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Final	  Exam	  Review	  

Final	  Exam	  

•  Coverage: second half of the semester	

•  Requires familiarity with most of the concepts covered in 	

   first half	

•  Goal: doable in 2 hours	

•  Cheat sheet: you are allowed two 8’11” sheets, both sides	
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Final	  Exam:	  Study	  Tips	  

•  Study tips:	

–  Study each lecture	

–  Study the homework and homework solutions	

–  Study the midterm exams	


•  Re-make your previous cheat sheets	

   I recommend handwriting or typing them	

•  Think about what you should have had on it the first time…cheat 

sheets is about identifying important concepts	


•  Next review of more recent topics as well as earlier topics	


Graph	  Representa@on	  

•  Adjacency list	

•  Adjacency matrix	

•  Tradeoffs: 	


–  What makes a graph dense?	

–  What makes a graph sparse?	

–  What about trees ?	
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Basic	  Graph	  Algorithms	  

•  Breadth-first search	

–  What can we use BFS to calculate?	

–  A: shortest-path distance to source vertex	


•  Depth-first search	

–  Tree edges, back edges, cross and forward edges	

–  What can we use DFS for?	

–   A: finding cycles, topological sort 	


DFS	  Example	  

source 
vertex 

d      f 

Tree edges Back edges Forward edges 

1 |12 8 |11 13|16 

14|15 5 | 6 3 | 4 

2 | 7 9 |10 

Cross edges 
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DFS And Cycles	


•  How would you modify the code to detect cycles?	


DFS(G) 
{ 
   for each vertex u ∈ G->V 
   { 
      u->color = WHITE; 
   } 
   time = 0; 
   for each vertex u ∈ G->V 
   { 
      if (u->color == WHITE) 
         DFS_Visit(u); 
   } 
} 

DFS_Visit(u) 
{ 
   u->color = GREY; 
   time = time+1; 
   u->d = time; 

   for each v ∈ u->Adj[] 
   { 
      if (v->color == WHITE) 
         DFS_Visit(v); 
   } 
   u->color = BLACK; 
   time = time+1; 
   u->f = time; 
} 

DFS And Cycles	


•  What will be the running time?	

•  A: O(V+E)	

•  We can actually determine if cycles exist in O(V) time:	


–  In an undirected acyclic forest, |E| ≤ |V| - 1 	


–  So count the edges: if ever see |V| distinct edges, must	

–  have seen a back edge along the way	
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Topological	  Sort,	  MST	  

•  Topological sort	

–  Examples: getting dressed, project dependency	

–  To what kind of graph does topological sort apply?	


•  Minimum spanning tree	

–  Optimal substructure	

–  Min edge theorem (enables greedy approach)	


GeJng	  Dressed	  

Underwear Socks 

Shoes Pants 

Belt 

Shirt 

Watch 

Tie 

Jacket 

Socks Underwear Pants Shoes Watch Shirt Belt Tie Jacket 
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Topological	  Sort	  Algorithm	  

Topological-Sort() 
{ 

Run DFS 
When a vertex is finished, output it 
On the front of linked list 
Vertices are output in reverse topological 
order 

} 
•  Time: O(V+E)	

•  Correctness: Want to prove that���
	
(u,v) ∈ G ⇒ u→f > v→f	


Correctness of Topological Sort	


•  Claim: (u,v) ∈ G ⇒ u→f  >  v→f	

•  Topological sort creates linear ordering of vertices	

•  Show that if there is an edge from u to v, finishing time	

    of u is greater then v (nodes are output in reverse finish. times 

order – later times are output first )	

•  When (u,v) is explored, u is gray	


•  v = gray ⇒ (u,v) is back edge.  Contradiction (Why?)	

•  hence v cannot be gray – since there are no cycles	

•  v = white ⇒ v becomes descendent of u ⇒ v→f < u→f	

•  (since must finish v before backtracking and finishing u)	

•  v = black ⇒ v already finished ⇒ v→f < u→f	
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Strongly	  Connected	  Components	  

•  Call DFS to compute finishing times f[u] of each vertex	

•  Create transpose graph (directions of edges reversed)	

•  Call DFS on the transpose graph, but in the main loop of DFS, 

consider vertices in the decreasing order of f[u]	

•  Output the vertices of each tree in the depth-first forest formed in 

line 3 as a separate strongly connected component	


•  Example	


	


ABD	   EF	  

CH	   G	  

13|14 11|16 1|10 

2|7 3 | 4 12|15  

8|9 

5|6 

D

A

C

B E F

GH

2|5 1|6 7|10 

14|15 12|13 3|4  

8|9 

16|17 

D

A

C

B E F

GH
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MST	  Algorithms	  

•  Prim’s algorithm	

–  What is the bottleneck in Prim’s algorithm?	

–  A: priority queue operations	


•  Kruskal’s algorithm	

–  What is the bottleneck in Kruskal’s algorithm?	

–  Answer: depends on disjoint-set implementation	


•  As covered in class, disjoint-set union operations 	

•  As described in book, sorting the edges	


Review:	  Prim’s	  Algorithm	  
MST-Prim(G, w, r) 
    Q = V[G]; 
    for each u ∈ Q 
        key[u] = ∞; 
    key[r] = 0; 
    p[r] = NULL; 
    while (Q not empty) 
        u = ExtractMin(Q); 
        for each v ∈ Adj[u] 
            if (v ∈ Q and w(u,v) < key[v]) 
                p[v] = u; 
                key[v] = w(u,v); 
 

What will be the running time? 
A: Depends on queue 
binary heap: O(E lg V) 
Fibonacci heap: O(V lg V + E) 

ExtractMin  total number of calls O(V log V) 	

DecreaseKey  total number of calls O(E log V) 	

Total number of calls O(V logV +E logV) = O(E log V)	

Think why we can combine things in the expression above	
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Kruskal’s	  Algorithm	  

Kruskal() 
{  
   T = ∅; 
   for each v ∈ V 
      MakeSet(v); 
   sort E by increasing edge weight w 
   for each (u,v) ∈ E (in sorted order) 
      if FindSet(u) ≠ FindSet(v) 
         T = T U {{u,v}}; 
         Union(FindSet(u), FindSet(v)); 
} 

2 19 

9 

1 

5 

13 

17 
25 

14 
8 

21 

Run the algorithm: 

Correctness	  Of	  Kruskal’s	  Algorithm	  

•  Sketch of a proof that this algorithm produces an MST for T:	

•  Assume algorithm is wrong: result is not an MST	

•  Then algorithm adds a wrong edge at some point	

•  If it adds a wrong edge, there must be a lower weight edge 

(cut and paste argument)	

•  But algorithm chooses lowest weight edge at each step ->  

Contradiction	

•  Again, important to be comfortable with cut and paste 

arguments	
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Kruskal’s	  Algorithm	  

Kruskal() 
{ 
   T = ∅; 
   for each v ∈ V 
      MakeSet(v); 
   sort E by increasing edge weight w 
   for each (u,v) ∈ E (in sorted order) 
      if FindSet(u) ≠ FindSet(v) 
         T = T U {{u,v}}; 
         Union(FindSet(u), FindSet(v)); 
} 

What will affect the running time? 
 1 Sort 

O(V) MakeSet() calls 
O(E) FindSet() calls 

O(V) Union() calls   
(Exactly how many Union()s?) 

Kruskal’s Algorithm: Running Time	

•  To summarize: 	


–  Sort edges: O(E lg E) 	

–  O(V) MakeSet()’s	

–  O(E) FindSet()’s and Union()’s 	


•  Upshot: 	

–  Best disjoint-set union algorithm makes above 	

–  3 operation stake O((V+E)⋅α(V)), α almost constant	

–  (slowly growing function of V)	

–  Since E >= V-1 then we have  O(E⋅α(V))	

–  Also since α(V) = O(lg V) = O(lg E)	


–  Overall thus O(E lg E), almost linear w/o sorting	
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Single-‐Source	  Shortest	  Path	  

•  Optimal substructure	

•  Key idea: relaxation of edges	

•  What does the Bellman-Ford algorithm do?	


–  What is the running time?	

•  What does Dijkstra’s algorithm do?	


–  What is the running time?	

–  When does Dijkstra’s algorithm not apply?	


Bellman-‐Ford	  Algorithm	  

BellmanFord() 
   for each v ∈ V 
      d[v] = ∞; 
   d[s] = 0; 
   for i=1 to |V|-1 
      for each edge (u,v) ∈ E 
         Relax(u,v, w(u,v)); 
   for each edge (u,v) ∈ E 
      if (d[v] > d[u] + w(u,v)) 
           return “no solution”; 
 
 
Relax(u,v,w): if (d[v] > d[u]+w) then d[v]=d[u]+w 
 

B 

E 

D C 

A 

-1 2 

2 

1 -3 

5 

3 

4 

Ex: work on board 

s 
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Dijkstra’s	  Algorithm	  

Dijkstra(G) 
   for each v ∈ V 
      d[v] = ∞; 
   d[s] = 0; S = ∅; Q = V; 
   while (Q ≠ ∅) 
      u = ExtractMin(Q); 
      S = S U {u}; 
      for each v ∈ u->Adj[] 
         if (d[v] > d[u]+w(u,v)) 
            d[v] = d[u]+w(u,v); 

Relaxation 
Step 

Note: this 
is really a  
call to Q->DecreaseKey() 

B 

C 

D A 

10 

4 3 

2 

1 5 

Ex: run the algorithm 

Dijkstra’s	  Algorithm	  

Dijkstra(G) 
   for each v ∈ V 
      d[v] = ∞; 
   d[s] = 0; S = ∅; Q = V; 
   while (Q ≠ ∅) 
      u = ExtractMin(Q); 
      S = S U {u}; 
      for each v ∈ u->Adj[] 
         if (d[v] > d[u]+w(u,v)) 
            d[v] = d[u]+w(u,v); 

How many times is  
ExtractMin() called? 

How many times is  
DecraseKey() called? 

A: O(E lg V) using binary heap for Q 
Can acheive O(V lg V + E) with Fibonacci heaps 
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Dijkstra’s Algorithm	


Dijkstra(G) 
   for each v ∈ V 
      d[v] = ∞; 
   d[s] = 0; S = ∅; Q = V; 
   while (Q ≠ ∅) 
      u = ExtractMin(Q); 
      S = S U{u}; 
      for each v ∈ u->Adj[] 
         if (d[v] > d[u]+w(u,v)) 
            d[v] = d[u]+w(u,v); 

Correctness: we must show that when u is  
removed from Q, it has already converged 

Correctness Of Dijkstra's Algorithm	


s 

x 
y 

u 
p2 

p2 

1.  See the description of the proof in the book	


Show that Dijkstra’s algorithm will terminate with 	

The cost of each node to be the cost of shortest path.	

Idea: show that when the vertex is added to the set the 	

cost of that vertex is the length of the shortest path	

Reminder: We always add the vertex with minimal cost	
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Correctness Of Dijkstra's Algorithm	


•  Want to show that when vertex is added to set S,  d[u] = δ(s,u)	

•   and throughout note that d[u] ≥ δ(s,u) ∀u 	

•  Proof by contradiction d[u] is not equal to δ(s,u), when added to S	

•  Before u gets added, some other vertex y on that shortest path needs	

    to be added; claim that d[y] = δ(s,y) when added. 	

•  Know that d[x] = δ(s,x) and δ(s,y) <= δ(s,u) and d[y] = δ(s,y), so d[y] <= d[u] 	

•  But both y and u are outside of S when is chosen so d[u] <= d[y] 	

•  Hence d[y] = d[u] = δ(s,y) = δ(s,y)	

	


s 

x 
y 

u 
p2 

p2 

Disjoint-‐Set	  Union	  

•  We talked about representing sets as linked lists, every element 
stores pointer to list head	


•  What is the cost of merging sets A and B?	

–  A: O(max(|A|, |B|))	


•  What is the maximum cost of merging n ���
1-element sets into a single n-element set?	

–  A: O(n2)	


•  How did we improve this?  By how much?	

–  A: always copy smaller into larger: O(n lg n)	
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Amor@zed	  Analysis	  

•  Idea: worst-case cost of an operation may overestimate its cost 
over course of algorithm	


•  Goal: get a tighter amortized bound on its cost	


•  Aggregate method: total cost of operation over course of 
algorithm divided by # operations Example: disjoint-set union	


•  Accounting method: “charge” a cost to each operation, accumulate 
unused cost in bank, never go negative	


Analysis Of Dynamic Tables	


•  Let ci = cost of i-th insert	

•  ci = i if i-1 is exact power of 2, 1 otherwise	

•  Example:	


–     Operation	
Table Size	
   Cost	


Insert(1) 1 1 1 
Insert(2) 2 1 + 1 2 
Insert(3) 4 1 + 2 
Insert(4) 4 1 
Insert(5) 8 1 + 4 
Insert(6) 8 1 
Insert(7) 8 1 
Insert(8) 8 1 
Insert(9) 16 1 + 8 

1 
2 
3 
4 
5 
6 
7 
8 
9 
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Aggregate Analysis	


•  n Insert() operations cost	


•  At most n operations are of cost 1 + costs of expansions	

•  Expansion happens only where (i-1) is power of 2	

•  Average cost of operation ���

= (total cost)/(# operations) < 3	

•  Asymptotically, then, a dynamic table costs the same as a fixed-

size table	

•  Both O(1) per Insert() operation	


nnnnc
n

j

j
n

i
i 3)12(2

lg

01
<−+=+≤ ∑∑

==

Review:	  The	  Master	  Theorem	  

•  Given: a divide and conquer algorithm	

   An algorithm that divides the problem of size n into a subproblems, 

each of size n/b	

•  Let the cost of each stage (i.e., the work to divide the problem + 

combine solved subproblems) be described by the function f(n)	

•  Then, the Master Theorem gives us a cookbook for the algorithm’s 

running time:	
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Review:	  The	  Master	  Theorem	  

•  if  T(n) = aT(n/b) + f(n) then	
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LCS	  Via	  Dynamic	  Programming	  	  

•  Longest common subsequence (LCS) problem: 	

–  Given two sequences x[1..m] and y[1..n], find the longest 

subsequence which occurs in both	

•  Brute-force algorithm: 2m subsequences of x to check against n 

elements of y: O(n 2m)	

•  Define c[i,j] = length of LCS of x[1..i], y[1..j]	

•  Theorem: 	
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⎨
⎧
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=
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LCS Example (0)	

j       0        1          2         3        4         5 	


0	


1	


2	


3	


4	


i	


Xi	


A	


B	


C	


B	


Yj	
 B	
B	
 A	
C	
D	


X = ABCB;   m = |X| = 4	

Y = BDCAB; n = |Y| = 5	

Allocate array c[5,4] 	
	


ABCB	

BDCAB	


Weighted	  Interval	  Scheduling	  
• Weighted interval scheduling problem.	


–  Job j starts at sj, finishes at fj, and has weight or value vj . 	

–  Two jobs compatible if they don't overlap.	

–  Goal:  find maximum weight subset of mutually compatible 

jobs.	


Time	  
0	   1	   2	   3	   4	   5	   6	   7	   8	   9	   10	   11	  

f	  
g	  

h	  

e	  

a	  
b	  

c	  
d	  
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Unweighted	  Interval	  Scheduling	  Review	  

•  Observation.  Greedy algorithm can fail spectacularly if 
arbitrary weights are allowed.	


Time	  
0	   1	   2	   3	   4	   5	   6	   7	   8	   9	   1

0	  
1
1	  

b	  

a	  

weight	  =	  999	  

weight	  =	  1	  

Weighted	  Interval	  Scheduling	  

Notation.  Label jobs by finishing time:  f1  ≤  f2  ≤ . . . ≤ fn .	

Def.  p(j) = largest index i < j such that job i is compatible with j.  
Ex:  p(8) = 5, p(7) = 3, p(2) = 0.	


Time	  
0	   1	   2	   3	   4	   5	   6	   7	   8	   9	   10	   11	  

6	  

7	  

8	  

4	  

3	  

1	  

2	  

5	  
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Dynamic	  Programming:	  	  Binary	  Choice	  

•  Notation.  OPT(j) = value of optimal solution to the problem 
consisting of job requests 1, 2, ..., j.	


–  Case 1:  OPT selects job j.	

•  can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j - 1 }	

•  must include optimal solution to problem consisting of 

remaining compatible jobs 1, 2, ...,  p(j)	

–  Case 2:  OPT does not select job j.	


•  must include optimal solution to problem consisting of 
remaining compatible jobs 1, 2, ...,  j-1	


  

€ 

OPT( j) =
0 if  j = 0

max v j + OPT( p( j)), OPT( j −1){ } otherwise
# 
$ 
% 

op@mal	  substructure	  

Matrix Chain Multiplication	


•  Define the cost recursively m[i,j] cost of multiplying 	


€ 

m[i, j] =
0 if i = j,

min
i≤k< j

{m[i,k] + m[k +1, j] + pi−1pk p j} otherwise
$ 
% 
& 

' & 

  

€ 

AiA j
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All pairs shortest path	

•  Final representation of the solution is in adjacency matrix 	

•  δ(i,j) will be the length of the shortest path from i to j	

•  Structure of the optimal solution	


•  Weight of the shortest path with m-1 edges and minimum of the weight 
of any path consisting of at most m edges	
€ 

dij
0 =

0 if i = j
∞ otherwise

# 
$ 
% 

€ 

dij
(m ) =min(dij

(m−1),min1≤k≤n{dik
(m−1) + wkj})
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Example all shortest paths	


€ 

0 3 8 ∞ −4
∞ 0 ∞ 1 7
∞ 4 0 ∞ ∞

2 ∞ −5 0 ∞

∞ ∞ ∞ 6 0

€ 

0 3 8 2 −4
3 0 −4 1 7
∞ 4 0 5 11
2 −1 −5 0 −2
8 ∞ 1 6 0

€ 

D(0)

€ 

D(1)

3	
 4	


-4	

-5	


6	


7	

8	


1	


2	


•  Matrix multiplication	


•  Repeated Squaring 	


€ 

Θ(n4 )

€ 

Θ(n3 lgn)

€ 

D(0) =W

€ 

D(1) = D(0)W =WW

€ 

D(2) = D(1)W = D(0)WW

€ 

dij
(m ) =min(dij

(m−1),min1≤k≤n{dik
(m−1) + wkj})

1	


2	


3	


5	
 4	


Like matrix multiplication + => min  . => +	


Example all shortest paths	


€ 

0 3 8 ∞ −4
∞ 0 ∞ 1 7
∞ 4 0 ∞ ∞

2 ∞ −5 0 ∞

∞ ∞ ∞ 6 0

€ 

0 3 8 2 −4
3 0 −4 1 7
∞ 4 0 5 11
2 −1 −5 0 −2
8 ∞ 1 6 0

€ 

0 3 −3 2 −4
3 0 −4 1 −1
7 4 0 5 11
2 −1 −5 0 −2
8 5 1 6 0

€ 

0 1 −3 2 −4
3 0 −4 1 −1
7 4 0 5 3
2 −1 −5 0 −2
8 5 1 6 0

€ 

D(0)

€ 

D(1)

€ 

D(2)

€ 

D(3)

3	
 4	


-4	

-5	


6	


7	

8	


1	


2	


•  Matrix multiplication	


•  Repeated Squaring 	


€ 

Θ(n4 )

€ 

Θ(n3 lgn)

€ 

D(0) =W

€ 

D(1) = D(0)W =WW

€ 

D(2) = D(1)W = D(0)WW

1	


2	

3	


4	
5	
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Greedy	  Algorithms	  

•  Indicators: 	

–  Optimal substructure	

–  Greedy choice property: a locally optimal choice leads to a 

globally optimal solution	

•  Example problems:	


•  Activity selection: Set of activities, with start and end times. 
Maximize compatible set of activities.	


•  Fractional knapsack: sort items by $/lb, then take items in sorted 
order MST	


Review:	  Dynamic	  Programming	  
•  Optimization problems	

•  What is the structure of the sub-problem 	

•  Common pattern: 	

•  Optimal solution requires making a choice which leads to 

optimal solution 	

•  Hard part: what is the optimal subproblem structure	

   How many sub-problems ? 	

   How many choices we have which sub-problem to use ? 	

	

•  Matrix chain multiplication:   2 subproblems,  j-i choices	

•  LCS:  3 suproblems 3 choices	

•  Subtleties (graph examples) shortest path, longest path	
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Review: Greedy Algorithms	


•  A greedy algorithm always makes the choice that looks best at the 
moment	


•  The hope: a locally optimal choice will lead to a globally optimal 
solution	


•  Minimum weight spanning tree, Dijstra’s algorithm (greedy)	


•  Dynamic programming can be overkill; greedy algorithms are 
easier	


•  Example: Activity Selection	


Greedy	  Choice	  Property	  

•  Dynamic programming? Memoize? Yes, but…	

•  Activity selection problem also exhibits the greedy choice 

property:	

•  Locally optimal choice ⇒ globally optimal sol’n	


•  Them 17.1: if S is an activity selection problem sorted by finish 
time, then ∃ optimal solution A ⊆ S such that {1} ∈ A	


•  Sketch of proof: if ∃ optimal solution B that does not contain {1}, 
can always replace first activity in B with {1} (Why?).  Same 
number of activities, thus optimal.	
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Review:	  Ac@vity-‐Selec@on	  Problem	  

•  The activity selection problem: get your money’s worth out of a 
carnival	

–  Buy a wristband that lets you onto any ride	

–  Lots of rides, starting and ending at different times	

–  Your goal: ride as many rides as possible	


•  Naïve first-year CS major strategy: 	

–  Ride the first ride, when get off, get on the very next ride 

possible, repeat until carnival ends	

•  What is the sophisticated third-year strategy?	


Review:	  Ac@vity-‐Selec@on	  

•  Formally:	

–  Given a set S of n activities	


•  si = start time of activity  fi = finish time of activity i	

–  Find max-size subset A of compatible activities	

–  Assume activities sorted by finish time	


•  What is optimal substructure for this problem?	
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Review:	  Ac@vity-‐Selec@on	  

•  Formally:	

–  Given a set S of n activities	


•  si = start time of activity i 	
fi = finish time of activity 
i	


–  Find max-size subset A of compatible activities	

–  Assume activities sorted by finish time	


•  What is optimal substructure for this problem?	

–  A: If k is the activity in A with the earliest finish time, then 

A - {k} is an optimal solution to ���
S’ = {i ∈ S: si ≥ fk}	


Huffman	  coding	  	  

•  Design of optimal codes	

•  Example (on the board)	

•  Idea how to design optimal code ? 	

•  Notion of prefix code	

•  Greedy Algorithm for constructing optimal codes	


Algorithm:	

1. Keep the frequencies in Priority Queue (build heap)	

2. Take two minimal elements (extract min) 	

3. Insert their sum to queue	

4. Until queue is empty	

	

Running time O(n lgn)	
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Huffman	  coding	  

•  What is the optimal substructure and greedy choice property ?	

•  Given alphabet C each character has frequency f[c]	

•  Suppose x and y are characters with lowest frequencies	

•  Then there exist an optimal code where x and y have same 

length and differ only in last bit.	


•  Optimal substructure property	

•  Given C and C’ with the x and y removed and new symbol 	

•  Added where f[z] = f[x]+f[y]. If we have a tree T’ which 

represents optimal code for C’ then replacing node z with two 
children x and y will yield optimal code for C	


���
The Knapsack Problem	


•  The famous knapsack problem:	

–  A thief breaks into a museum.  Fabulous paintings,	

–  sculptures, and jewels are everywhere.  The thief has a good	

–  eye for the value of these objects, and knows that each will	

–  fetch hundreds or thousands of dollars on the clandestine art	

–  collector’s market.  But, the thief has only brought a single	

–  knapsack to the scene of the robbery, and can take away	

–  only what he can carry.  What items should the thief take to	

–  maximize the haul?	
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The Knapsack Problem	


•  More formally, the 0-1 knapsack problem:	


•  The thief must choose among n items, where the ith item worth vi 
dollars and weighs wi pounds	


•  Carrying at most W pounds, maximize value	

•  Note: assume vi, wi, and W are all integers	


•  “0-1” b/c each item must be taken or left in entirety	

•  A variation, the fractional knapsack problem:	


–  Thief can take fractions of items	

–  Think of items in 0-1 problem as gold ingots, in fractional	

–  problem as buckets of gold dust	


The Knapsack Problem  ���
And Optimal Substructure	


•  Both variations exhibit optimal substructure	

•  To show this for the 0-1 problem, consider the most valuable load 

weighing at most W pounds	


•  If we remove item j from the load, what do we know about the 
remaining load?	


•  A: remainder must be the most valuable load weighing at most W - 
wj that thief could take from museum, excluding item j 	
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Solving	  The	  Knapsack	  Problem	  

•  The optimal solution to the fractional knapsack problem can be found 
with a greedy algorithm	

–  How?	


•  The optimal solution to the 0-1 problem cannot be found with the same 
greedy strategy	


•  Greedy strategy: take in order of dollars/pound	

–  Example: 3 items weighing 10, 20, and 30 pounds, knapsack	

–  can hold 50 pounds	


•  Suppose item 2 is worth $100.  Assign values to the other items 
so that the greedy strategy will fail 	


The	  Knapsack	  Problem:	  	  
Greedy	  Vs.	  Dynamic	  

•  The fractional problem can be solved greedily	

•  The 0-1 problem cannot be solved with a greedy approach	

•  As you have seen, however, it can be solved with dynamic 

programming	
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0-‐1	  Knapsack	  problem:	  
a	  picture	  

W	  =	  20	  

wi	   bi	  

10	  9	  

8	  5	  

5	  4	  

4	  3	  

3	  2	  

Weight	   Benefit	  value	  

This	  is	  a	  knapsack	  
Max	  weight:	  W	  =	  20	  

Items	  

0-‐1	  Knapsack	  problem	  

•  Problem, in other words, is to find 

∑∑
∈∈

≤
Ti

i
Ti

i Wwb  subject to max

  The	  problem	  is	  called	  a	  “0-‐1”	  problem,	  because	  
each	  item	  must	  be	  en@rely	  accepted	  or	  rejected.	  

  Just	  another	  version	  of	  this	  problem	  is	  the	  
“Frac*onal	  Knapsack	  Problem”,	  where	  we	  can	  
take	  frac@ons	  of	  items.	   
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0-‐1	  Knapsack	  problem:	  brute-‐force	  
approach	  

Let’s first solve this problem with a straightforward algorithm 
•  Since there are n items, there are 2n possible combinations 

of items. 
•  We go through all combinations and find the one with the 

most total value and with total weight less or equal to W 
•  Running time will be O(2n) 

•  Can we do better?  
•  Yes, with an algorithm based on dynamic programming 
•  We need to carefully identify the subproblems 

Defining a Subproblem 	


If items are labeled 1..n, then a subproblem would be to find 
an optimal solution for Sk = {items labeled 1, 2, .. k} 
 
•  This is a valid subproblem definition. 
•  The question is: can we describe the final solution (Sn ) in 

terms of subproblems (Sk)?  
•  Unfortunately, we can’t do that. Explanation follows…. 
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Defining	  a	  Subproblem	  

Max	  weight:	  W	  =	  20	  
For	  S4:	  
Total	  weight:	  14;	  
total	  benefit:	  20	  

w1	  =2	  
b1	  =3	  

w2	  =4	  
b2	  =5	  

w3	  =5	  
b3	  =8	  

w4	  =3	  
b4	  =4	  

wi	   bi	  

10	  

8	  5	  

5	  4	  

4	  3	  

3	  2	  

Weight	   Benefit	  

9	  

Item	  
#	  

4	  

3	  

2	  

1	  

5	  

S4	  

S5	  

w1	  =2	  
b1	  =3	  

w2	  =4	  
b2	  =5	  

w3	  =5	  
b3	  =8	  

w4	  =9	  
b4	  =10	  

For	  S5:	  
Total	  weight:	  20	  
total	  benefit:	  26	  

Solu@on	  for	  S4	  is	  not	  part	  of	  
the	  solu@on	  for	  S5!!!	  

?	  

Defining	  a	  Subproblem	  (con@nued)	  

•  As we have seen, the solution for S4 is not part of the 
solution for S5 

•  So our definition of a subproblem is flawed and we need 
another one! 

•  Let’s add another parameter: w, which will represent the 
exact weight for each subset of items 

•  The subproblem then will be to compute B[k,w]	
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Recursive	  Formula	  for	  subproblems	  

•  It means, that the best subset of Sk that has total weight w 
is one of the two: 

1) the best subset of Sk-1 that has total weight w,    or 
2) the best subset of Sk-1 that has total weight w-wk plus the 

item k 

⎩
⎨
⎧

+−−−

>−
=

else  }],1[],,1[max{
 if         ],1[

],[
kk

k

bwwkBwkB
wwwkB

wkB

  Recursive formula for subproblems:	


Recursive	  Formula	  

•  The best subset of Sk that has the total weight w, either 
contains item k or not. 

•  First case: wk>w. Item k can’t be part of the solution, 
since if it was, the total weight would be > w, which is 
unacceptable 

•  Second case: wk <=w. Then the item k can be in the 
solution, and we choose the case with greater value 

⎩
⎨
⎧

+−−−

>−
=

else  }],1[],,1[max{
 if         ],1[

],[
kk

k

bwwkBwkB
wwwkB

wkB
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0-‐1	  Knapsack	  Algorithm	  

for w = 0 to W!
!B[0,w] = 0!

for i = 0 to n!
!B[i,0] = 0!
!for w = 0 to W!
!!if wi <= w // item i can be part of the solution!
!! !if bi + B[i-1,w-wi] > B[i-1,w]!
!! ! !B[i,w] = bi + B[i-1,w- wi]!
!! !else!
!! ! !B[i,w] = B[i-1,w]!
!!else B[i,w] = B[i-1,w]  // wi > w !

68	  

Running	  @me	  

for w = 0 to W!
!B[0,w] = 0!
for i = 0 to n!
!B[i,0] = 0!
!for w = 0 to W!
!!< the rest of the code >!
What is the running time of this algorithm?	


O(W)	


O(W)	


Repeat n times	


O(nW)	


Remember that the brute-force algorithm 	

takes O(2n)	
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Example	  

Let’s run our algorithm on the 	

following data:	

	

n = 4 (# of elements)	

W = 5 (max weight)	

Elements (weight, benefit):	

(2,3), (3,4), (4,5), (5,6)	


Comments	  

•  This algorithm only finds the max possible value that can 
be carried in the knapsack 

•  To know the items that make this maximum value, an 
addition to this algorithm is necessary 

•  Please see LCS algorithm from the previous lecture for the 
example how to extract this data from the table we built 
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Conclusion	  
•  Dynamic programming is a useful technique of solving 

certain kind of problems 
•  When the solution can be recursively described in terms of 

partial solutions, we can store these partial solutions and 
re-use them as necessary 

•  Running time (Dynamic Programming algorithm vs. naïve 
algorithm): 
–  LCS: O(mn) vs. O(n 2m) 
–  0-1 Knapsack problem: O(Wn) vs. O(2n) 

•   Caveat 0-1 Knapsack is NP- complete 
•  W is not polynomial in the size of the input, length of 

W is proportional to number of bits needed to represent 
that word 

72	  

• Flow	  network.	  
–  Abstrac@on	  for	  material	  flowing	  through	  the	  edges.	  
–  G	  =	  (V,	  E)	  =	  directed	  graph,	  no	  parallel	  edges.	  
–  Two	  dis@nguished	  nodes:	  	  s	  =	  source,	  t	  =	  sink.	  
–  c(e)	  =	  capacity	  of	  edge	  e.	  

Minimum	  Cut	  Problem	  

s	


2	


3	


4	


5	


6	


7	


t	


 15	


 5	


 30	


 15	


   10	


 8	


 15	


 9	


 6	
  10	


 10	


   10	
 15	
 4	


 4	

capacity	


source	
 sink	
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• Def.	  	  An	  s-‐t	  cut	  is	  a	  par@@on	  (A,	  B)	  of	  V	  with	  s	  ∈	  A	  and	  t	  ∈	  B.	  

• Def.	  The	  capacity	  of	  a	  cut	  (A,	  B)	  is:	  

Cuts	  

s	


2	


3	


4	


5	


6	


7	


t	


 15	


 5	


 30	


 15	


   10	


 8	


 15	


 9	


 6	
  10	


 10	


   10	
 15	
 4	


 4	


 Capacity = 10 + 5 + 15���
              = 30	


   A	


  

€ 

cap( A, B)  =  c(e)
e out of A
∑
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s	


2	


3	


4	


5	


6	


7	


t	


 15	


 5	


 30	


 15	


   10	


 8	


 15	


 9	


 6	
  10	


 10	


   10	
 15	
 4	


 4	

   A	


Cuts	  

• Def.	  	  An	  s-‐t	  cut	  is	  a	  par@@on	  (A,	  B)	  of	  V	  with	  s	  ∈	  A	  and	  t	  ∈	  B.	  

• Def.	  The	  capacity	  of	  a	  cut	  (A,	  B)	  is:	  
  

€ 

cap( A, B)  =  c(e)
e out of A
∑

 Capacity = 9 + 15 + 8 + 30���
              = 62	




5/7/14	  

38	  

75	  

• Min	  s-‐t	  cut	  problem.	  	  Find	  an	  s-‐t	  cut	  of	  minimum	  capacity.	  

Minimum	  Cut	  Problem	  

s	


2	


3	


4	


5	


6	


7	


t	


 15	


 5	


 30	


 15	


   10	


 8	


 15	


 9	


 6	
  10	


 10	


   10	
 15	
 4	


 4	
   A	


 Capacity = 10 + 8 + 10���
              = 28	


76	  

• Weak	  duality.	  	  Let	  f	  be	  any	  flow.	  	  Then,	  for	  any	  s-‐t	  cut	  (A,	  B)	  
we	  have	  
v(f)	  ≤	  cap(A,	  B).	  

• Pf.	  

	  

Flows	  and	  Cuts	  

€ 

v( f ) = f (e)
e out of A
∑ − f (e)

e in to A
∑

≤ f (e)
e out of A
∑

≤ c(e)
e out of A
∑

= cap(A,B)
s	


t	


A	
 B	


 7	


6	


 8	

4	
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Cer@ficate	  of	  Op@mality	  
• Corollary.	  	  Let	  f	  be	  any	  flow,	  and	  let	  (A,	  B)	  be	  any	  cut.	  
If	  v(f)	  =	  cap(A,	  B),	  then	  f	  is	  a	  max	  flow	  and	  (A,	  B)	  is	  a	  min	  cut.	  

Value of flow = 28���
Cut capacity  = 28   ⇒    Flow value ≤ 28	


10	


9	


9	


14	


4	
 10	


4	
 8	
 9	


1	


0	
 0	


0	


14	


s	


2	


3	


4	


5	


6	


7	


t	


 15	


 5	


 30	


 15	


   10	


 8	


 15	


 9	


 6	
  10	


 10	


   10	
 15	
 4	


 4	
 0	
A	
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• Max	  flow	  formula@on.	  
–  Create	  digraph	  G'	  =	  (L	  ∪	  R	  ∪	  {s,	  t},	  	  E'	  ).	  
–  Direct	  all	  edges	  from	  L	  to	  R,	  and	  assign	  infinite	  (or	  unit)	  
capacity.	  

–  Add	  source	  s,	  and	  unit	  capacity	  edges	  from	  s	  to	  each	  node	  in	  L.	  
–  Add	  sink	  t,	  and	  unit	  capacity	  edges	  from	  each	  node	  in	  R	  to	  t.	  

Bipar@te	  Matching	  

s	


1	


3	


5	


1'	


3'	


5'	


t	


2	


4	


2'	


4'	


1	
 1	


∞	


R	
L	


G'	
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• Disjoint	  path	  problem.	  	  Given	  a	  digraph	  G	  =	  (V,	  E)	  and	  two	  nodes	  s	  
and	  t,	  find	  the	  max	  number	  of	  edge-‐disjoint	  s-‐t	  paths.	  
• Def.	  	  Two	  paths	  are	  edge-‐disjoint	  if	  they	  have	  no	  edge	  in	  common.	  
• Ex:	  	  communica@on	  networks.	  

s	


2	


3	


4	


Edge	  Disjoint	  Paths	  

5	


6	


7	


t	
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• Max	  flow	  formula@on:	  	  assign	  unit	  capacity	  to	  every	  edge.	  

• Theorem.	  	  Max	  number	  edge-‐disjoint	  s-‐t	  paths	  equals	  max	  flow	  value.	  
• Pf.	  	  	  ≤	  	  

–  Suppose	  there	  are	  k	  edge-‐disjoint	  paths	  P1,	  .	  .	  .	  ,	  Pk.	  
–  Set	  f(e)	  =	  1	  if	  e	  par@cipates	  in	  some	  path	  Pi	  ;	  	  else	  set	  f(e)	  =	  0.	  
–  Since	  paths	  are	  edge-‐disjoint,	  f	  is	  a	  flow	  of	  value	  k.	  	  	  ▪	  

Edge	  Disjoint	  Paths	  

s	
 t	


1	


1	


1	


1	


1	


1	


1	

1	


1	


1	


1	


1	


1	


1	
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• Network	  connec@vity.	  	  Given	  a	  digraph	  G	  =	  (V,	  E)	  and	  two	  nodes	  s	  
and	  t,	  	  find	  min	  number	  of	  edges	  whose	  removal	  disconnects	  t	  from	  
s.	  

• Def.	  	  A	  set	  of	  edges	  F	  ⊆	  E	  disconnects	  t	  from	  s	  if	  all	  s-‐t	  paths	  uses	  at	  
least	  on	  edge	  in	  F.	  

Network	  Connec@vity	  

s	


2	


3	


4	


5	


6	


7	


t	
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Edge	  Disjoint	  Paths	  and	  Network	  Connec@vity	  
• Theorem.	  	  [Menger	  1927]	  	  The	  max	  number	  of	  edge-‐disjoint	  s-‐
t	  paths	  is	  equal	  to	  the	  min	  number	  of	  edges	  whose	  removal	  
disconnects	  t	  from	  s.	  

• Pf.	  	  ≤	  	  
–  Suppose	  the	  removal	  of	  F	  ⊆	  E	  disconnects	  t	  from	  s,	  and	  |
F|	  =	  k.	  

–  All	  s-‐t	  paths	  use	  at	  least	  one	  edge	  of	  F.	  Hence,	  the	  
number	  of	  edge-‐disjoint	  paths	  is	  at	  most	  k.	  	  ▪	  

s	


2	


3	


4	


5	


6	


7	


t	
 s	


2	


3	


4	


5	


6	


7	


t	
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Review:	  P	  and	  NP	  

•  What do we mean when we say a problem ���
is in P?	


•  What do we mean when we say a problem ���
is in NP?	


•  What is the relation between P and NP?	


Review:	  P	  and	  NP	  

•  What do we mean when we say a problem ���
is in P?	

–  A: A solution can be found in polynomial time	


•  What do we mean when we say a problem ���
is in NP?	

–  A: A solution can be verified in polynomial time	


•  What is the relation between P and NP?	

–  A: P ⊆ NP, but no one knows whether P = NP	
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Review:	  NP-‐Complete	  

•  What, intuitively, does it mean if we can reduce problem 
P to problem Q?	

–  P is “no harder than” Q	


•  How do we reduce P to Q?	

–  Transform instances of P to instances of Q in polynomial time 

s.t. Q: “yes” iff P: “yes”	

•  What does it mean if Q is NP-Hard ?	


–  Every problem P∈NP ≤p Q	

•  What does it mean if Q is NP-Complete?	


–  Q is NP-Hard and Q ∈ NP	


NP 

P 

NP complete problems  – problems which are in NP but are as       
hard as any other problem in NP	


•  NP hard which are not NP-complete, e.g. halting problem (is 
still possible to reduce any problem in NP to halting problem)	


•  Some other non-decision problems	


	


NP-Hard and NP-Complete	


NPC	
NP-hard	
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Review:	  	  
Proving	  Problems	  NP-‐Complete	  

•  What was the first problem shown to be ���
NP-Complete?	


•  A: Circuit satisfiability (SAT), by Cook	

•  How do we usually prove that a problem R���

is NP-Complete?	

•  A: Show R ∈NP, and reduce a known ���

NP-Complete problem Q to R	


Review:	  	  
Reduc@ons	  

•  Review the reductions we’ve covered:	

	


–  Independent set <-> vertex cover	

–  Directed hamiltonian cycle  undirected hamiltonian cycle	

–  Undirected hamiltonian cycle  traveling salesman problem	

–  3-CNF  k-clique	

–  k-clique  vertex cover	




5/7/14	  

45	  

Independent	  Set	  
• INDEPENDENT SET:  Given a graph G = (V, E) and an integer k, is 
there a subset of vertices S ⊆ V such that |S| ≥ k, and for each 
edge at most one of its endpoints is in S?	

• Ex.  Is there an independent set of size ≥ 6?  Yes.	

• Ex.  Is there an independent set of size ≥ 7?  No.	


independent set 

Vertex	  Cover	  
• VERTEX COVER:  Given a graph G = (V, E) and an integer k, is 
there a subset of vertices S ⊆ V such that |S| ≤ k, and for each 
edge, at least one of its endpoints is in S?	


• Ex.  Is there a vertex cover of size ≤ 4?  Yes.	

• Ex.  Is there a vertex cover of size ≤ 3?  No.	


vertex cover 
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Vertex	  Cover	  and	  Independent	  Set	  

• Claim.  VERTEX-COVER ≡P INDEPENDENT-SET.	

• Pf.  We show S is an independent set iff V - S is a vertex cover.	


vertex cover 

independent set 

SET COVER 
 
U = { 1, 2, 3, 4, 5, 6, 7 } 
k = 2 
Sa = {3, 7}   Sb = {2, 4} 
Sc = {3, 4, 5, 6}  Sd = {5} 
Se = {1}   Sf= {1, 2, 6, 7} 

Vertex	  Cover	  Reduces	  to	  Set	  Cover	  
• Claim.  VERTEX-COVER ≤ P SET-COVER.	

• Pf.  Given a VERTEX-COVER instance G = (V, E), k, we construct a set 
cover instance whose size equals the size of the vertex cover 
instance.	

• Construction.  	


–  Create SET-COVER instance:	

•  k = k,  U = E,  Sv = {e ∈ E : e incident to v }	


–  Set-cover of size ≤ k iff vertex cover of size ≤ k.  ▪	

a 

d 

b 

e 

f c 

VERTEX COVER 

k = 2 
e1  

e2  e3  

e5  

e4  

e6  

e7  
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•  Circuit SAT is NP can be verified in polynomial time 	

      i.e. given a circuit and an input we can verify in polynomial time	

      whether the input is a satisfying assignment. 	

•  Circuit SAT is NP-hard Every problem in NP is reducible to 	

    circuit SAT; Proof: 	

1.  Problem is in NP; can be verified in polynomial time by some	

      algorithm	

2.  Each step of the algorithm runs on a computer (huge boolean	

      circuit)	

3.  Chaining together all circuits which correspond to the steps	

      of the algorithm – we get large circuit which describes the	

      run of the algorithm	

4.  If we plug in the input of a problem A then YES / NO answer	

       when circuit is/is not satisfiable	


Review:	  Circuit	  Sa@sfiablity	  	  

∧ 
¬ 

u-‐v	  

∨	  

1	  

independent	  set	  of	  size	  2?	  

n	  inputs	  (nodes	  in	  independent	  set)	  hard-‐coded	  inputs	  (graph	  descrip@on)	  

∨	  

∨	  

∧	  

u-‐w	  

0	  

∧	  

v-‐w	  

1	  

∧	  

u	  

?	  

∧	  

v	  

?	  

∧	  

w	  

?	  

∧	  

∨	  

set	  of	  size	  2?	  

both	  endpoints	  of	  some	  edge	  have	  been	  chosen?	  

independent	  set?	  

Example	  

• Ex.  Construction below creates a circuit K whose inputs can be set 
so that K outputs true iff graph G has an independent set of size 2.	


u	  

v	   w	  

€ 

n
2

" 

# 
$ 

% 

& 
' 

G	  =	  (V,	  E),	  n	  =	  3	  
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Circuit SAT	


3-SAT	


Hamilton Cycle	


Traveling Salesmen 	


Independent Set	


Vertex Cover 	
 Clique	


3D matching	


knapsack	


Rela@onships	  between	  known	  NP	  –
complete	  problems	  

Review:	  Formula	  Sa@sfiability	  

•  Show that it is easy to verify the solution 	

•  Reduce circuit satisfiability to SAT	

•  Any instance of circuit satisfiability can be reduced to 

formula satisfiability	

•  Strategy:  express every gate as a formula (Example). 	
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3-‐SAT	  is	  NP-‐Complete	  
• Theorem.  3-SAT is NP-complete.	

• Pf.  Suffices to show that CIRCUIT-SAT ≤ P 3-SAT since 3-SAT is in NP. Let K be any 
circuit.	


–  Create a 3-SAT variable xi for each circuit element i.	

–  Make circuit compute correct values at each node:	


•  x2 = ¬ x3      ⇒  add 2 clauses:	

•  x1 = x4 ∨ x5   ⇒  add 3 clauses:	

•  x0 = x1 ∧ x2   ⇒  add 3 clauses:	


	

–  Hard-coded input values and output value.	


•  x5 = 0  ⇒  add 1 clause:	

•  x0 = 1  ⇒  add 1 clause:	


–  Final step:  turn clauses of length < 3 into���
clauses of length exactly 3.  ▪	
 ∨	  

∧	  

¬	  

0	   ?	   ?	  

output	  

x0	  

x2	  x1	  

  

€ 

x2 ∨ x3  , x2 ∨ x3

€ 

x1 ∨ x4 , x1 ∨ x5  ,  x1 ∨ x4 ∨ x5

€ 

x0 ∨ x1 , x0 ∨ x2 , x0 ∨ x1 ∨ x2

x3	  x4	  x5	  

  

€ 

x5
  

€ 

x0

Review:	  Conjunc@ve	  Normal	  Form	  

•  Even if the form of the Boolean expression is simplified, the 
problem may be NP-Complete	

–  Literal: an occurrence of a Boolean or its negation	

–  A Boolean formula is in conjunctive normal form, or CNF, if 

it is an AND of clauses, each of which is an OR of literals	

•  Ex: (x1 ∨ ¬x2) ∧ (¬x1 ∨ x3 ∨ x4) ∧ (¬x5)	


–  3-CNF: each clause has exactly 3 distinct literals	

•  Ex: (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x3 ∨ x4) ∧ (¬x5 ∨ x3 ∨ x4)	

•  Notice: true if at least one literal in each clause is true	
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Review:	  The	  3-‐CNF	  Problem	  

•  Thm 36.10: Satisfiability of Boolean formulas in 3-CNF form (the 
3-CNF Problem) is NP-Complete	


•  The reason we care about the 3-CNF problem is that it is relatively 
easy to reduce to others 	


•  Thus by proving 3-CNF NP-Complete we can prove many 
seemingly unrelated problems NP-Complete	


Review:	  3-‐CNF	  Sa@sfiability	  

•  Show that it is easy to verify the solution 	

•  Reduce Satisfiability to 3-CNF	

•  Strategy: Get Binary Parse Tree, introduce new variables,	

   get clauses	

•  Convert Clauses to CNF form using De Morgan’s Laws	
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3-‐CNF	  →	  Clique	  

•  What is a clique of a graph G?	

•  A: a subset of vertices fully connected to each other, i.e. a 

complete subgraph of G	

•  The clique problem: how large is the maximum-size clique in a 

graph?	

•  Can we turn this into a decision problem?	

•  A: Yes, we call this the k-clique problem	

•  Is there a clique of size k in the graph G ?	

•  Is the k-clique problem within NP?	

•  Naïve approach ? Check all possible subsets of k vertices 	


Directed Hamiltonian Cycle ⇒���
Undirected Hamiltonian Cycle	


•  What was the hamiltonian cycle problem again?	

•  For my next trick, I will reduce the directed hamiltonian cycle 

problem to the undirected hamiltonian cycle problem before your 
eyes	

–  Which variant am I proving NP-Complete?	


•  Draw a directed example on the board	

–  What transformation do I need to effect?	
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103	  

Directed	  Hamiltonian	  Cycle	  

• DIR-‐HAM-‐CYCLE:	  	  given	  a	  digraph	  G	  =	  (V,	  E),	  does	  there	  exists	  a	  simple	  
directed	  cycle	  Γ	  that	  contains	  every	  node	  in	  V	  
• Claim.	  	  DIR-‐HAM-‐CYCLE	  ≤	  P	  HAM-‐CYCLE.	  

• Pf.	  	  Given	  a	  directed	  graph	  G	  =	  (V,	  E),	  construct	  an	  undirected	  graph	  
G'	  with	  3n	  nodes.	  

v	  

a	  

b	  

c	  

d	  

e	  
vin	  

aout	  

bout	  

cout	  

din	  

ein	  
G	   G'	  

v	   vout	  

Clique	  →	  Vertex	  Cover	  

•  A vertex cover for a graph G is a set of vertices 
incident to every edge in G	


•  The vertex cover problem: what is the minimum size 
vertex cover in G?	


•  Restated as a decision problem: does a vertex cover 
of size k exist in G?	


•  Thm 36.12: vertex cover is NP-Complete	


Example	  of	  vertex	  cover	  of	  size	  2	  
Example	  of	  vertex	  cover	  of	  size	  2	  
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Clique	  →	  Vertex	  Cover	  

•  First, show vertex cover in NP (How?)	

•  How to decide whether graph G has a vertex cover of size k	

•  Reduce k-clique to vertex cover	

•  The complement GC of a graph G contains exactly those edges 

not in G	

•  Compute GC in polynomial time	

•  G has a clique of size k iff GC has a vertex cover of size |V| - k 	


Clique  of size 4	
 Vertex cover  of size 2	


Circuit SAT	


3-SAT	


Hamilton Cycle	


Traveling Salesmen 	


Independent Set	


Vertex Cover 	
 Clique	


3D matching	


knapsack	


Rela@onships	  between	  known	  NP	  –
complete	  problems	  


