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CS583 Lecture 13	


                               Jana Kosecka	


	


                        Max Flow Algorithm 	
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Maximum Flow and Minimum Cut	


Max flow and min cut.	


  Two very rich algorithmic problems.	


  Cornerstone problems in combinatorial optimization.	


  Beautiful mathematical duality.	


	


	


Nontrivial applications / reductions.	


  Data mining.	


  Open-pit mining. 	


  Project selection.	


  Airline scheduling.	


  Bipartite matching.	


  Baseball elimination.	


  Image segmentation.	


  Network connectivity.	



  Network reliability.	


  Distributed computing.	


  Egalitarian stable matching.	


  Security of statistical data.	


  Network intrusion detection.	


  Multi-camera scene reconstruction.	


  Many many more . . .	
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Flow network.	


  Abstraction for material flowing through the edges.	


  G = (V, E) = directed graph, no parallel edges.	


  Two distinguished nodes:  s = source, t = sink.	


  c(e) = capacity of edge e.	


	



Minimum Cut Problem	
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Def.  An s-t cut is a partition (A, B) of V with s ∈ A and t ∈ 
B.	


	


Def. The capacity of a cut (A, B) is:	


	



Cuts	
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Def.  An s-t cut is a partition (A, B) of V with s ∈ A and t ∈ 
B.	



	


Def. The capacity of a cut (A, B) is:	
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Min s-t cut problem.  Find an s-t cut of minimum capacity.	



Minimum Cut Problem	
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              = 28	





4/24/14	



Copyright 2000, Kevin Wayne	

 4	



7	



Def.  An s-t flow is a function that satisfies:	


  For each e ∈ E: 	

 	

 	

 	

 (capacity)	


  For each v ∈ V – {s, t}: 	

 	

 	

(conservation)	



Def.  The value of a flow f is:       	
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Max flow problem.  Find s-t flow of maximum value.	



Maximum Flow Problem	
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Towards a Max Flow Algorithm	



Greedy algorithm.	


  Start with f(e) = 0 for all edge e ∈ E.	


  Find an s-t path P where each edge has f(e) < c(e).	


  Augment flow along path P.	


  Repeat until you get stuck.	
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Towards a Max Flow Algorithm	



Greedy algorithm.	


  Start with f(e) = 0 for all edge e ∈ E.	


  Find an s-t path P where each edge has f(e) < c(e).	


  Augment flow along path P.	


  Repeat until you get stuck.	
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Towards a Max Flow Algorithm	



Greedy algorithm.	


  Start with f(e) = 0 for all edge e ∈ E.	


  Find an s-t path P where each edge has f(e) < c(e).	


  Augment flow along path P.	


  Repeat until you get stuck.	
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Residual Graph	



Original edge:  e = (u, v)  ∈ E.	


  Flow f(e), capacity c(e).	


	


	


	


Residual edge.	


  "Undo" flow sent.	


  e = (u, v) and eR = (v, u).	


  Residual capacity:	



	


Residual graph:  Gf = (V, Ef ).	


  Residual edges with positive residual capacity.	


  Ef = {e : f(e) < c(e)}  ∪  {eR : c(e) > 0}.	
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Ford-Fulkerson Algorithm	
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Augmenting Path Algorithm	



Augment(f, c, P) { 
   b ← bottleneck(P)  
   foreach e ∈ P { 
      if (e ∈ E) f(e) ← f(e) + b 
      else       f(eR) ← f(e) - b 
   } 
   return f 
} 

Ford-Fulkerson(G, s, t, c) { 
   foreach e ∈ E  f(e) ← 0 
   Gf ← residual graph 
 
   while (there exists augmenting path P) { 
      f ← Augment(f, c, P) 
      update Gf 
   } 
   return f 
} 

forward edge	



reverse edge	
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Flow value lemma.  Let f be any flow, and let (A, B) be any s-t 
cut.  Then, the net flow sent across the cut is equal to the 
amount leaving s.	



Flows and Cuts	
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Flow value lemma.  Let f be any flow, and let (A, B) be any s-t 
cut.  Then, the net flow sent across the cut is equal to the 
amount leaving s.	
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Flow value lemma.  Let f be any flow, and let (A, B) be any s-t 
cut.  Then, the net flow sent across the cut is equal to the 
amount leaving s.	



Flows and Cuts	
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Flows and Cuts	



Weak duality.  Let f be any flow, and let (A, B) be any s-t cut.  
Then the value of the flow is at most the capacity of the cut.	


	



Cut capacity = 30   ⇒    Flow value ≤ 30 	
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Weak duality.  Let f be any flow.  Then, for any s-t cut (A, B) 
we have���
v(f) ≤ cap(A, B).	


	


Pf.	



	

 	

 	

▪	


	


	


	



Flows and Cuts	
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Certificate of Optimality	


Corollary.  Let f be any flow, and let (A, B) be any cut.���
If v(f) = cap(A, B), then f is a max flow and (A, B) is a min 
cut.	



	


Value of flow = 28���
Cut capacity  = 28   ⇒    Flow value ≤ 28	
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Max-Flow Min-Cut Theorem	


Augmenting path theorem.  Flow f is a max flow iff there are 
no augmenting paths. 	


	


Max-flow min-cut theorem.  [Ford-Fulkerson 1956]  The 
value of the max flow is equal to the value of the min cut.	


	


Proof strategy.  We prove both simultaneously by showing the 
TFAE:	


    (i) 	

There exists a cut (A, B) such that v(f) = cap(A, B).	


   (ii) 	

Flow f is a max flow.	


  (iii) 	

There is no augmenting path relative to f.	


	



(i)  ⇒ (ii)  This was the corollary to weak duality lemma. 	


	


(ii)  ⇒ (iii)  We show contrapositive.	


  Let f be a flow. If there exists an augmenting path, then we 

can improve f by sending flow along path.	


23	



Proof of Max-Flow Min-Cut Theorem	



(iii)  ⇒ (i)	


  Let f be a flow with no augmenting paths.	


  Let A be set of vertices reachable from s in residual graph.	


  By definition of A, s ∈ A.	


  By definition of f, t ∉ A.	
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Running Time	



Assumption.  All capacities are integers between 1 and C.	


	


Invariant.  Every flow value f(e) and every residual capacities 
cf (e) remains an integer throughout the algorithm.	


	


Theorem.  The algorithm terminates in at most v(f*) ≤ nC 
iterations.	


Pf.  Each augmentation increase value by at least 1.   ▪	


	


Corollary.  If C = 1, Ford-Fulkerson runs in O(m) time.	


	


Integrality theorem.  If all capacities are integers, then there 
exists a max flow f for which every flow value f(e) is an 
integer.	


Pf.  Since algorithm terminates, theorem follows from 
invariant.   ▪	



7.3  Choosing Good Augmenting Paths	
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Ford-Fulkerson:  Exponential Number of 
Augmentations	



Q.   Is generic Ford-Fulkerson algorithm polynomial in input 
size?	


	


	


A.   No.  If max capacity is C, then algorithm can take C 
iterations.  	
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Matching.	


  Input:  undirected graph G = (V, E).	


  M ⊆ E is a matching if each node appears in at most edge 

in M.	


  Max matching:  find a max cardinality matching.	



Matching	





4/24/14	



Copyright 2000, Kevin Wayne	

 14	



34	



Bipartite Matching	



Bipartite matching.	


  Input:  undirected, bipartite graph G = (L ∪ R, E).	


  M ⊆ E is a matching if each node appears in at most edge 

in M.	


  Max matching:  find a max cardinality matching.	
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Bipartite Matching	



Bipartite matching.	


  Input:  undirected, bipartite graph G = (L ∪ R, E).	


  M ⊆ E is a matching if each node appears in at most edge 

in M.	


  Max matching:  find a max cardinality matching.	
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Max flow formulation.	


  Create digraph G' = (L ∪ R ∪ {s, t},  E' ).	


  Direct all edges from L to R, and assign infinite (or unit) 

capacity.	


  Add source s, and unit capacity edges from s to each node in L.	


  Add sink t, and unit capacity edges from each node in R to t.	



Bipartite Matching	
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Theorem.  Max cardinality matching in G = value of max flow 
in G'.	


Pf.  ≤	


  Given max matching M of cardinality k.	


  Consider flow f that sends 1 unit along each of k paths.	


  f is a flow, and has cardinality k.   ▪	



Bipartite Matching:  Proof of Correctness	
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Theorem.  Max cardinality matching in G = value of max flow in G'.	


Pf.  ≥	


  Let f be a max flow in G' of value k.	


  Integrality theorem  ⇒  k is integral and can assume f is 0-1.	


  Consider M = set of edges from L to R with f(e) = 1.	



– each node in L and R participates in at most one edge in M	


– |M| = k:  consider cut (L ∪ s, R ∪ t)   ▪	



Bipartite Matching:  Proof of Correctness	
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7.6  Disjoint Paths	
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Disjoint path problem.  Given a digraph G = (V, E) and two 
nodes s and t, find the max number of edge-disjoint s-t paths.	


	


Def.  Two paths are edge-disjoint if they have no edge in 
common.	


	


Ex:  communication networks.	
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Disjoint path problem.  Given a digraph G = (V, E) and two 
nodes s and t, find the max number of edge-disjoint s-t paths.	


	


Def.  Two paths are edge-disjoint if they have no edge in 
common.	



Ex:  communication networks.	
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Max flow formulation:  assign unit capacity to every edge.	


	


	


	


	


	


	


	


Theorem.  Max number edge-disjoint s-t paths equals max 
flow value.	


Pf.   ≤ 	


  Suppose there are k edge-disjoint paths P1, . . . , Pk.	


  Set f(e) = 1 if e participates in some path Pi ;  else set f(e) = 

0.	


  Since paths are edge-disjoint, f is a flow of value k.   ▪	



Edge Disjoint Paths	
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Max flow formulation:  assign unit capacity to every edge.	


	


	


	


	


	


	


	


Theorem.  Max number edge-disjoint s-t paths equals max 
flow value.	


Pf.   ≥ 	


  Suppose max flow value is k.	


  Integrality theorem  ⇒  there exists 0-1 flow f of value k.	


  Consider edge (s, u) with f(s, u) = 1.	



– by conservation, there exists an edge (u, v) with f(u, v) = 
1	



– continue until reach t, always choosing a new edge	


  Produces k (not necessarily simple) edge-disjoint paths.   ▪	



Edge Disjoint Paths	
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Network connectivity.  Given a digraph G = (V, E) and two 
nodes s and t,  find min number of edges whose removal 
disconnects t from s.	


	


Def.  A set of edges F ⊆ E disconnects t from s if all s-t paths 
uses at least on edge in F.	



Network Connectivity	
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Edge Disjoint Paths and Network Connectivity	


Theorem.  [Menger 1927]  The max number of edge-disjoint s-t 
paths is equal to the min number of edges whose removal 
disconnects t from s.	


	


Pf.  ≤ 	


  Suppose the removal of F ⊆ E disconnects t from s, and |F| = 

k.	


  All s-t paths use at least one edge of F. Hence, the number of 

edge-disjoint paths is at most k.  ▪	
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Disjoint Paths and Network Connectivity	


Theorem.  [Menger 1927]  The max number of edge-disjoint s-t 
paths is equal to the min number of edges whose removal 
disconnects t from s.	


	


Pf.  ≥	


  Suppose max number of edge-disjoint paths is k.	


  Then max flow value is k.	


  Max-flow min-cut  ⇒  cut (A, B) of capacity k.	


  Let F be set of edges going from A to B.	


  |F| = k and disconnects t from s.   ▪	
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7.10  Image Segmentation	
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Image Segmentation	



Image segmentation.	


  Central problem in image processing.	


  Divide image into coherent regions.	



Ex:  Three people standing in front of complex background 
scene. Identify each person as a coherent object.	
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Image Segmentation	



Foreground / background segmentation.	


  Label each pixel in picture as belonging to���

foreground or background.	


  V = set of pixels, E = pairs of neighboring pixels.	


  ai ≥ 0 is likelihood pixel i in foreground.	


  bi ≥ 0 is likelihood pixel i in background.	


  pij ≥ 0 is separation penalty for labeling one of i���

and j as foreground, and the other as background.	



Goals.	


  Accuracy:  if ai  > bi in isolation, prefer to label i in 

foreground.	


  Smoothness: if many neighbors of i are labeled foreground, 

we should be inclined to label i as foreground.	


  Find partition (A, B) that maximizes:  	

    

€ 

a i +
i∈ A
∑ bj

j∈B
∑ − pij

(i, j) ∈ E
A{i, j} = 1

∑

foreground	

 background	
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Image Segmentation	



Formulate as min cut problem.	


  Maximization.	


  No source or sink.	


  Undirected graph.	



Turn into minimization problem.	



  Maximizing���
���
���
is equivalent to minimizing	



  or alternatively	


    

€ 

a j +
j∈B
∑ bi

i∈ A
∑ + pij

(i, j) ∈ E
A{i, j} = 1

∑

    

€ 

a i +
i∈ A
∑ bj

j∈B
∑ − pij

(i, j) ∈ E
A{i, j} = 1

∑

  

€ 

a ii ∈ V∑  + b jj ∈ V∑( )
a constant

         
  −  a i

i∈ A
∑  − bj

j∈B
∑  + pij

(i, j) ∈ E
A{i, j} = 1

∑

67	



Image Segmentation	



Formulate as min cut problem.	


  G' = (V', E').	


  Add source to correspond to foreground;���

add sink to correspond to background	


  Use two anti-parallel edges instead of���

undirected edge.	



s	

 t	



pij	



pij	


pij	



i	

 j	

pij	



aj	



G'	



bi	
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Image Segmentation	



Consider min cut (A, B) in G'.	


   A = foreground.	



  Precisely the quantity we want to minimize.	


€ 

cap(A, B) = a j +
j∈B
∑ bi  +

i∈ A
∑ pij

(i, j) ∈ E
i∈ A, j∈B

∑

G'	



s	

 t	

i	

 j	



A	



if i and j on different sides,	


pij counted exactly once	



pij	



bi	



aj	



Graph Cut 

Formulated as maximum cost flow -  
Network flow problem from Graph Theory 
Kolmogorov, Boykov (et al)  
efficient solvers available 
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Ex: Interactive Foreground Segmentation 

Interaction Foreground Segmentation: Grab Cuts 
Rother, Kolmogorov, Blake, SIGRAPH 2005 


