
f (e) if eR ∈ E

$
%
&

4/24/14	

Copyright 2000, Kevin Wayne	

 7	

13	

Ford-Fulkerson Algorithm	

s	

2	

3	

4	

5	

 t	

 10	

 10	

 9	

 8	

 4	

 10	

 10	

 6	

 2	

 G:	

capacity	

14	

Augmenting Path Algorithm	

Augment(f, c, P) {
 b ← bottleneck(P)
 foreach e ∈ P {
 if (e ∈ E) f(e) ← f(e) + b
 else f(eR) ← f(e) - b
 }
 return f
}

Ford-Fulkerson(G, s, t, c) {
 foreach e ∈ E f(e) ← 0
 Gf ← residual graph

 while (there exists augmenting path P) {
 f ← Augment(f, c, P)
 update Gf
 }
 return f
}

forward edge	

reverse edge	

4/24/14	

Copyright 2000, Kevin Wayne	

 8	

15	

Flow value lemma. Let f be any flow, and let (A, B) be any s-t
cut. Then, the net flow sent across the cut is equal to the
amount leaving s.	

Flows and Cuts	

10	

6	

6	

11	

1	

 10	

3	

 8	

 8	

0	

0	

0	

11	

s	

2	

3	

4	

5	

6	

7	

t	

 15	

 5	

 30	

 15	

 10	

 8	

 15	

 9	

 6	

 10	

 10	

 10	

 15	

 4	

 4	

 0	

Value = 24	

€

f (e)
e out of A
∑ − f (e)

e in to A
∑ = v(f)

4	

A	

16	

Flow value lemma. Let f be any flow, and let (A, B) be any s-t
cut. Then, the net flow sent across the cut is equal to the
amount leaving s.	

Flows and Cuts	

10	

6	

6	

1	

 10	

3	

 8	

 8	

0	

0	

0	

11	

s	

2	

3	

4	

5	

6	

7	

t	

 15	

 5	

 30	

 15	

 10	

 8	

 15	

 9	

 6	

 10	

 10	

 10	

 15	

 4	

 4	

 0	

€

f (e)
e out of A
∑ − f (e)

e in to A
∑ = v(f)

 Value = 6 + 0 + 8 - 1 + 11���
 = 24	

4	

11	

A	

4/24/14	

Copyright 2000, Kevin Wayne	

 9	

17	

Flow value lemma. Let f be any flow, and let (A, B) be any s-t
cut. Then, the net flow sent across the cut is equal to the
amount leaving s.	

Flows and Cuts	

10	

6	

6	

11	

1	

 10	

3	

 8	

 8	

0	

0	

0	

11	

s	

2	

3	

4	

5	

6	

7	

t	

 15	

 5	

 30	

 15	

 10	

 8	

 15	

 9	

 6	

 10	

 10	

 10	

 15	

 4	

 4	

 0	

€

f (e)
e out of A
∑ − f (e)

e in to A
∑ = v(f)

 Value = 10 - 4 + 8 - 0 + 10���
 = 24	

4	

A	

19	

Flows and Cuts	

Weak duality. Let f be any flow, and let (A, B) be any s-t cut.
Then the value of the flow is at most the capacity of the cut.	

	

Cut capacity = 30 ⇒ Flow value ≤ 30 	

s	

2	

3	

4	

5	

6	

7	

t	

 15	

 5	

 30	

 15	

 10	

 8	

 15	

 9	

 6	

 10	

 10	

 10	

 15	

 4	

 4	

Capacity = 30	

A	

4/24/14	

Copyright 2000, Kevin Wayne	

 10	

20	

Weak duality. Let f be any flow. Then, for any s-t cut (A, B)
we have���
v(f) ≤ cap(A, B).	

	

Pf.	

	

 	

 	

▪	

	

	

	

Flows and Cuts	

€

v(f) = f (e)
e out of A
∑ − f (e)

e in to A
∑

≤ f (e)
e out of A
∑

≤ c(e)
e out of A
∑

= cap(A,B)
s	

t	

A	

 B	

 7	

6	

 8	

4	

21	

Certificate of Optimality	

Corollary. Let f be any flow, and let (A, B) be any cut.���
If v(f) = cap(A, B), then f is a max flow and (A, B) is a min
cut.	

	

Value of flow = 28���
Cut capacity = 28 ⇒ Flow value ≤ 28	

10	

9	

9	

14	

4	

 10	

4	

 8	

 9	

1	

0	

 0	

0	

14	

s	

2	

3	

4	

5	

6	

7	

t	

 15	

 5	

 30	

 15	

 10	

 8	

 15	

 9	

 6	

 10	

 10	

 10	

 15	

 4	

 4	

 0	

A	

4/24/14	

Copyright 2000, Kevin Wayne	

 11	

22	

Max-Flow Min-Cut Theorem	

Augmenting path theorem. Flow f is a max flow iff there are
no augmenting paths. 	

	

Max-flow min-cut theorem. [Ford-Fulkerson 1956] The
value of the max flow is equal to the value of the min cut.	

	

Proof strategy. We prove both simultaneously by showing the
TFAE:	

 (i) 	

There exists a cut (A, B) such that v(f) = cap(A, B).	

 (ii) 	

Flow f is a max flow.	

 (iii) 	

There is no augmenting path relative to f.	

	

(i) ⇒ (ii) This was the corollary to weak duality lemma. 	

	

(ii) ⇒ (iii) We show contrapositive.	

  Let f be a flow. If there exists an augmenting path, then we

can improve f by sending flow along path.	

23	

Proof of Max-Flow Min-Cut Theorem	

(iii) ⇒ (i)	

  Let f be a flow with no augmenting paths.	

  Let A be set of vertices reachable from s in residual graph.	

  By definition of A, s ∈ A.	

  By definition of f, t ∉ A.	

€

v(f) = f (e)
e out of A
∑ − f (e)

e in to A
∑

= c(e)
e out of A
∑

= cap(A,B)

original network	

s	

t	

A	

 B	

4/24/14	

Copyright 2000, Kevin Wayne	

 12	

24	

Running Time	

Assumption. All capacities are integers between 1 and C.	

	

Invariant. Every flow value f(e) and every residual capacities
cf (e) remains an integer throughout the algorithm.	

	

Theorem. The algorithm terminates in at most v(f*) ≤ nC
iterations.	

Pf. Each augmentation increase value by at least 1. ▪	

	

Corollary. If C = 1, Ford-Fulkerson runs in O(m) time.	

	

Integrality theorem. If all capacities are integers, then there
exists a max flow f for which every flow value f(e) is an
integer.	

Pf. Since algorithm terminates, theorem follows from
invariant. ▪	

7.3 Choosing Good Augmenting Paths	

4/24/14	

Copyright 2000, Kevin Wayne	

 13	

26	

Ford-Fulkerson: Exponential Number of
Augmentations	

Q. Is generic Ford-Fulkerson algorithm polynomial in input
size?	

	

	

A. No. If max capacity is C, then algorithm can take C
iterations. 	

s	

1	

2	

t	

C	

C	

0	

 0	

0	

 0	

0	

C	

C	

1	

 s	

1	

2	

t	

C	

C	

1	

0	

 0	

0	

 0	

0	

X	

 1	

C	

C	

X	

X	

X	

1	

1	

1	

X	

X	

1	

1	

X	

X	

X	

1	

0	

1	

m, n, and log C	

33	

Matching.	

  Input: undirected graph G = (V, E).	

  M ⊆ E is a matching if each node appears in at most edge

in M.	

  Max matching: find a max cardinality matching.	

Matching	

4/24/14	

Copyright 2000, Kevin Wayne	

 14	

34	

Bipartite Matching	

Bipartite matching.	

  Input: undirected, bipartite graph G = (L ∪ R, E).	

  M ⊆ E is a matching if each node appears in at most edge

in M.	

  Max matching: find a max cardinality matching.	

1	

3	

5	

1'	

3'	

5'	

2	

4	

2'	

4'	

matching	

1-2', 3-1', 4-5' 	

R	

L	

35	

Bipartite Matching	

Bipartite matching.	

  Input: undirected, bipartite graph G = (L ∪ R, E).	

  M ⊆ E is a matching if each node appears in at most edge

in M.	

  Max matching: find a max cardinality matching.	

1	

3	

5	

1'	

3'	

5'	

2	

4	

2'	

4'	

R	

L	

max matching	

1-1', 2-2', 3-3' 4-4' 	

4/24/14	

Copyright 2000, Kevin Wayne	

 15	

36	

Max flow formulation.	

  Create digraph G' = (L ∪ R ∪ {s, t}, E').	

  Direct all edges from L to R, and assign infinite (or unit)

capacity.	

  Add source s, and unit capacity edges from s to each node in L.	

  Add sink t, and unit capacity edges from each node in R to t.	

Bipartite Matching	

s	

1	

3	

5	

1'	

3'	

5'	

t	

2	

4	

2'	

4'	

1	

 1	

∞	

R	

L	

G'	

37	

Theorem. Max cardinality matching in G = value of max flow
in G'.	

Pf. ≤	

  Given max matching M of cardinality k.	

  Consider flow f that sends 1 unit along each of k paths.	

  f is a flow, and has cardinality k. ▪	

Bipartite Matching: Proof of Correctness	

s	

1	

3	

5	

1'	

3'	

5'	

t	

2	

4	

2'	

4'	

1	

 1	

∞	

1	

3	

5	

1'	

3'	

5'	

2	

4	

2'	

4'	

G'	

G	

4/24/14	

Copyright 2000, Kevin Wayne	

 16	

38	

Theorem. Max cardinality matching in G = value of max flow in G'.	

Pf. ≥	

  Let f be a max flow in G' of value k.	

  Integrality theorem ⇒ k is integral and can assume f is 0-1.	

  Consider M = set of edges from L to R with f(e) = 1.	

– each node in L and R participates in at most one edge in M	

– |M| = k: consider cut (L ∪ s, R ∪ t) ▪	

Bipartite Matching: Proof of Correctness	

1	

3	

5	

1'	

3'	

5'	

2	

4	

2'	

4'	

G	

s	

1	

3	

5	

1'	

3'	

5'	

t	

2	

4	

2'	

4'	

1	

 1	

∞	

G'	

7.6 Disjoint Paths	

4/24/14	

Copyright 2000, Kevin Wayne	

 17	

45	

Disjoint path problem. Given a digraph G = (V, E) and two
nodes s and t, find the max number of edge-disjoint s-t paths.	

	

Def. Two paths are edge-disjoint if they have no edge in
common.	

	

Ex: communication networks.	

s	

2	

3	

4	

Edge Disjoint Paths	

5	

6	

7	

t	

46	

Disjoint path problem. Given a digraph G = (V, E) and two
nodes s and t, find the max number of edge-disjoint s-t paths.	

	

Def. Two paths are edge-disjoint if they have no edge in
common.	

Ex: communication networks.	

s	

2	

3	

4	

Edge Disjoint Paths	

5	

6	

7	

t	

4/24/14	

Copyright 2000, Kevin Wayne	

 18	

47	

Max flow formulation: assign unit capacity to every edge.	

	

	

	

	

	

	

	

Theorem. Max number edge-disjoint s-t paths equals max
flow value.	

Pf. ≤ 	

  Suppose there are k edge-disjoint paths P1, . . . , Pk.	

  Set f(e) = 1 if e participates in some path Pi ; else set f(e) =

0.	

  Since paths are edge-disjoint, f is a flow of value k. ▪	

Edge Disjoint Paths	

s	

 t	

1	

1	

1	

1	

1	

1	

1	

1	

1	

1	

1	

1	

1	

1	

48	

Max flow formulation: assign unit capacity to every edge.	

	

	

	

	

	

	

	

Theorem. Max number edge-disjoint s-t paths equals max
flow value.	

Pf. ≥ 	

  Suppose max flow value is k.	

  Integrality theorem ⇒ there exists 0-1 flow f of value k.	

  Consider edge (s, u) with f(s, u) = 1.	

– by conservation, there exists an edge (u, v) with f(u, v) =
1	

– continue until reach t, always choosing a new edge	

  Produces k (not necessarily simple) edge-disjoint paths. ▪	

Edge Disjoint Paths	

s	

 t	

1	

1	

1	

1	

1	

1	

1	

1	

1	

1	

1	

1	

1	

1	

can eliminate cycles to get simple paths if desired	

4/24/14	

Copyright 2000, Kevin Wayne	

 19	

49	

Network connectivity. Given a digraph G = (V, E) and two
nodes s and t, find min number of edges whose removal
disconnects t from s.	

	

Def. A set of edges F ⊆ E disconnects t from s if all s-t paths
uses at least on edge in F.	

Network Connectivity	

s	

2	

3	

4	

5	

6	

7	

t	

50	

Edge Disjoint Paths and Network Connectivity	

Theorem. [Menger 1927] The max number of edge-disjoint s-t
paths is equal to the min number of edges whose removal
disconnects t from s.	

	

Pf. ≤ 	

  Suppose the removal of F ⊆ E disconnects t from s, and |F| =

k.	

  All s-t paths use at least one edge of F. Hence, the number of

edge-disjoint paths is at most k. ▪	

	

s	

2	

3	

4	

5	

6	

7	

t	

 s	

2	

3	

4	

5	

6	

7	

t	

4/24/14	

Copyright 2000, Kevin Wayne	

 20	

51	

Disjoint Paths and Network Connectivity	

Theorem. [Menger 1927] The max number of edge-disjoint s-t
paths is equal to the min number of edges whose removal
disconnects t from s.	

	

Pf. ≥	

  Suppose max number of edge-disjoint paths is k.	

  Then max flow value is k.	

  Max-flow min-cut ⇒ cut (A, B) of capacity k.	

  Let F be set of edges going from A to B.	

  |F| = k and disconnects t from s. ▪	

s	

2	

3	

4	

5	

6	

7	

t	

 s	

2	

3	

4	

5	

6	

7	

t	

A	

7.10 Image Segmentation	

4/24/14	

Copyright 2000, Kevin Wayne	

 21	

64	

Image Segmentation	

Image segmentation.	

  Central problem in image processing.	

  Divide image into coherent regions.	

Ex: Three people standing in front of complex background
scene. Identify each person as a coherent object.	

65	

Image Segmentation	

Foreground / background segmentation.	

  Label each pixel in picture as belonging to���

foreground or background.	

  V = set of pixels, E = pairs of neighboring pixels.	

  ai ≥ 0 is likelihood pixel i in foreground.	

  bi ≥ 0 is likelihood pixel i in background.	

  pij ≥ 0 is separation penalty for labeling one of i���

and j as foreground, and the other as background.	

Goals.	

  Accuracy: if ai > bi in isolation, prefer to label i in

foreground.	

  Smoothness: if many neighbors of i are labeled foreground,

we should be inclined to label i as foreground.	

  Find partition (A, B) that maximizes: 	

€

a i +
i∈ A
∑ bj

j∈B
∑ − pij

(i, j) ∈ E
A{i, j} = 1

∑

foreground	

 background	

4/24/14	

Copyright 2000, Kevin Wayne	

 22	

66	

Image Segmentation	

Formulate as min cut problem.	

  Maximization.	

  No source or sink.	

  Undirected graph.	

Turn into minimization problem.	

  Maximizing���
���
���
is equivalent to minimizing	

  or alternatively	

€

a j +
j∈B
∑ bi

i∈ A
∑ + pij

(i, j) ∈ E
A{i, j} = 1

∑

€

a i +
i∈ A
∑ bj

j∈B
∑ − pij

(i, j) ∈ E
A{i, j} = 1

∑

€

a ii ∈ V∑ + b jj ∈ V∑()
a constant

        
 − a i

i∈ A
∑ − bj

j∈B
∑ + pij

(i, j) ∈ E
A{i, j} = 1

∑

67	

Image Segmentation	

Formulate as min cut problem.	

  G' = (V', E').	

  Add source to correspond to foreground;���

add sink to correspond to background	

  Use two anti-parallel edges instead of���

undirected edge.	

s	

 t	

pij	

pij	

pij	

i	

 j	

pij	

aj	

G'	

bi	

4/24/14	

Copyright 2000, Kevin Wayne	

 23	

68	

Image Segmentation	

Consider min cut (A, B) in G'.	

  A = foreground.	

  Precisely the quantity we want to minimize.	

€

cap(A, B) = a j +
j∈B
∑ bi +

i∈ A
∑ pij

(i, j) ∈ E
i∈ A, j∈B

∑

G'	

s	

 t	

i	

 j	

A	

if i and j on different sides,	

pij counted exactly once	

pij	

bi	

aj	

Graph Cut

Formulated as maximum cost flow -
Network flow problem from Graph Theory
Kolmogorov, Boykov (et al)
efficient solvers available

4/24/14	

Copyright 2000, Kevin Wayne	

 24	

Ex: Interactive Foreground Segmentation

Interaction Foreground Segmentation: Grab Cuts
Rother, Kolmogorov, Blake, SIGRAPH 2005

