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CS 583: Algorithms	


NP Completeness	

Ch 34	

	


Intractability	

•  Some problems are intractable: ���

as they grow large, we are unable to solve them in reasonable 
time	


•  What constitutes reasonable time? Standard working 
definition: polynomial time	


•  On an input of size n the worst-case running time is O(nk) for 
some constant k	

Polynomial time: O(n2), O(n3), O(1), O(n lg n) 	

Not in polynomial time: O(2n), O(nn), O(n!)	
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Polynomial-Time Algorithms	

•  Many problems we’ve studied have algorithms with 

polynomial-time solution (sorting, searching, optimization, 
graph traversal)	


•  We define P to be the class of problems solvable in 
polynomial time	


•  Are all problems solvable in polynomial time?	

•  No: Turing’s “Halting Problem” is not solvable by any 

computer, no matter how much time is given	

•  Halting problem: given a description of a program, decide 

whether program finishes running on particular input or runs 
forever	


•  One of the first undecidable problems	

	

	


Tractability	

•  Halting problem is so called undecidable problem: no computer 

can solve them	

•  More  about undecidable problems here; take a theory class	

	

•  We would like to discuss the relative hardness of different 	

problems 	

•  Focus on  decision problems: solution is an answer  yes/no 	

	

•  Other problems are decidable, but intractable: as they grow large, 

we are unable to solve them in reasonable time	

	

•  What constitutes “reasonable time”?	
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Examples of problems	

•  Many problems which look very similar but the known solutions 
are very different:	

•  Minimum spanning tree: Given a weighted graph and integer k	

is there a spanning tree whose total weight is less then k ? 	

(polynomial time problem known)	

•  Traveling salesmen: Given a weight graph and integer k , is there a 
cycle that visits all nodes exactly ones and has a total weight k or 
less ? (intractable) 	

•  Shortest Path vs. long simple paths: Shortest path are easy (even 
with negative weight cycles); finding longest simple path between 
two vertices is difficult (path with no repeated vertices)	

•  Hamiltonian path:  Given a directed graph, is there a closed path 
that visits each node of the graph exactly once ? 	

•  Euler tour: Given a graph is there a path which visits every edge 
once, where vertices can be visited more then once ? 	


Examples of new problems	


• Circuit value – Given a Boolean circuit and its inputs is 
the value T ?	


•   Circuit Satisfiability – Given a boolean circuit, is there a 
set of inputs that the output is T ? 	


•   2-SAT – Given a boolean formula in 2-CNF is there a 
satisfying truth assignment to input variables 	


•   3-SAT – Given a boolean formula in 3-CNF is there a 
satisfying truth assignment to input variables 	
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P and NP	

•  We will discuss 3 classes of problems	

•  P is set of problems that can be solved in polynomial time	


•  NP (nondeterministic polynomial time) is the set of problems 
that can be solved in polynomial time by a nondeterministic 
computer, that can be “verified” in polynomial time	


•  Any problem which is in P is also in NP 	


•  NPC – NP complete problems; problems which are in NP 
and are as hard as any problem in NP	

	


Nondeterminism  (in NP)	

•  Think of a non-deterministic computer as a computer that 

magically “guesses” a solution, then has to verify that it is 
correct	


•  If a solution exists, computer always guesses it	

•  One way to imagine it: a parallel computer that can freely 

spawn an infinite number of processes	

•  Have one processor work on each possible solution	

   All processors attempt to verify that their solution works 

(that can be checked in polynomial time)	

	

•  If a processor finds it has a working solution	

•  So: NP = problems verifiable in polynomial time	
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P and NP	


•  Summary so far:	

P = problems that can be solved in polynomial time	

NP = problems for which a solution can be verified in 

polynomial time	

	


•  Unknown whether P = NP (most suspect not)	

•  Hamiltonian-cycle problem is in NP:	


Cannot be solved in polynomial time	

Easy to verify solution in polynomial time (How?)	


NP-Complete Problems	

•  We will see that NP-Complete problems are the “hardest” 

problems in NP:	

•  NP complete problems – problems which are in NP but are as	

   hard as any other problem in NP	

•  If any one NP-Complete problem can be solved in 

polynomial time, then every NP-Complete problem can be 
solved in polynomial time	


•  And in fact every problem in NP can be solved in polynomial 
time (which would show P = NP)	
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Polynomial Reducibility	

•  How to compare relative hardness of problems ?  	

•  Notion of reduction of one problem to another.	

•  Given two problems P and Q there exist polynomial 	

time reduction which reduces one problem to another.	

	

•  Idea given input to problem P, we transform the input of P to the	

input for  problem Q, and if Q has answer YES (NO), then P has answer 	

YES (NO)	

                                        P  <=  Q	

•  If we can reduce P to Q in polynomial time, then P is no harder 	

then Q (up to a polynomial)	

	


p	


x	
 T	
 Alg. for Q	

T(x)	


yes/no	


Alg. for P	


Reduction	


•  The crux of NP-Completeness is reducibility	


•  Informally, a problem P can be reduced to another problem Q if 
any instance of P can be “easily rephrased” as an instance of Q, 
the solution to which provides a solution to the instance of P 
What do you suppose “easily” means?	


•  This rephrasing is called transformation	

Intuitively: If P reduces to Q, P is “no harder to solve” than Q	




5/7/14	


7	


Polynomial-Time Reduction	

•  Desiderata.  Suppose we could solve X in polynomial-time. 
What else could we solve in polynomial time?	

•  Reduction.  Problem X polynomial reduces to problem Y if 
arbitrary instances of problem X can be solved using:	


Polynomial number of standard computational steps, plus	

Polynomial number of calls to oracle that solves problem Y.	

	


Notation.  X ≤ P Y. 	

	

Remarks.	


We pay for time to write down instances sent to black box  
⇒  instances of Y must be of polynomial size.	


Note:  Cook reducibility.	

	


computational model supplemented by special piece 
of hardware that solves instances of Y in a single step 

Polynomial-Time Reduction	

• Purpose.  Classify problems according to relative difficulty.	


• Design algorithms.  If X ≤ P Y and Y can be solved in 
polynomial-time,  then X can also be solved in polynomial 
time.	


• Establish intractability.  If X ≤ P Y and X cannot be solved in 
polynomial-time, then Y cannot be solved in polynomial time.	


• Establish equivalence.  If X ≤ P Y and Y ≤ P X, we use 
notation X ≡ P Y.	


up to cost of reduction 
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Basic reduction strategies.	

 Reduction by simple equivalence.	

 Reduction from special case to general case.	

 Reduction by encoding with gadgets.	


Independent Set	

• INDEPENDENT SET:  Given a graph G = (V, E) and an integer k, is 
there a subset of vertices S ⊆ V such that |S| ≥ k, and for each 
edge at most one of its endpoints is in S?	

• Ex.  Is there an independent set of size ≥ 6?  Yes.	

• Ex.  Is there an independent set of size ≥ 7?  No.	

	

	


independent set 



5/7/14	


9	


Vertex Cover	

• VERTEX COVER:  Given a graph G = (V, E) and an integer k, is 
there a subset of vertices S ⊆ V such that |S| ≤ k, and for each 
edge, at least one of its endpoints is in S?	


• Ex.  Is there a vertex cover of size ≤ 4?  Yes.	

• Ex.  Is there a vertex cover of size ≤ 3?  No.	

	

	


vertex cover 

Vertex Cover and Independent Set	


• Claim.  VERTEX-COVER ≡P INDEPENDENT-SET.	

• Pf.  We show S is an independent set iff V - S is a vertex 
cover.	


vertex cover 

independent set 
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Vertex Cover and Independent Set	

• Claim.  VERTEX-COVER ≡P INDEPENDENT-SET.	

• Pf.  We show S is an independent set iff V - S is a vertex 
cover.	

• ⇒	


Let S be any independent set.	

Consider an arbitrary edge (u, v).	

S independent ⇒ u ∉ S or v ∉ S  ⇒  u ∈ V - S or v ∈ V - 

S.	

Thus, V - S covers (u, v).	


• ⇐ 	

Let V - S be any vertex cover.	

Consider two nodes u ∈ S and v ∈ S.	

Observe that (u, v) ∉ E since V - S is a vertex cover.	

Thus, no two nodes in S are joined by an edge  ⇒ S 

independent set. ▪	


Reduction from Special Case to 
General Case	
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Set Cover	

• SET COVER:  Given a set U of elements, a collection S1, S2, . . . , 
Sm of subsets of U, and an integer k, does there exist a 
collection of ≤ k of these sets whose union is equal to U?	

• Sample application. m available pieces of software.	


Set U of n capabilities that we would like our system to 
have.	


The ith piece of software provides the set Si ⊆ U of 
capabilities.	


Goal:  achieve all n capabilities using fewest pieces of 
software.	


• Ex:	

U = { 1, 2, 3, 4, 5, 6, 7 } 
k = 2 
S1 = {3, 7}  S4 = {2, 4} 
S2 = {3, 4, 5, 6}  S5 = {5} 
S3 = {1}   S6 =  {1, 2, 6, 7} 

SET COVER 
 
U = { 1, 2, 3, 4, 5, 6, 7 } 
k = 2 
Sa = {3, 7}   Sb = {2, 4} 
Sc = {3, 4, 5, 6}  Sd = {5} 
Se = {1}   Sf= {1, 2, 6, 7} 

Vertex Cover Reduces to Set Cover	

• Claim.  VERTEX-COVER ≤ P SET-COVER.	

• Pf.  Given a VERTEX-COVER instance G = (V, E), k, we construct 
a set cover instance whose size equals the size of the vertex 
cover instance.	

• Construction.  	


Create SET-COVER instance:	

k = k,  U = E,  Sv = {e ∈ E : e incident to v }	


Set-cover of size ≤ k iff vertex cover of size ≤ k.  ▪	

a 

d 

b 

e 

f c 

VERTEX COVER 

k = 2 
e1  

e2  e3  

e5  

e4  

e6  

e7  
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Polynomial-Time Reduction	

• Basic strategies.	


Reduction by simple equivalence.	

Reduction from special case to general case.	

Reduction by encoding with gadgets.	


Ex:  

Yes:  x1 = true, x2 = true x3 = false. 

• Literal: 	
A Boolean variable or its negation.	

• Clause: 	
A disjunction of literals.	

• Conjunctive normal form:  A propositional���
formula Φ that is the conjunction of clauses.	


• SAT:  Given CNF formula Φ, does it have a satisfying truth 
assignment?	


• 3-SAT:  SAT where each clause contains exactly 3 literals.	


Satisfiability	


  

€ 

Cj = x1 ∨ x2 ∨ x3

  

€ 

xi   or  xi

  

€ 

Φ =  C1 ∧C2 ∧ C3∧ C4

x1 ∨ x2 ∨ x3( ) ∧ x1 ∨ x2 ∨ x3( ) ∧ x2 ∨ x3( ) ∧ x1 ∨ x2 ∨ x3( )
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3 Satisfiability Reduces to 
Independent Set	


• Claim.  3-SAT ≤ P INDEPENDENT-SET.	

• Pf.  Given an instance Φ of 3-SAT, we construct an instance (G, 
k) of INDEPENDENT-SET that has an independent set of size k iff Φ 
is satisfiable.	

• Construction.	


G contains 3 vertices for each clause, one for each literal.	

Connect 3 literals in a clause in a triangle.	

Connect literal to each of its negations.	


  

€ 

x2   

€ 

x3

  

€ 

x1

  

€ 

x1   

€ 

x2   

€ 

x4

  

€ 

x1  

€ 

x2

  

€ 

x3

k = 3 

G 

3 Satisfiability Reduces to 
Independent Set	


• Claim.  G contains independent set of size k = |Φ| iff Φ is 
satisfiable.	

• Pf.  ⇒  Let S be independent set of size k.	


S must contain exactly one vertex in each triangle.	

Set these literals to true.	

Truth assignment is consistent and all clauses are satisfied.	


• Pf  ⇐   Given satisfying assignment, select one true literal 
from each triangle. This is an independent set of size k.  ▪	


  

€ 

x2   

€ 

x3

  

€ 

x1

  

€ 

x1   

€ 

x2   

€ 

x4

  

€ 

x1  

€ 

x2

  

€ 

x3

k = 3 

G 
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Review	

• Basic reduction strategies.	


Simple equivalence:  INDEPENDENT-SET ≡ P VERTEX-COVER.	

Special case to general case:  VERTEX-COVER ≤ P SET-COVER.	

Encoding with gadgets:  3-SAT ≤ P INDEPENDENT-SET.	

	

	


• Transitivity.  If X ≤ P Y and Y ≤ P Z, then X ≤ P Z.	

• Pf idea.  Compose the two algorithms.	


• Ex:  3-SAT ≤ P INDEPENDENT-SET ≤ P VERTEX-COVER ≤ P SET-COVER.	


	

	


NP Completeness - Definition	


•  Definition of NP-Complete: 	

   If P is NP-Complete, 	

1.  P ∈ NP and 	

2.  all problems R from NP are polynomial-time reducible to P	

•  Formally: R ≤p P ∀ R ∈ NP 	


•  If P ≤p Q and P is NP-Complete, Q is also NP-Complete	

This is the key idea you should take away to be able to proof 

new problems are NP-complete	

•  In order to prove a problem to be NP complete we need to 

find the first NP complete problem and show all other	

    problems in NP are poly-reducible to it. 	
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Coming Up	


•  Given one NP-Complete problem, we can prove many 
interesting problems NP-Complete	


•  Our first NP-complete problem will be circuit satisfiability: 	

•  Given a boolean circuit, find out whether there is a set of 

inputs which causes the output to be 1	

	

•  After that: 	


Graph coloring (= register allocation)	

Hamiltonian cycle, Hamiltonian path	

Knapsack problem, Traveling salesman	

Job scheduling with penalties	

Many, many more	


An Aside: Terminology	

•  What is the difference between a problem and an instance of 

that problem?	

•  To formalize things, we will express instances of problems as 

strings	

•  How can we express a instance of the hamiltonian cycle 

problem as a string?	


•  To simplify things, we will worry only about decision 
problems with a yes/no answer	


•  Theory of NP completeness restricted to decision problems	


•  Many problems are optimization problems, but we can often 
re-cast those as decision problems	
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Optimization vs Decision Problems	

•  Optimization problem: Given a graph G(V,E) determine 
optimal coloring C(G) such that no two neighboring vertices are 
colored using the same color	


•  Decision problem: Given G(V,E) and k, is there such coloring 
which uses only k colors ?	


•  Optimization problem: Given a weighted graph, what is the 
minimum weight cycle which visits each node exactly once ?	


•  Decision problem: Given a weighted graph and integer k is 
there a cycle with weight at most k which visits each node 
exactly once ?	


Since decision problems seem easier, if we can show decision 
problem is hard, then associated  optimization problem is also 
hard 	


NP class	

•  NP problems: It is quite easy to check whether given instance is a 

solution (i.e. given set of vertices is independent set) 	

•  Verification of an instance can be done in polynomial time	


Nondeterministic algorithm	

1. Guessing a string – try to interpret it as a guess of the solution	

                                  (string s – is the certificate)	

2. Verify whether the string  is a solution to the instance of the 	

     decision problem – answer true, false, no answer	

    (string –e.g. encoding of graph and suggested hamiltonian cycle)	

    (general analogy – instances of a problem are strings from a 

language)	

3. Output – if certificate passed (if the answer of the verification true) = 

> answer to the decision problem is YES. 	
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NP-Hard and NP-Complete	

•  Definition of NP-Hard and NP-Complete: 	


If all problems R ∈ NP are reducible to P, then P is NP	

Hard	

We say P is NP-Complete if 	

1. P ∈ NP	

2. If R ≤p P for every R in NP	

	


•  If only 2. is satisfied the problem is NP-hard	

•  A problem Q is NP – complete if it is NP-hard and is in NP.	


•  If P ≤p Q and P is NP-Complete, Q is also NP- Complete	

	


NP 

P 

NP complete problems  – problems which are in NP but are as       
hard as any other problem in NP	


•  NP hard which are not NP-complete, e.g. halting problem (is 
still possible to reduce any problem in NP to halting problem)	


•  Some other non-decision problems	


	


NP-Hard and NP-Complete	


NPC	
NP-hard	
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Why Prove NP-Completeness?	

•  Though nobody has proven that P != NP, if you prove a 

problem NP-Complete, most people accept that it is probably 
intractable	


•  Therefore it can be important to prove that a problem is NP-
Complete	


•  Don’t need to come up with an efficient algorithm	

•  Can instead work on approximation algorithms	

•  You can use known algorithm for it and accept that it will take 

long	

•  Change your problem formulation 	

	


Proving NP-Completeness	

•  What steps do we have to take to prove a problem P is NP-

Complete?	

•  Pick a known NP-Complete problem Q, Reduce Q to P	

•  Describe a transformation that maps instances of Q to 

instances of P, s.t. “yes” for P = “yes” for Q	

Prove the transformation works	

Prove it runs in polynomial time	

Prove P ∈ NP 	
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P And NP Summary	

•  P = set of problems that can be solved in polynomial time	

•  NP = set of problems for which a solution can be verified in 

polynomial time	

•  P ⊆ NP	

•  Open question: Does P = NP?	


•  Next our first NP complete problem  - Circuit Satisfiability	


	

•  Circuit SAT is NP can be verified in polynomial time 	

      i.e. given a circuit and an input we can verify in polynomial time	

      whether the input is a satisfying assignment. 	

•  Circuit SAT is NP-hard Every problem in NP is reducible to 	

    circuit SAT; Proof: 	

1.  Problem is in NP; can be verified in polynomial time by some	

      algorithm	

2.  Each step of the algorithm runs on a computer (huge boolean	

      circuit)	

3.  Chaining together all circuits which correspond to the steps	

      of the algorithm – we get large circuit which describes the	

      run of the algorithm	

4.  If we plug in the input of a problem A then YES / NO answer	

       when circuit is/is not satisfiable	


Circuit Satisfiablity 	
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∧ 

¬ 

∧	
 ∨	


∧	


∨	


1	
 0	
 ?	
 ?	
 ?	


output	


inputs	
hard-coded inputs	


yes:  1 0 1	


Circuit Satisfiability	

• CIRCUIT-SAT.  Given a combinational circuit built out of AND, OR, 
and NOT gates, is there a way to set the circuit inputs so that the 
output is 1?	


The "First" NP-Complete Problem	

• Theorem.  CIRCUIT-SAT is NP-complete.  [Cook 1971, Levin 
1973]	

• Pf.  (sketch)	


Any algorithm that takes a fixed number of bits n as input 
and produces a yes/no answer can be represented by such a 
circuit. Moreover, if algorithm takes poly-time, then circuit 
is of poly-size.	


Consider some problem X in NP.  It has a poly-time certifier 
C(s, t). To determine whether s is in X, need to know if 
there exists a certificate t of length p(|s|) such that C(s, t) = 
yes. View C(s, t) as an algorithm on |s| + p(|s|) bits (input s, 
certificate t) and convert it into a poly-size circuit K.	

first |s| bits are hard-coded with s remaining p(|s|) bits 

represent bits of t	

Circuit K is satisfiable iff C(s, t) = yes.	
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∧ 
¬ 

u-v	


∨	


1	


independent set of size 2?	


n inputs (nodes in independent set)	
hard-coded inputs (graph description)	


∨	


∨	


∧	


u-w	


0	


∧	


v-w	


1	


∧	


u	


?	


∧	


v	


?	


∧	


w	


?	


∧	


∨	


set of size 2?	


both endpoints of some edge have been chosen?	


independent set?	


Example	

• Ex.  Construction below creates a circuit K whose inputs can 
be set so that K outputs true iff graph G has an independent set 
of size 2.	


u	


v	
 w	


€ 

n
2

" 

# 
$ 

% 

& 
' 

G = (V, E), n = 3	


Circuit SAT	


3-SAT	


Hamilton Cycle	


Traveling Salesmen 	


Independent Set	


Vertex Cover 	
Clique	


3D matching	


knapsack	


Relationships between known NP –
complete problems	


Formula Satisfiability	
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Formula Satisfiability	


•  Show that it is easy to verify the solution 	

•  Reduce circuit satisfiability to formula SAT	

•  Any instance of circuit satisfiability can be reduced to 

formula satisfiability	

•  Strategy:  express every gate as a formula (Example). 	


	


3-CNF Satisfiability	


•  Show that it is easy to verify the solution 	

•  Reduce Satisfiability to 3-CNF	

•  Strategy: Get Binary Parse Tree, introduce new variables,	

   get clauses	

•  Convert Clauses to CNF form using De Morgan’s Laws	
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The 3-CNF Problem	

•  Thm 36.10: Satisfiability of Boolean formulas in 3-CNF form 

(the 3-CNF Problem) is NP-Complete	


•  The reason we care about the 3-CNF problem is that it is 
relatively easy to reduce to others 	


•  Thus by proving 3-CNF NP-Complete we can prove many 
seemingly unrelated problems NP-Complete	


•  Alternatively reduce Circuit Satisfiability to 3-CNF	


3-SAT is NP-Complete	

• Theorem.  3-SAT is NP-complete.	

• Pf.  Suffices to show that CIRCUIT-SAT ≤ P 3-SAT since 3-SAT is in 
NP. Let K be any circuit.	


Create a 3-SAT variable xi for each circuit element i.	

Make circuit compute correct values at each node:	


x2 = ¬ x3      ⇒  add 2 clauses:	

x1 = x4 ∨ x5   ⇒  add 3 clauses:	

x0 = x1 ∧ x2   ⇒  add 3 clauses:	


	

Hard-coded input values and output value.	


x5 = 0  ⇒  add 1 clause:	

x0 = 1  ⇒  add 1 clause:	


Final step:  turn clauses of length < 3 into���
clauses of length exactly 3.  ▪	


∨	


∧	


¬	


0	
 ?	
 ?	


output	


x0	


x2	
x1	


  

€ 

x2 ∨ x3  , x2 ∨ x3

€ 

x1 ∨ x4 , x1 ∨ x5  ,  x1 ∨ x4 ∨ x5

€ 

x0 ∨ x1 , x0 ∨ x2 , x0 ∨ x1 ∨ x2

x3	
x4	
x5	


  

€ 

x5
  

€ 

x0
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Clique NP complete	

•  Clique problem – subset of vertices in a undirected graph, 

each pair is connected by an edge. Decision problem: Is there 
a clique of size k ? 	

	

•  First show that it is in NP	

•  Given a set of k vertices we can always check in polynomial 

time whether they form a clique or not (traverse the 
adjacency lists of all k vertices	


•  Show that some known NP-complete problem can be reduced 
to clique	


3-CNF → Clique	

•  What is a clique of a graph G?	

•  A: a subset of vertices fully connected to each other, i.e. a 

complete subgraph of G	

•  The clique problem: how large is the maximum-size clique in 

a graph?	

•  Can we turn this into a decision problem?	

•  A: Yes, we call this the k-clique problem	

•  Is there a clique of size k in the graph G ?	

•  Is the k-clique problem within NP?	

•  Naïve approach ? Check all possible subsets of k vertices 	
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3-CNF → Clique	

•  What should the reduction do?	

•  A: Transform a 3-CNF formula to a graph, for which a k-

clique will exist (for some k) iff the 3-CNF formula is 
satisfiable	


3-CNF → Clique	

•  The reduction:	

•  Let B = C1 ∧ C2 ∧ … ∧ Ck be a 3-CNF formula with k 

clauses, each of which has 3 distinct literals	

•  For each clause put a triple of vertices in the graph, one for 

each literal	

•  Put an edge between two vertices if they are in different 

triples and their literals are consistent, meaning not each 
other’s negation	


•  Run an example: ���
B = (x ∨ ¬y ∨ ¬z) ∧ (¬x ∨ y ∨ z ) ∧ (x ∨ y ∨ z )	


•  See example in the book (page 1005)	
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3-CNF → Clique	


B = (x ∨ ¬y ∨ ¬z) ∧ (¬x ∨ y ∨ z ) ∧ (x ∨ y ∨ z )	


x	
 ~y	
 ~z	


~x	


y	


z	


x	


y	


z	


•  Put an edge if the variables are consistent	

•  Formula is satisfiable if each literal has at least ona variable T	

•  If respective variables are non-conflicting they form a clique	


3-CNF → Clique	

•  Prove the reduction works:	

•  If B has a satisfying assignment, then each clause has at least 

one literal (vertex) that evaluates to 1	

•  Picking one such “true” literal from each clause gives a set V’ 

of k vertices.  V’ is a clique (Why?)	

•  If G has a clique V’ of size k, it must contain one vertex in 

each triple (clause) (Why?)	

•  We can assign 1 to each literal corresponding with a vertex in 

V’, without fear of contradiction	
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Clique → Vertex Cover	

•  A vertex cover for a graph G is a set of vertices incident to 

every edge in G	

•  The vertex cover problem: what is the minimum size vertex 

cover in G?	

•  Restated as a decision problem: does a vertex cover of size k 

exist in G?	

•  Thm 36.12: vertex cover is NP-Complete	


Example of vertex cover of size 2	


Clique → Vertex Cover	


•  First, show vertex cover in NP (How?)	

•  How to decide whether graph G has a vertex cover of size k	

•  Reduce k-clique to vertex cover	

•  The complement GC of a graph G contains exactly those 

edges not in G	

•  Compute GC in polynomial time	

•  G has a clique of size k iff GC has a vertex cover of size |V| - 

k 	


Clique  of size 4	
 Vertex cover  of size 2	
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Clique → Vertex Cover	


•  In order to show that it is a correct reduction need to 	

   Prove the claim both ways	

•  Claim: If G has a clique of size k, GC has a vertex cover of 

size |V| - k 	

1. Let V’ be the k-clique	

2. Then V - V’ is a vertex cover in GC	

3. Let (u,v) be any edge in GC	

4. Then u and v cannot both be in V’ (Why?)	

5. Thus at least one of u or v is in V-V’ (why?), so 	

     edge (u, v) is covered by V-V’	

6. Since true for any edge in GC, V-V’ is a vertex cover	


Clique → Vertex Cover	

•  Claim: If GC has a vertex cover V’ ⊆ V, with |V’| = |V| - k, 

then G has a clique of size k	


•  For all u,v ∈ V, if (u,v) ∈ GC then u ∈ V’ or ���
v ∈ V’ or both (Why?)	


•  Contrapositive: if u ∉ V’ and v ∉ V’, then ���
(u,v) ∈ E	


•  In other words, all vertices in V-V’ are connected by an edge, 
thus V-V’ is a clique	


•  Since |V| - |V’| = k, the size of the clique is k	
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Hamiltonian Cycle ⇒ TSP	


•  Vertex cover => hamiltonian cycle (see book). 	


•  The well-known traveling salesman problem:	


•  Optimization variant: a salesman must travel to n cities, 
visiting each city exactly once and finishing where he begins.  
How to minimize travel time?	


•  Model as complete graph with cost c(i,j) to go from city i to 
city j	


•  How would we turn this into a decision problem?	

A: ask if  ∃  a TSP with cost < k 	


Hamiltonian Cycle	


Hamiltonian cycle exists	


Bipartite graph with odd number of 	

Vertices -  hamiltonian cycle does 	


not exists	
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Hamiltonian path	

Is there a path which passes though all points exactly once ?	

(similar then traveling salesman with no costs).	

	

If you can visit some of the vertices more then once, 	

But each edge exactly once  >>  simpler Eulerian path 	

	

Eulerian path is simpler because we can clearly relate the 	

condition on the graph which must be satisfied in order for 	

the solution to exist (then we can just check the property)	

	

E.g. if the graph is connected and number of edges emanating 	

from any point is even (except two points) then you can do it	

	


Hamiltonian Cycle ⇒ TSP	

•  The steps to prove TSP is NP-Complete:	

•  Prove that TSP ∈ NP (Argue this)	


•  Reduce the undirected hamiltonian cycle problem to the TSP	

•  So if we had a TSP-solver, we could use it to solve the 

hamilitonian cycle problem in polynomial time	


•  How can we transform an instance of the hamiltonian cycle 
problem to an instance of the TSP? Can we do this in 
polynomial time?	
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The TSP	

•  Random asides: 	


•  TSPs (and variants) have enormous practical importance	

•  E.g., for shipping and freighting companies	

•  Lots of research into good approximation algorithms	


•  Drilling n-holes into VLSI board	


Traveling Salesperson Problem	

•  TSP.  Given a set of n cities and a pairwise distance function 

d(u, v), is there a tour of length ≤ D?	


All 13,509 cities in US with a population of at least 500���
Reference:  http://www.tsp.gatech.edu	
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Traveling Salesperson Problem	

•  TSP.  Given a set of n cities and a pairwise distance function 

d(u, v), is there a tour of length ≤ D?	


Optimal TSP tour	

Reference:  http://www.tsp.gatech.edu	


Traveling Salesperson Problem	

•  TSP.  Given a set of n cities and a pairwise distance function 

d(u, v), is there a tour of length ≤ D?	


11,849 holes to drill in a programmed logic array	

Reference:  http://www.tsp.gatech.edu	
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Traveling Salesperson Problem	

•  TSP.  Given a set of n cities and a pairwise distance function 

d(u, v), is there a tour of length ≤ D?	


Optimal TSP tour	

Reference:  http://www.tsp.gatech.edu	


General Comments	

•  Literally hundreds of problems have been shown to be NP-

Complete	

•  Some reductions are profound, some are comparatively easy, 

many are easy once the key insight is given	

•  You can expect a simple NP-Completeness proof on the final	
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Other NP-Complete Problems	

•  Subset-sum: Given a set of integers, does there exist a subset 

that adds up to some target T?	

•  0-1 knapsack: when weights not just integers	

•  Hamiltonian path: Obvious	

•  Graph coloring: can a given graph be colored with k colors 

such that no adjacent vertices are the same color?	

•  Etc… 	


Directed Hamiltonian Cycle ⇒���
Undirected Hamiltonian Cycle	


•  What was the hamiltonian cycle problem again?	

•  For my next trick, I will reduce the directed hamiltonian 

cycle problem to the undirected hamiltonian cycle problem 
before your eyes	

Which variant am I proving NP-Complete?	


•  Draw a directed example on the board	

What transformation do I need to effect?	
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Transformation:���
Directed ⇒ Undirected Ham. Cycle 	


•  Transform graph G = (V, E) into G’ = (V’, E’):	

Every vertex v in V transforms into 3 vertices ���

v1, v2, v3 in V’ with edges (v1,v2) and (v2,v3) in E’	

Every directed edge (v, w) in E transforms into the 

undirected edge (v3, w1) in E’ (draw it)	

Can this be implemented in polynomial time?	

Argue that a directed hamiltonian cycle in G implies an 

undirected hamiltonian cycle in G’	

Argue that an undirected hamiltonian cycle in G’ implies a 

directed hamiltonian cycle in G 	


Directed Hamiltonian Cycle	

•  DIR-HAM-CYCLE:  given a digraph G = (V, E), does there exists a 

simple directed cycle Γ that contains every node in V?	


•  Claim.  DIR-HAM-CYCLE ≤ P HAM-CYCLE.	


•  Pf.  Given a directed graph G = (V, E), construct an 
undirected graph G' with 3n nodes.	


v	


a	


b	


c	


d	


e	

vin	


aout	


bout	


cout	


din	


ein	
G	


G'	


v	
 vout	
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Transformation:���
Directed ⇒ Undirected Ham. Cycle 	


•  Transform graph G = (V, E) into G’ = (V’, E’):	

Every vertex v in V transforms into 3 vertices ���

v1, v2, v3 in V’ with edges (v1,v2) and (v2,v3) in E’	

Every directed edge (v, w) in E transforms into the 

undirected edge (v3, w1) in E’ (draw it)	

Can this be implemented in polynomial time?	

Argue that a directed hamiltonian cycle in G implies an 

undirected hamiltonian cycle in G’	

Argue that an undirected hamiltonian cycle in G’ implies a 

directed hamiltonian cycle in G 	


Undirected Hamiltonian Cycle 	

•  Thus we can reduce the directed problem to the undirected 

problem	

•  What’s left to prove the undirected hamiltonian cycle 

problem NP-Complete?	

•  Argue that the problem is in NP 	
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���
Directed ⇒ Undirected Ham. 

Cycle 	


•  Given: directed hamiltonian cycle is ���
NP-Complete (draw the example)	


•  Transform graph G = (V, E) into G’ = (V’, E’):	

Every vertex v in V transforms into 3 vertices ���

v1, v2, v3 in V’ with edges (v1,v2) and (v2,v3) in E’	

Every directed edge (v, w) in E transforms into the 

undirected edge (v3, w1) in E’ (draw it)	


���
Directed  ⇒ Undirected Ham. 

Cycle	

•  Prove the transformation correct:	


If G has directed hamiltonian cycle, G’ will have undirected 
cycle (straightforward)	


If G’ has an undirected hamiltonian cycle, G will  have a 
directed hamiltonian cycle	

The three vertices that correspond to a vertex v in G must 

be traversed in order v1, v2, v3 or v3, v2, v1, since v2 
cannot be reached from any other vertex in G’	


Since 1’s are connected to 3’s, the order is the same for all 
triples.  Assume w.l.o.g. order is  v1, v2, v3.	


Then G has a corresponding directed hamiltonian cycle	
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Hamiltonian Cycle ⇒ TSP	


•  The well-known traveling salesman problem:	

Optimization variant: a salesman must travel to n cities, 

visiting each city exactly once and finishing where he begins.  
How to minimize travel time?	


Model as complete graph with cost c(i,j) to go from city i to 
city j	


•  How would we turn this into a decision problem?	

A: ask if  ∃  a TSP with cost < k 	


Hamiltonian Cycle ⇒ TSP	

•  The steps to prove TSP is NP-Complete:	

   Prove that TSP ∈ NP (Argue this)	

	

•  Reduce the undirected hamiltonian cycle problem to the TSP 

So if we had a TSP-solver, we could use it to solve the 
hamilitonian cycle problem in polynomial time	


•  How can we transform an instance of the hamiltonian cycle 
problem to an instance of the TSP?	


•  Can we do this in polynomial time?	
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Review: Hamiltonian Cycle ⇒ 
TSP	


•  To transform ham. cycle problem on graph ���
G = (V,E) to TSP, create graph G’ = (V,E’):	

G’ is a complete graph 	

Edges in E’ also in E have weight 0	

All other edges in E’ have weight 1	

TSP: is there a TSP on G’ with weight 0?	


If G has a hamiltonian cycle, G’ has a cycle w/ weight 0	

If G’ has cycle w/ weight 0, every edge of that cycle has 

weight 0 and is thus in G.  Thus G has a ham. cycle	


Circuit SAT	


3-SAT	


Hamilton Cycle	


Traveling Salesmen 	


Independent Set	


Vertex Cover 	
Clique	


3D matching	


knapsack	


Relationships between known NP –
complete problems	
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Other NP-Complete Problems	

•  Subset-sum: Given a set of integers, does there exist a subset 

that adds up to some target T?	

•  0-1 knapsack: when weights not just integers	

•  Hamiltonian path: Obvious	

•  Graph coloring: can a given graph be colored with k colors 

such that no adjacent vertices are the same color?	

•  Etc… 	


Some NP-Complete Problems	

• Six basic genres of NP-complete problems and paradigmatic 
examples.	


Packing problems:  SET-PACKING, INDEPENDENT SET.	

Covering problems:  SET-COVER, VERTEX-COVER.	

Constraint satisfaction problems:  SAT, 3-SAT.	

Sequencing problems:  HAMILTONIAN-CYCLE, TSP.	

Partitioning problems: 3D-MATCHING 3-COLOR.	

Numerical problems:  SUBSET-SUM, KNAPSACK.	

	


• Practice. Most NP problems are either known to be in P or 
NP-complete.	


• Notable exceptions.  Factoring, graph isomorphism, Nash 
equilibrium.	
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Extent and Impact of NP-Completeness	

• Extent of NP-completeness.  [Papadimitriou 1995] 	


Prime intellectual export of CS to other disciplines.	

6,000 citations per year (title, abstract, keywords).	


more than "compiler", "operating system", "database"	

Broad applicability and classification power.	

"Captures vast domains of computational, scientific, 

mathematical endeavors, and seems to roughly delimit 
what mathematicians and scientists had been aspiring to 
compute feasibly.”	


• NP-completeness can guide scientific inquiry.	

1926:  Ising introduces simple model for phase transitions.	

1944:  Onsager solves 2D case in tour de force.	

19xx:  Feynman and other top minds seek 3D solution.	

2000:  Istrail proves 3D problem NP-complete.	



