CS583 Lecture 13

Jana Kosecka

Max Flow Algorithm

Copyright 2000, Kevin Wayne

Maximum Flow and Minimum Cut

Max flow and min cut.
« Two very rich algorithmic problems.
« Cornerstone problems in combinatorial optimization.
« Beautiful mathematical duality.

Nontrivial applications / reductions.

« Data mining. « Network reliability.

« Open-pit mining. « Distributed computing.

« Project selection. » Egalitarian stable matching.

« Airline scheduling. « Security of statistical data.

« Bipartite matching. « Network intrusion detection.

« Baseball elimination. « Multi-camera scene reconstruction.
« Image segmentation. « Many many more . . .

« Network connectivity.

4/24/14

Flow network.

c(e) = capacity of edge e.

Minimum Cut Problem

/‘\?\
10

4

source s 5 KL

RN

« Abstraction for material flowing through the edges.
G = (V, E) = directed graph, no parallel edges.
Two distinguished nodes: s = source, t = sink.

\:I;\
15 1

capacity -
4

15 15
\|/
6 15

t

sink

Cuts

Def. An s-t cut is a partition (A, B) of VwithsE A and t €
B. cap(4,B) = 3 c(e)

eoutof 4

Def. The capacity of a cut (A, B) is:

@
©

Capacity =10+5 + 15
30 @ =30

Copyright 2000, Kevin Wayne

4/24/14

4/24/14

Cuts Minimum Cut Problem
Def. An s-t cut is a partition (A, B) of V withs EA and t € Min s-t cut problem. Find an s-t cut of minimum capacity.
B. cap(4,B) = 3 cle)

eout of 4

Def. The capacity of a cut (A, B) is:

10

Capacity =9 + 15 + 8 + 30
=62

Capacity = 10 + 8 + 10
=28

Copyright 2000, Kevin Wayne 3

Flows

Def. An s-t flow is a function that satisfies:

« Foreache €E: 0 = f(e) = c(e) (capacity)
« ForeachvE&V —{s,t}: 2f(e) = E{@ (conservation)
Def. The value of a flow fis: v(f) = 3 f(e) .
eoutof s
0
@ o ®
! 0 0
10 4 4 15 15 0 10
0 4
© 5 ©) ® 10 ©
0 0
capacity — 15 # 0 6 P 10
flow — 0 0
@ 0 @ Value =4

Maximum Flow Problem

Max flow problem. Find s-t flow of maximum value.

@ 9 ®
10 | 9
10 40 15 15 0 10
4 8 9
©) : ©) s © 10 ©
4 10
capacity — 15 40 6 P 10
flow — 14 14 Valuo 28
@ w0 @ alue =

Copyright 2000, Kevin Wayne

4/24/14

Towards a Max Flow Algorithm

Greedy algorithm.
« Start with f(e) = 0 for all edge e € E.
« Find an s-t path P where each edge has f(e) < c(e).
« Augment flow along path P.
» Repeat until you get stuck.

0 0 Flow value =0
2

Copyright 2000, Kevin Wayne

Towards a Max Flow Algorithm

Greedy algorithm.
« Start with f(e) = 0 for all edge e € E.
» Find an s-t path P where each edge has f(e) < c(e).
» Augment flow along path P.
» Repeat until you get stuck.

1
20 N/(\<)

20 10

30 K20

10 20

0 X 20 Flow value = 20
2

4/24/14

Greedy algorithm.

20

30 20

10

0
2

greedy = 20

10

20
20

« Start with f(e) = 0 for all edge e € E.
« Find an s-t path P where each edge has f(e) < c(e).
« Augment flow along path P.

» Repeat until you get stuck. ~\

1
20 /O\ 0

logully optimality = global optimality

opt =30

Towards a Max Flow Algorithm

1
20 /O\ 10

20

10
10

30 10

Ny

10

20
20

Residual Graph
O .. 1 d () E capacity
riginal edge: € =(u, v cE.
« Flow f(e), capacity c(e). O, 17 &)
()\ flow

Residual edge.
« "Undo" flow sent.
« ¢=(u,v)andeR = (v, u).
« Residual capacity:

residual capacity
7
@\ 1 /O
6
N

residual capacity

_ cle)-f(e) if eEFE
cre) = f(e) if efEE
Residual graph: G;=(V,E;).
« Residual edges with positive residual capacity.
« E;={e:f(e) <c(e)} U {er:c(e)>0}.

Copyright 2000, Kevin Wayne

4/24/14

Ford-Fulkerson Algorithm

4
capacity
/

Copyright 2000, Kevin Wayne

Augmenting Path Algorithm

Augment (f, c, P) {
b <« bottleneck (P)
foreach e € P {

if (e E E) f(e) « f(e) + b forward edge
else f(e?) <« f(e) - b reverse edge
}
return £

Ford-Fulkerson(G, s, t, ¢) {
foreach e EE f(e) « 0
G; < residual graph

while (there exists augmenting path P) {
f < Augment(f, c, P)
update G;

}

return £

4/24/14

4/24/14

Flows and Cuts Flows and Cuts
Flow value lemma. Let f be any flow, and let (A, B) be any s-t Flow value lemma. Let f be any flow, and let (A, B) be any s-t
cut. Then, the net flow sent across the cut is equal to the cut. Then, the net flow sent across the cut is equal to the
amount leaving s. amount leaving s.
Sfe) - Sfe) = wf) Sfe) - 3 fle) = v(f)
e out of A einto A e out of A einto A
5 ® 2) 2O,
10 0 6 10 N 6
10 44 15 15 0 10 10 A 4 15 15 0 10
—) s ® 0@ : s *L \o O
& 1 10 A \I/\ 1 10
s 40 6 15 0 10 s 40 6 15 0 10
! ! Value = 24 E 1 Value=6+0+8-1+11
30 @ 4 30 7 =24

Copyright 2000, Kevin Wayne 8

Flows and Cuts

Flow value lemma. Let f be any flow, and let (A, B) be any s-t
cut. Then, the net flow sent across the cut is equal to the
amount leaving s.

2fle) = Zfe) = vf)

eout of A einto A
6
: ®
10 0 6
10 4 4 15 15 0 10
. l . .
5 3 8 6 10
A

\r\] 0

5 4 10
11
1 Value =10-4+8-0+ 10
7 30 z =24

Copyright 2000, Kevin Wayne

Flows and Cuts

Weak duality. Let f be any flow, and let (A, B) be any s-t cut.
Then the value of the flow is at most the capacity of the cut.

Cut capacity =30 = Flow value = 30

A : ®
10 . Is 15 10
5 —(3) 8 ® 10 ®
A
4 6 15

Capacity = 30

\‘@ @

4/24/14

Flows and Cuts

Weak duality. Let f be any flow. Then, for any s-t cut (A, B)
we have
v(f) = cap(A, B).

Pf.
) = 3 fl- 3 flo)

eoutof A einto A

= 3 fl
eoutof A

=< > c(e)
eoutof A

= cap(A,B)

20

Certificate of Optimality

Corollary. Let f be any flow, and let (A, B) be any cut.
If v(f) = cap(A, B), then f is a max flow and (A, B) is a min
cut.

Value of flow =28
Cut capacity =28 = Flow value =28

Copyright 2000, Kevin Wayne

4/24/14

10

Max-Flow Min-Cut Theorem

Augmenting path theorem. Flow f is a max flow iff there are
no augmenting paths.

Max-flow min-cut theorem. [Ford-Fulkerson 1956] The
value of the max flow is equal to the value of the min cut.

Proof strategy. We prove both simultaneously by showing the
TFAE:
(1) There exists a cut (A, B) such that v(f) = cap(A, B).
(ii) Flow fis a max flow.
(iii) There is no augmenting path relative to f.

(i) = (ii) This was the corollary to weak duality lemma.
(i) = (iii)) We show contrapositive.

« Let fbe a flow. If there exists an augmenting path, then we
can improve f by sending flow along path.

Copyright 2000, Kevin Wayne

Proof of Max-Flow Min-Cut Theorem

(i) = (i)

Let f be a flow with no augmenting paths.

Let A be set of vertices reachable from s in residual graph.
By definition of A, s € A.
By definition of f, t & A.
vf) = 3 flo- 3 fle)

eoutof A einto A

= S

eoutof A

cap(A,B) =

original network

4/24/14

11

4/24/14

Running Time

Assumption. All capacities are integers between 1 and C. 7.3 Choosmg Good Augmentmg Paths

Invariant. Every flow value f(e) and every residual capacities
cq(e) remains an integer throughout the algorithm.

Theorem. The algorithm terminates in at most v(f*) = nC
iterations.
Pf. Each augmentation increase value by at least 1. -

Corollary. If C = 1, Ford-Fulkerson runs in O(m) time.

Integrality theorem. If all capacities are integers, then there
exists a max flow f for which every flow value f(e) is an
integer.

Pf. Since algorithm terminates, theorem follows from
invariant. -

Copyright 2000, Kevin Wayne 12

Ford-Fulkerson: Exponential Number of
Augmentations

Q. Is generic Ford-Fulkerson algorithm po&mgg&abm input
size? h

A. No. If max capacity is C, then algorithm can take C

iterations.
1 1
1 X 0 1 X X 1
C C C C

1 X1 1 KXO0

Matching

Matching.
« Input: undirected graph G = (V, E).
« M C E is a matching if each node appears in at most edge
in M.
» Max matching: find a may~cardinality matching.

Copyright 2000, Kevin Wayne

4/24/14

13

4/24/14

Bipartite Matching Bipartite Matching
Bipartite matching. Bipartite matching.
« Input: undirected, bipartite graph G = (L U R, E). « Input: undirected, bipartite graph G = (L U R, E).
« M C E is a matching if each node appears in at most edge « M C E is a matching if each node appears in at most edge
in M. in M.

» Max matching: find a max cardinality matching. » Max matching: find a max cardinality matching.

@ ®
matching @ @ max matching
1-2',3-1',4-5' 1-1',2-2',3-3' 4-4'
©, ®
ol @
L R L @ @ R

Copyright 2000, Kevin Wayne 14

Bipartite Matching

Max flow formulation.
» Create digraph G'=(L URU {s,t}, E').
« Direct all edges from L to R, and assign infinite (or unit)
capacity.
» Add source s, and unit capacity edges from s to each node in L.
» Add sink t, and unit capacity edges from each node in R to t.

Copyright 2000, Kevin Wayne

Bipartite Matching: Proof of Correctness

Theorem. Max cardinality matching in G = value of max flow
in G'.

Pf. <
» Given max matching M of cardinality k.
» Consider flow f that sends 1 unit along each of k paths.
» fisaflow, and has cardinality k. -

4/24/14

15

Bipartite Matching: Proof of Correctness

@

@ & @

Theorem. Max cardinality matching in G = value of max flow in G'".
Pf. =
« Let f be a max flow in G' of value k.
«» Integrality theorem = k is integral and can assume f is 0-1.
« Consider M = set of edges from L to R with f(e) = 1.
—each node in L and R participates in at most one edge in M
—IMI=k: consider cut (LUs,RUt) -

7.6 Disjoint Paths

Copyright 2000, Kevin Wayne

4/24/14

16

4/24/14

Edge Disjoint Paths Edge Disjoint Paths
Disjoint path problem. Given a digraph G = (V, E) and two Disjoint path problem. Given a digraph G = (V, E) and two
nodes s and t, find the max number of edge-disjoint s-t paths. nodes s and t, find the max number of edge-disjoint s-t paths.
Def. Two paths are edge-disjoint if they have no edge in Def. Two paths are edge-disjoint if they have no edge in
common. common.
Ex: communication networks. Ex: communication networks.

®

Copyright 2000, Kevin Wayne 17

Edge Disjoint Paths

Max flow formulation: assign unit 2&2@/ to every edge.
I

1

Theorem. Max number edge-disjoint s-t paths equals max
flow value.
Pf. =
« Suppose there are k edge-disjoint paths P,, ..., P,.
« Set f(e) = 1 if e participates in some path P,; else set f(e) =
0.
« Since paths are edge-disjoint, f is a flow of value k. *

Copyright 2000, Kevin Wayne

Edge Disjoint Paths

Max flow formulation: assign unit w to every edge.
I

1

Theorem. Max number edge-disjoint s-t paths equals max
flow value.
Pf. =

« Suppose max flow value is k.

» Integrality theorem => there exists 0-1 flow f of value k.

« Consider edge (s, u) with f(s,u) = 1.

-by conservation, there exists an edge (u, v) with f(u, v) =
1 \

can eliminate cycles to get simple paths jf desired

—continue until reach t, always choosing a new edge

4/24/14

18

Network Connectivity

Network connectivity. Given a digraph G = (V, E) and two
nodes s and t, find min number of edges whose removal

disconnects t from s.

Def. A set of edges F C E disconnects t from s if all s-t paths
uses at least on edge in F.

Edge Disjoint Paths and Network Connectivity

Theorem. [Menger 1927] The max number of edge-disjoint s-t
paths is equal to the min number of edges whose removal

disconnects t from s.

Pf. <
» Suppose the removal of F C E disconnects t from s, and IFl =

« All s-t paths use at least one edge of F. Hence, the number of
edge-disjoint paths is at most k. -

4/24/14

Copyright 2000, Kevin Wayne

19

Disjoint Paths and Network Connectivity

Theorem. [Menger 1927] The max number of edge-disjoint s-t
paths is equal to the min number of edges whose removal
disconnects t from s.

Pf. =
» Suppose max number of edge-disjoint paths is k.
« Then max flow value is k.
» Max-flow min-cut = cut (A, B) of capacity k.

Let F be set of edges going from A to B.
[Fl = k and disconnects t from s. *

7.10 Image Segmentation

Copyright 2000, Kevin Wayne

4/24/14

20

Image Segmentation

Image segmentation.
« Central problem in image processing.
» Divide image into coherent regions.

Ex: Three people standing in front of complex background
scene. Identify each person as a coherent object.

Copyright 2000, Kevin Wayne

Image Segmentation

Foreground / background segmentation.

« Label each pixel in picture as belonging to
foreground or background.

» V =set of pixels, E = pairs of neighboring pixels.

» a,= 0 is likelihood pixel i in foreground.

» b,= 0 is likelihood pixel i in background.

= p;= 0 is separation penalty for labeling one ofi
and j as foreground, and the other as background.

Goals.
« Accuracy: if a,> b, in isolation, prefer to label i in
foreground.
» Smoothness: if many neighbors of {are %eled fg)ggground,
we should be’indlined to label i as foregeaundi. <=

. 0 .. AN{ijy| =1
« Find partition (X8 that maximizes: e

4/24/14

21

4/24/14

Image Segmentation Image Segmentation
. . O—py —O
Formulate as min cut problem. Formulate as min cut problem.
« Maximization. « G'=(V,E). Py
« No source or sink. » Add source to correspond to foreground; OC Pi 3)
» Undirected graph. add sink to correspond to background
» Use two anti-parallel edges instead of
Turn into minimization problem. undirected edge.
_Eai"'zbj - EP,/
« Maximizing " /" {055 O O O O

.(216Vai+2jevbj) - 2a;-3b; + 3py .
is equivalent to minimizihg———————> i€a j€B" G)EE i
a constant ‘ An{l,j) ‘ =1 (P))
e)(: ij U‘—’k)
bi\

i Sa it >b + > Py
« or alternatively JEB i€4 G))EE
[AN} =1

Copyright 2000, Kevin Wayne 22

Image Segmentation

Consider min cut (A, B) in G'.
« A =foreground,
cap(A,%]}- - _gga.f+gAbi +(‘ _)é 5711 if i and j on different sides,
J ! ilé] e — P counted exactly once

» Precisely the quantity we want to minimize.

O O @ @)

e a
K)—(tpﬁlu—m
bl —~—

G O @)

O
O

P
A ' B

Copyright 2000, Kevin Wayne

Graph Cut

source

(a) A graph G (b) A cut on G
Formulated as maximum cost flow -
Network flow problem from Graph Theory
Kolmogorov, Boykov (et al)

efficient solvers available

4/24/14

23

4/24/14

Ex: Interactive Foreground Segmentation

Interaction Foreground Segmentation: Grab Cuts
Rother, Kolmogorov, Blake, SIGRAPH 2005

Copyright 2000, Kevin Wayne 24

