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Final	
  Exam	
  Review	
  

Final	
  Exam	
  

•  Coverage: second half of the semester	


•  Requires familiarity with most of the concepts covered in 	


   first half	


•  Goal: doable in 2 hours	


•  Cheat sheet: you are allowed two 8’11” sheets, both sides	
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Final	
  Exam:	
  Study	
  Tips	
  

•  Study tips:	


–  Study each lecture	


–  Study the homework and homework solutions	


–  Study the midterm exams	



•  Re-make your previous cheat sheets	


   I recommend handwriting or typing them	


•  Think about what you should have had on it the first time…cheat 

sheets is about identifying important concepts	



•  Next review of more recent topics as well as earlier topics	



Graph	
  Representa@on	
  

•  Adjacency list	


•  Adjacency matrix	


•  Tradeoffs: 	



–  What makes a graph dense?	


–  What makes a graph sparse?	


–  What about trees ?	
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Basic	
  Graph	
  Algorithms	
  

•  Breadth-first search	


–  What can we use BFS to calculate?	


–  A: shortest-path distance to source vertex	



•  Depth-first search	


–  Tree edges, back edges, cross and forward edges	


–  What can we use DFS for?	


–   A: finding cycles, topological sort 	



DFS	
  Example	
  

source 
vertex 

d      f 

Tree edges Back edges Forward edges 

1 |12 8 |11 13|16 

14|15 5 | 6 3 | 4 

2 | 7 9 |10 

Cross edges 
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DFS And Cycles	



•  How would you modify the code to detect cycles?	



DFS(G) 
{ 
   for each vertex u ∈ G->V 
   { 
      u->color = WHITE; 
   } 
   time = 0; 
   for each vertex u ∈ G->V 
   { 
      if (u->color == WHITE) 
         DFS_Visit(u); 
   } 
} 

DFS_Visit(u) 
{ 
   u->color = GREY; 
   time = time+1; 
   u->d = time; 

   for each v ∈ u->Adj[] 
   { 
      if (v->color == WHITE) 
         DFS_Visit(v); 
   } 
   u->color = BLACK; 
   time = time+1; 
   u->f = time; 
} 

DFS And Cycles	



•  What will be the running time?	


•  A: O(V+E)	


•  We can actually determine if cycles exist in O(V) time:	



–  In an undirected acyclic forest, |E| ≤ |V| - 1 	



–  So count the edges: if ever see |V| distinct edges, must	


–  have seen a back edge along the way	
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Topological	
  Sort,	
  MST	
  

•  Topological sort	


–  Examples: getting dressed, project dependency	


–  To what kind of graph does topological sort apply?	



•  Minimum spanning tree	


–  Optimal substructure	


–  Min edge theorem (enables greedy approach)	



GeJng	
  Dressed	
  

Underwear Socks 

Shoes Pants 

Belt 

Shirt 

Watch 

Tie 

Jacket 

Socks Underwear Pants Shoes Watch Shirt Belt Tie Jacket 
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Topological	
  Sort	
  Algorithm	
  

Topological-Sort() 
{ 

Run DFS 
When a vertex is finished, output it 
On the front of linked list 
Vertices are output in reverse topological 
order 

} 
•  Time: O(V+E)	


•  Correctness: Want to prove that���
	

(u,v) ∈ G ⇒ u→f > v→f	



Correctness of Topological Sort	



•  Claim: (u,v) ∈ G ⇒ u→f  >  v→f	


•  Topological sort creates linear ordering of vertices	


•  Show that if there is an edge from u to v, finishing time	


    of u is greater then v (nodes are output in reverse finish. times 

order – later times are output first )	


•  When (u,v) is explored, u is gray	



•  v = gray ⇒ (u,v) is back edge.  Contradiction (Why?)	


•  hence v cannot be gray – since there are no cycles	


•  v = white ⇒ v becomes descendent of u ⇒ v→f < u→f	


•  (since must finish v before backtracking and finishing u)	


•  v = black ⇒ v already finished ⇒ v→f < u→f	
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Strongly	
  Connected	
  Components	
  

•  Call DFS to compute finishing times f[u] of each vertex	


•  Create transpose graph (directions of edges reversed)	


•  Call DFS on the transpose graph, but in the main loop of DFS, 

consider vertices in the decreasing order of f[u]	


•  Output the vertices of each tree in the depth-first forest formed in 

line 3 as a separate strongly connected component	



•  Example	



	



ABD	
   EF	
  

CH	
   G	
  

13|14 11|16 1|10 

2|7 3 | 4 12|15  

8|9 

5|6 

D

A

C

B E F

GH

2|5 1|6 7|10 

14|15 12|13 3|4  

8|9 

16|17 

D

A

C

B E F

GH
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MST	
  Algorithms	
  

•  Prim’s algorithm	


–  What is the bottleneck in Prim’s algorithm?	


–  A: priority queue operations	



•  Kruskal’s algorithm	


–  What is the bottleneck in Kruskal’s algorithm?	


–  Answer: depends on disjoint-set implementation	



•  As covered in class, disjoint-set union operations 	


•  As described in book, sorting the edges	



Review:	
  Prim’s	
  Algorithm	
  
MST-Prim(G, w, r) 
    Q = V[G]; 
    for each u ∈ Q 
        key[u] = ∞; 
    key[r] = 0; 
    p[r] = NULL; 
    while (Q not empty) 
        u = ExtractMin(Q); 
        for each v ∈ Adj[u] 
            if (v ∈ Q and w(u,v) < key[v]) 
                p[v] = u; 
                key[v] = w(u,v); 
 

What will be the running time? 
A: Depends on queue 
binary heap: O(E lg V) 
Fibonacci heap: O(V lg V + E) 

ExtractMin  total number of calls O(V log V) 	


DecreaseKey  total number of calls O(E log V) 	


Total number of calls O(V logV +E logV) = O(E log V)	


Think why we can combine things in the expression above	
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Kruskal’s	
  Algorithm	
  

Kruskal() 
{  
   T = ∅; 
   for each v ∈ V 
      MakeSet(v); 
   sort E by increasing edge weight w 
   for each (u,v) ∈ E (in sorted order) 
      if FindSet(u) ≠ FindSet(v) 
         T = T U {{u,v}}; 
         Union(FindSet(u), FindSet(v)); 
} 

2 19 

9 

1 

5 

13 

17 
25 

14 
8 

21 

Run the algorithm: 

Correctness	
  Of	
  Kruskal’s	
  Algorithm	
  

•  Sketch of a proof that this algorithm produces an MST for T:	


•  Assume algorithm is wrong: result is not an MST	


•  Then algorithm adds a wrong edge at some point	


•  If it adds a wrong edge, there must be a lower weight edge 

(cut and paste argument)	


•  But algorithm chooses lowest weight edge at each step ->  

Contradiction	


•  Again, important to be comfortable with cut and paste 

arguments	
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Kruskal’s	
  Algorithm	
  

Kruskal() 
{ 
   T = ∅; 
   for each v ∈ V 
      MakeSet(v); 
   sort E by increasing edge weight w 
   for each (u,v) ∈ E (in sorted order) 
      if FindSet(u) ≠ FindSet(v) 
         T = T U {{u,v}}; 
         Union(FindSet(u), FindSet(v)); 
} 

What will affect the running time? 
 1 Sort 

O(V) MakeSet() calls 
O(E) FindSet() calls 

O(V) Union() calls   
(Exactly how many Union()s?) 

Kruskal’s Algorithm: Running Time	


•  To summarize: 	



–  Sort edges: O(E lg E) 	


–  O(V) MakeSet()’s	


–  O(E) FindSet()’s and Union()’s 	



•  Upshot: 	


–  Best disjoint-set union algorithm makes above 	


–  3 operation stake O((V+E)⋅α(V)), α almost constant	


–  (slowly growing function of V)	


–  Since E >= V-1 then we have  O(E⋅α(V))	


–  Also since α(V) = O(lg V) = O(lg E)	



–  Overall thus O(E lg E), almost linear w/o sorting	
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Single-­‐Source	
  Shortest	
  Path	
  

•  Optimal substructure	


•  Key idea: relaxation of edges	


•  What does the Bellman-Ford algorithm do?	



–  What is the running time?	


•  What does Dijkstra’s algorithm do?	



–  What is the running time?	


–  When does Dijkstra’s algorithm not apply?	



Bellman-­‐Ford	
  Algorithm	
  

BellmanFord() 
   for each v ∈ V 
      d[v] = ∞; 
   d[s] = 0; 
   for i=1 to |V|-1 
      for each edge (u,v) ∈ E 
         Relax(u,v, w(u,v)); 
   for each edge (u,v) ∈ E 
      if (d[v] > d[u] + w(u,v)) 
           return “no solution”; 
 
 
Relax(u,v,w): if (d[v] > d[u]+w) then d[v]=d[u]+w 
 

B 

E 

D C 

A 

-1 2 

2 

1 -3 

5 

3 

4 

Ex: work on board 

s 
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Dijkstra’s	
  Algorithm	
  

Dijkstra(G) 
   for each v ∈ V 
      d[v] = ∞; 
   d[s] = 0; S = ∅; Q = V; 
   while (Q ≠ ∅) 
      u = ExtractMin(Q); 
      S = S U {u}; 
      for each v ∈ u->Adj[] 
         if (d[v] > d[u]+w(u,v)) 
            d[v] = d[u]+w(u,v); 

Relaxation 
Step 

Note: this 
is really a  
call to Q->DecreaseKey() 

B 

C 

D A 

10 

4 3 

2 

1 5 

Ex: run the algorithm 

Dijkstra’s	
  Algorithm	
  

Dijkstra(G) 
   for each v ∈ V 
      d[v] = ∞; 
   d[s] = 0; S = ∅; Q = V; 
   while (Q ≠ ∅) 
      u = ExtractMin(Q); 
      S = S U {u}; 
      for each v ∈ u->Adj[] 
         if (d[v] > d[u]+w(u,v)) 
            d[v] = d[u]+w(u,v); 

How many times is  
ExtractMin() called? 

How many times is  
DecraseKey() called? 

A: O(E lg V) using binary heap for Q 
Can acheive O(V lg V + E) with Fibonacci heaps 
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Dijkstra’s Algorithm	



Dijkstra(G) 
   for each v ∈ V 
      d[v] = ∞; 
   d[s] = 0; S = ∅; Q = V; 
   while (Q ≠ ∅) 
      u = ExtractMin(Q); 
      S = S U{u}; 
      for each v ∈ u->Adj[] 
         if (d[v] > d[u]+w(u,v)) 
            d[v] = d[u]+w(u,v); 

Correctness: we must show that when u is  
removed from Q, it has already converged 

Correctness Of Dijkstra's Algorithm	



s 

x 
y 

u 
p2 

p2 

1.  See the description of the proof in the book	



Show that Dijkstra’s algorithm will terminate with 	


The cost of each node to be the cost of shortest path.	


Idea: show that when the vertex is added to the set the 	


cost of that vertex is the length of the shortest path	


Reminder: We always add the vertex with minimal cost	
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Correctness Of Dijkstra's Algorithm	



•  Want to show that when vertex is added to set S,  d[u] = δ(s,u)	


•   and throughout note that d[u] ≥ δ(s,u) ∀u 	


•  Proof by contradiction d[u] is not equal to δ(s,u), when added to S	


•  Before u gets added, some other vertex y on that shortest path needs	


    to be added; claim that d[y] = δ(s,y) when added. 	


•  Know that d[x] = δ(s,x) and δ(s,y) <= δ(s,u) and d[y] = δ(s,y), so d[y] <= d[u] 	


•  But both y and u are outside of S when is chosen so d[u] <= d[y] 	


•  Hence d[y] = d[u] = δ(s,y) = δ(s,y)	


	



s 

x 
y 

u 
p2 

p2 

Disjoint-­‐Set	
  Union	
  

•  We talked about representing sets as linked lists, every element 
stores pointer to list head	



•  What is the cost of merging sets A and B?	


–  A: O(max(|A|, |B|))	



•  What is the maximum cost of merging n ���
1-element sets into a single n-element set?	


–  A: O(n2)	



•  How did we improve this?  By how much?	


–  A: always copy smaller into larger: O(n lg n)	
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Amor@zed	
  Analysis	
  

•  Idea: worst-case cost of an operation may overestimate its cost 
over course of algorithm	



•  Goal: get a tighter amortized bound on its cost	



•  Aggregate method: total cost of operation over course of 
algorithm divided by # operations Example: disjoint-set union	



•  Accounting method: “charge” a cost to each operation, accumulate 
unused cost in bank, never go negative	



Analysis Of Dynamic Tables	



•  Let ci = cost of i-th insert	


•  ci = i if i-1 is exact power of 2, 1 otherwise	


•  Example:	



–     Operation	

Table Size	

   Cost	



Insert(1) 1 1 1 
Insert(2) 2 1 + 1 2 
Insert(3) 4 1 + 2 
Insert(4) 4 1 
Insert(5) 8 1 + 4 
Insert(6) 8 1 
Insert(7) 8 1 
Insert(8) 8 1 
Insert(9) 16 1 + 8 

1 
2 
3 
4 
5 
6 
7 
8 
9 
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Aggregate Analysis	



•  n Insert() operations cost	



•  At most n operations are of cost 1 + costs of expansions	


•  Expansion happens only where (i-1) is power of 2	


•  Average cost of operation ���

= (total cost)/(# operations) < 3	


•  Asymptotically, then, a dynamic table costs the same as a fixed-

size table	


•  Both O(1) per Insert() operation	



nnnnc
n

j

j
n

i
i 3)12(2

lg

01
<−+=+≤ ∑∑

==

Review:	
  The	
  Master	
  Theorem	
  

•  Given: a divide and conquer algorithm	


   An algorithm that divides the problem of size n into a subproblems, 

each of size n/b	


•  Let the cost of each stage (i.e., the work to divide the problem + 

combine solved subproblems) be described by the function f(n)	


•  Then, the Master Theorem gives us a cookbook for the algorithm’s 

running time:	
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Review:	
  The	
  Master	
  Theorem	
  

•  if  T(n) = aT(n/b) + f(n) then	
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LCS	
  Via	
  Dynamic	
  Programming	
  	
  

•  Longest common subsequence (LCS) problem: 	


–  Given two sequences x[1..m] and y[1..n], find the longest 

subsequence which occurs in both	


•  Brute-force algorithm: 2m subsequences of x to check against n 

elements of y: O(n 2m)	


•  Define c[i,j] = length of LCS of x[1..i], y[1..j]	


•  Theorem: 	
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LCS Example (0)	


j       0        1          2         3        4         5 	



0	



1	



2	



3	



4	



i	



Xi	



A	



B	



C	



B	



Yj	

 B	

B	

 A	

C	

D	



X = ABCB;   m = |X| = 4	


Y = BDCAB; n = |Y| = 5	


Allocate array c[5,4] 	

	



ABCB	


BDCAB	



Weighted	
  Interval	
  Scheduling	
  
• Weighted interval scheduling problem.	



–  Job j starts at sj, finishes at fj, and has weight or value vj . 	


–  Two jobs compatible if they don't overlap.	


–  Goal:  find maximum weight subset of mutually compatible 

jobs.	



Time	
  
0	
   1	
   2	
   3	
   4	
   5	
   6	
   7	
   8	
   9	
   10	
   11	
  

f	
  
g	
  

h	
  

e	
  

a	
  
b	
  

c	
  
d	
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Unweighted	
  Interval	
  Scheduling	
  Review	
  

•  Observation.  Greedy algorithm can fail spectacularly if 
arbitrary weights are allowed.	



Time	
  
0	
   1	
   2	
   3	
   4	
   5	
   6	
   7	
   8	
   9	
   1

0	
  
1
1	
  

b	
  

a	
  

weight	
  =	
  999	
  

weight	
  =	
  1	
  

Weighted	
  Interval	
  Scheduling	
  

Notation.  Label jobs by finishing time:  f1  ≤  f2  ≤ . . . ≤ fn .	


Def.  p(j) = largest index i < j such that job i is compatible with j.  
Ex:  p(8) = 5, p(7) = 3, p(2) = 0.	



Time	
  
0	
   1	
   2	
   3	
   4	
   5	
   6	
   7	
   8	
   9	
   10	
   11	
  

6	
  

7	
  

8	
  

4	
  

3	
  

1	
  

2	
  

5	
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Dynamic	
  Programming:	
  	
  Binary	
  Choice	
  

•  Notation.  OPT(j) = value of optimal solution to the problem 
consisting of job requests 1, 2, ..., j.	



–  Case 1:  OPT selects job j.	


•  can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j - 1 }	


•  must include optimal solution to problem consisting of 

remaining compatible jobs 1, 2, ...,  p(j)	


–  Case 2:  OPT does not select job j.	



•  must include optimal solution to problem consisting of 
remaining compatible jobs 1, 2, ...,  j-1	



  

€ 

OPT( j) =
0 if  j = 0

max v j + OPT( p( j)), OPT( j −1){ } otherwise
# 
$ 
% 

op@mal	
  substructure	
  

Matrix Chain Multiplication	



•  Define the cost recursively m[i,j] cost of multiplying 	



€ 

m[i, j] =
0 if i = j,

min
i≤k< j

{m[i,k] + m[k +1, j] + pi−1pk p j} otherwise
$ 
% 
& 

' & 

  

€ 

AiA j
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All pairs shortest path	


•  Final representation of the solution is in adjacency matrix 	


•  δ(i,j) will be the length of the shortest path from i to j	


•  Structure of the optimal solution	



•  Weight of the shortest path with m-1 edges and minimum of the weight 
of any path consisting of at most m edges	

€ 

dij
0 =

0 if i = j
∞ otherwise

# 
$ 
% 

€ 

dij
(m ) =min(dij

(m−1),min1≤k≤n{dik
(m−1) + wkj})
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Example all shortest paths	



€ 

0 3 8 ∞ −4
∞ 0 ∞ 1 7
∞ 4 0 ∞ ∞

2 ∞ −5 0 ∞

∞ ∞ ∞ 6 0

€ 

0 3 8 2 −4
3 0 −4 1 7
∞ 4 0 5 11
2 −1 −5 0 −2
8 ∞ 1 6 0

€ 

D(0)

€ 

D(1)

3	

 4	



-4	


-5	



6	



7	


8	



1	



2	



•  Matrix multiplication	



•  Repeated Squaring 	



€ 

Θ(n4 )

€ 

Θ(n3 lgn)

€ 

D(0) =W

€ 

D(1) = D(0)W =WW

€ 

D(2) = D(1)W = D(0)WW

€ 

dij
(m ) =min(dij

(m−1),min1≤k≤n{dik
(m−1) + wkj})

1	



2	



3	



5	

 4	



Like matrix multiplication + => min  . => +	



Example all shortest paths	



€ 

0 3 8 ∞ −4
∞ 0 ∞ 1 7
∞ 4 0 ∞ ∞

2 ∞ −5 0 ∞

∞ ∞ ∞ 6 0

€ 

0 3 8 2 −4
3 0 −4 1 7
∞ 4 0 5 11
2 −1 −5 0 −2
8 ∞ 1 6 0

€ 

0 3 −3 2 −4
3 0 −4 1 −1
7 4 0 5 11
2 −1 −5 0 −2
8 5 1 6 0

€ 

0 1 −3 2 −4
3 0 −4 1 −1
7 4 0 5 3
2 −1 −5 0 −2
8 5 1 6 0

€ 

D(0)

€ 

D(1)

€ 

D(2)

€ 

D(3)

3	

 4	



-4	


-5	



6	



7	


8	



1	



2	



•  Matrix multiplication	



•  Repeated Squaring 	



€ 

Θ(n4 )

€ 

Θ(n3 lgn)

€ 

D(0) =W

€ 

D(1) = D(0)W =WW

€ 

D(2) = D(1)W = D(0)WW

1	



2	


3	



4	

5	
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Greedy	
  Algorithms	
  

•  Indicators: 	


–  Optimal substructure	


–  Greedy choice property: a locally optimal choice leads to a 

globally optimal solution	


•  Example problems:	



•  Activity selection: Set of activities, with start and end times. 
Maximize compatible set of activities.	



•  Fractional knapsack: sort items by $/lb, then take items in sorted 
order MST	



Review:	
  Dynamic	
  Programming	
  
•  Optimization problems	


•  What is the structure of the sub-problem 	


•  Common pattern: 	


•  Optimal solution requires making a choice which leads to 

optimal solution 	


•  Hard part: what is the optimal subproblem structure	


   How many sub-problems ? 	


   How many choices we have which sub-problem to use ? 	


	


•  Matrix chain multiplication:   2 subproblems,  j-i choices	


•  LCS:  3 suproblems 3 choices	


•  Subtleties (graph examples) shortest path, longest path	
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Review: Greedy Algorithms	



•  A greedy algorithm always makes the choice that looks best at the 
moment	



•  The hope: a locally optimal choice will lead to a globally optimal 
solution	



•  Minimum weight spanning tree, Dijstra’s algorithm (greedy)	



•  Dynamic programming can be overkill; greedy algorithms are 
easier	



•  Example: Activity Selection	



Greedy	
  Choice	
  Property	
  

•  Dynamic programming? Memoize? Yes, but…	


•  Activity selection problem also exhibits the greedy choice 

property:	


•  Locally optimal choice ⇒ globally optimal sol’n	



•  Them 17.1: if S is an activity selection problem sorted by finish 
time, then ∃ optimal solution A ⊆ S such that {1} ∈ A	



•  Sketch of proof: if ∃ optimal solution B that does not contain {1}, 
can always replace first activity in B with {1} (Why?).  Same 
number of activities, thus optimal.	
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Review:	
  Ac@vity-­‐Selec@on	
  Problem	
  

•  The activity selection problem: get your money’s worth out of a 
carnival	


–  Buy a wristband that lets you onto any ride	


–  Lots of rides, starting and ending at different times	


–  Your goal: ride as many rides as possible	



•  Naïve first-year CS major strategy: 	


–  Ride the first ride, when get off, get on the very next ride 

possible, repeat until carnival ends	


•  What is the sophisticated third-year strategy?	



Review:	
  Ac@vity-­‐Selec@on	
  

•  Formally:	


–  Given a set S of n activities	



•  si = start time of activity  fi = finish time of activity i	


–  Find max-size subset A of compatible activities	


–  Assume activities sorted by finish time	



•  What is optimal substructure for this problem?	
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Review:	
  Ac@vity-­‐Selec@on	
  

•  Formally:	


–  Given a set S of n activities	



•  si = start time of activity i 	

fi = finish time of activity 
i	



–  Find max-size subset A of compatible activities	


–  Assume activities sorted by finish time	



•  What is optimal substructure for this problem?	


–  A: If k is the activity in A with the earliest finish time, then 

A - {k} is an optimal solution to ���
S’ = {i ∈ S: si ≥ fk}	



Huffman	
  coding	
  	
  

•  Design of optimal codes	


•  Example (on the board)	


•  Idea how to design optimal code ? 	


•  Notion of prefix code	


•  Greedy Algorithm for constructing optimal codes	



Algorithm:	


1. Keep the frequencies in Priority Queue (build heap)	


2. Take two minimal elements (extract min) 	


3. Insert their sum to queue	


4. Until queue is empty	


	


Running time O(n lgn)	
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Huffman	
  coding	
  

•  What is the optimal substructure and greedy choice property ?	


•  Given alphabet C each character has frequency f[c]	


•  Suppose x and y are characters with lowest frequencies	


•  Then there exist an optimal code where x and y have same 

length and differ only in last bit.	



•  Optimal substructure property	


•  Given C and C’ with the x and y removed and new symbol 	


•  Added where f[z] = f[x]+f[y]. If we have a tree T’ which 

represents optimal code for C’ then replacing node z with two 
children x and y will yield optimal code for C	



���
The Knapsack Problem	



•  The famous knapsack problem:	


–  A thief breaks into a museum.  Fabulous paintings,	


–  sculptures, and jewels are everywhere.  The thief has a good	


–  eye for the value of these objects, and knows that each will	


–  fetch hundreds or thousands of dollars on the clandestine art	


–  collector’s market.  But, the thief has only brought a single	


–  knapsack to the scene of the robbery, and can take away	


–  only what he can carry.  What items should the thief take to	


–  maximize the haul?	
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The Knapsack Problem	



•  More formally, the 0-1 knapsack problem:	



•  The thief must choose among n items, where the ith item worth vi 
dollars and weighs wi pounds	



•  Carrying at most W pounds, maximize value	


•  Note: assume vi, wi, and W are all integers	



•  “0-1” b/c each item must be taken or left in entirety	


•  A variation, the fractional knapsack problem:	



–  Thief can take fractions of items	


–  Think of items in 0-1 problem as gold ingots, in fractional	


–  problem as buckets of gold dust	



The Knapsack Problem  ���
And Optimal Substructure	



•  Both variations exhibit optimal substructure	


•  To show this for the 0-1 problem, consider the most valuable load 

weighing at most W pounds	



•  If we remove item j from the load, what do we know about the 
remaining load?	



•  A: remainder must be the most valuable load weighing at most W - 
wj that thief could take from museum, excluding item j 	
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Solving	
  The	
  Knapsack	
  Problem	
  

•  The optimal solution to the fractional knapsack problem can be found 
with a greedy algorithm	


–  How?	



•  The optimal solution to the 0-1 problem cannot be found with the same 
greedy strategy	



•  Greedy strategy: take in order of dollars/pound	


–  Example: 3 items weighing 10, 20, and 30 pounds, knapsack	


–  can hold 50 pounds	



•  Suppose item 2 is worth $100.  Assign values to the other items 
so that the greedy strategy will fail 	



The	
  Knapsack	
  Problem:	
  	
  
Greedy	
  Vs.	
  Dynamic	
  

•  The fractional problem can be solved greedily	


•  The 0-1 problem cannot be solved with a greedy approach	


•  As you have seen, however, it can be solved with dynamic 

programming	
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0-­‐1	
  Knapsack	
  problem:	
  
a	
  picture	
  

W	
  =	
  20	
  

wi	
   bi	
  

10	
  9	
  

8	
  5	
  

5	
  4	
  

4	
  3	
  

3	
  2	
  

Weight	
   Benefit	
  value	
  

This	
  is	
  a	
  knapsack	
  
Max	
  weight:	
  W	
  =	
  20	
  

Items	
  

0-­‐1	
  Knapsack	
  problem	
  

•  Problem, in other words, is to find 

∑∑
∈∈

≤
Ti

i
Ti

i Wwb  subject to max

  The	
  problem	
  is	
  called	
  a	
  “0-­‐1”	
  problem,	
  because	
  
each	
  item	
  must	
  be	
  en@rely	
  accepted	
  or	
  rejected.	
  

  Just	
  another	
  version	
  of	
  this	
  problem	
  is	
  the	
  
“Frac*onal	
  Knapsack	
  Problem”,	
  where	
  we	
  can	
  
take	
  frac@ons	
  of	
  items.	
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0-­‐1	
  Knapsack	
  problem:	
  brute-­‐force	
  
approach	
  

Let’s first solve this problem with a straightforward algorithm 
•  Since there are n items, there are 2n possible combinations 

of items. 
•  We go through all combinations and find the one with the 

most total value and with total weight less or equal to W 
•  Running time will be O(2n) 

•  Can we do better?  
•  Yes, with an algorithm based on dynamic programming 
•  We need to carefully identify the subproblems 

Defining a Subproblem 	



If items are labeled 1..n, then a subproblem would be to find 
an optimal solution for Sk = {items labeled 1, 2, .. k} 
 
•  This is a valid subproblem definition. 
•  The question is: can we describe the final solution (Sn ) in 

terms of subproblems (Sk)?  
•  Unfortunately, we can’t do that. Explanation follows…. 
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Defining	
  a	
  Subproblem	
  

Max	
  weight:	
  W	
  =	
  20	
  
For	
  S4:	
  
Total	
  weight:	
  14;	
  
total	
  benefit:	
  20	
  

w1	
  =2	
  
b1	
  =3	
  

w2	
  =4	
  
b2	
  =5	
  

w3	
  =5	
  
b3	
  =8	
  

w4	
  =3	
  
b4	
  =4	
  

wi	
   bi	
  

10	
  

8	
  5	
  

5	
  4	
  

4	
  3	
  

3	
  2	
  

Weight	
   Benefit	
  

9	
  

Item	
  
#	
  

4	
  

3	
  

2	
  

1	
  

5	
  

S4	
  

S5	
  

w1	
  =2	
  
b1	
  =3	
  

w2	
  =4	
  
b2	
  =5	
  

w3	
  =5	
  
b3	
  =8	
  

w4	
  =9	
  
b4	
  =10	
  

For	
  S5:	
  
Total	
  weight:	
  20	
  
total	
  benefit:	
  26	
  

Solu@on	
  for	
  S4	
  is	
  not	
  part	
  of	
  
the	
  solu@on	
  for	
  S5!!!	
  

?	
  

Defining	
  a	
  Subproblem	
  (con@nued)	
  

•  As we have seen, the solution for S4 is not part of the 
solution for S5 

•  So our definition of a subproblem is flawed and we need 
another one! 

•  Let’s add another parameter: w, which will represent the 
exact weight for each subset of items 

•  The subproblem then will be to compute B[k,w]	
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Recursive	
  Formula	
  for	
  subproblems	
  

•  It means, that the best subset of Sk that has total weight w 
is one of the two: 

1) the best subset of Sk-1 that has total weight w,    or 
2) the best subset of Sk-1 that has total weight w-wk plus the 

item k 

⎩
⎨
⎧

+−−−

>−
=

else  }],1[],,1[max{
 if         ],1[

],[
kk

k

bwwkBwkB
wwwkB

wkB

  Recursive formula for subproblems:	



Recursive	
  Formula	
  

•  The best subset of Sk that has the total weight w, either 
contains item k or not. 

•  First case: wk>w. Item k can’t be part of the solution, 
since if it was, the total weight would be > w, which is 
unacceptable 

•  Second case: wk <=w. Then the item k can be in the 
solution, and we choose the case with greater value 

⎩
⎨
⎧

+−−−

>−
=

else  }],1[],,1[max{
 if         ],1[

],[
kk

k

bwwkBwkB
wwwkB

wkB
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0-­‐1	
  Knapsack	
  Algorithm	
  

for w = 0 to W!
!B[0,w] = 0!

for i = 0 to n!
!B[i,0] = 0!
!for w = 0 to W!
!!if wi <= w // item i can be part of the solution!
!! !if bi + B[i-1,w-wi] > B[i-1,w]!
!! ! !B[i,w] = bi + B[i-1,w- wi]!
!! !else!
!! ! !B[i,w] = B[i-1,w]!
!!else B[i,w] = B[i-1,w]  // wi > w !

68	
  

Running	
  @me	
  

for w = 0 to W!
!B[0,w] = 0!
for i = 0 to n!
!B[i,0] = 0!
!for w = 0 to W!
!!< the rest of the code >!
What is the running time of this algorithm?	



O(W)	



O(W)	



Repeat n times	



O(nW)	



Remember that the brute-force algorithm 	


takes O(2n)	





5/7/14	
  

35	
  

Example	
  

Let’s run our algorithm on the 	


following data:	


	


n = 4 (# of elements)	


W = 5 (max weight)	


Elements (weight, benefit):	


(2,3), (3,4), (4,5), (5,6)	



Comments	
  

•  This algorithm only finds the max possible value that can 
be carried in the knapsack 

•  To know the items that make this maximum value, an 
addition to this algorithm is necessary 

•  Please see LCS algorithm from the previous lecture for the 
example how to extract this data from the table we built 
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Conclusion	
  
•  Dynamic programming is a useful technique of solving 

certain kind of problems 
•  When the solution can be recursively described in terms of 

partial solutions, we can store these partial solutions and 
re-use them as necessary 

•  Running time (Dynamic Programming algorithm vs. naïve 
algorithm): 
–  LCS: O(mn) vs. O(n 2m) 
–  0-1 Knapsack problem: O(Wn) vs. O(2n) 

•   Caveat 0-1 Knapsack is NP- complete 
•  W is not polynomial in the size of the input, length of 

W is proportional to number of bits needed to represent 
that word 

72	
  

• Flow	
  network.	
  
–  Abstrac@on	
  for	
  material	
  flowing	
  through	
  the	
  edges.	
  
–  G	
  =	
  (V,	
  E)	
  =	
  directed	
  graph,	
  no	
  parallel	
  edges.	
  
–  Two	
  dis@nguished	
  nodes:	
  	
  s	
  =	
  source,	
  t	
  =	
  sink.	
  
–  c(e)	
  =	
  capacity	
  of	
  edge	
  e.	
  

Minimum	
  Cut	
  Problem	
  

s	



2	



3	



4	



5	



6	



7	



t	



 15	



 5	



 30	



 15	



   10	



 8	



 15	



 9	



 6	

  10	



 10	



   10	

 15	

 4	



 4	


capacity	



source	

 sink	





5/7/14	
  

37	
  

73	
  

• Def.	
  	
  An	
  s-­‐t	
  cut	
  is	
  a	
  par@@on	
  (A,	
  B)	
  of	
  V	
  with	
  s	
  ∈	
  A	
  and	
  t	
  ∈	
  B.	
  

• Def.	
  The	
  capacity	
  of	
  a	
  cut	
  (A,	
  B)	
  is:	
  

Cuts	
  

s	



2	



3	



4	



5	



6	



7	



t	



 15	



 5	



 30	



 15	



   10	



 8	



 15	



 9	



 6	

  10	



 10	



   10	

 15	

 4	



 4	



 Capacity = 10 + 5 + 15���
              = 30	



   A	



  

€ 

cap( A, B)  =  c(e)
e out of A
∑
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s	



2	



3	



4	



5	



6	



7	



t	



 15	



 5	



 30	



 15	



   10	



 8	



 15	



 9	



 6	

  10	



 10	



   10	

 15	

 4	



 4	


   A	



Cuts	
  

• Def.	
  	
  An	
  s-­‐t	
  cut	
  is	
  a	
  par@@on	
  (A,	
  B)	
  of	
  V	
  with	
  s	
  ∈	
  A	
  and	
  t	
  ∈	
  B.	
  

• Def.	
  The	
  capacity	
  of	
  a	
  cut	
  (A,	
  B)	
  is:	
  
  

€ 

cap( A, B)  =  c(e)
e out of A
∑

 Capacity = 9 + 15 + 8 + 30���
              = 62	
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• Min	
  s-­‐t	
  cut	
  problem.	
  	
  Find	
  an	
  s-­‐t	
  cut	
  of	
  minimum	
  capacity.	
  

Minimum	
  Cut	
  Problem	
  

s	



2	



3	



4	



5	



6	



7	



t	



 15	



 5	



 30	



 15	



   10	



 8	



 15	



 9	



 6	

  10	



 10	



   10	

 15	

 4	



 4	

   A	



 Capacity = 10 + 8 + 10���
              = 28	
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• Weak	
  duality.	
  	
  Let	
  f	
  be	
  any	
  flow.	
  	
  Then,	
  for	
  any	
  s-­‐t	
  cut	
  (A,	
  B)	
  
we	
  have	
  
v(f)	
  ≤	
  cap(A,	
  B).	
  

• Pf.	
  

	
  

Flows	
  and	
  Cuts	
  

€ 

v( f ) = f (e)
e out of A
∑ − f (e)

e in to A
∑

≤ f (e)
e out of A
∑

≤ c(e)
e out of A
∑

= cap(A,B)
s	



t	



A	

 B	



 7	



6	



 8	


4	
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Cer@ficate	
  of	
  Op@mality	
  
• Corollary.	
  	
  Let	
  f	
  be	
  any	
  flow,	
  and	
  let	
  (A,	
  B)	
  be	
  any	
  cut.	
  
If	
  v(f)	
  =	
  cap(A,	
  B),	
  then	
  f	
  is	
  a	
  max	
  flow	
  and	
  (A,	
  B)	
  is	
  a	
  min	
  cut.	
  

Value of flow = 28���
Cut capacity  = 28   ⇒    Flow value ≤ 28	



10	



9	



9	



14	



4	

 10	



4	

 8	

 9	



1	



0	

 0	



0	



14	



s	



2	



3	



4	



5	



6	



7	



t	



 15	



 5	



 30	



 15	



   10	



 8	



 15	



 9	



 6	

  10	



 10	



   10	

 15	

 4	



 4	

 0	

A	
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• Max	
  flow	
  formula@on.	
  
–  Create	
  digraph	
  G'	
  =	
  (L	
  ∪	
  R	
  ∪	
  {s,	
  t},	
  	
  E'	
  ).	
  
–  Direct	
  all	
  edges	
  from	
  L	
  to	
  R,	
  and	
  assign	
  infinite	
  (or	
  unit)	
  
capacity.	
  

–  Add	
  source	
  s,	
  and	
  unit	
  capacity	
  edges	
  from	
  s	
  to	
  each	
  node	
  in	
  L.	
  
–  Add	
  sink	
  t,	
  and	
  unit	
  capacity	
  edges	
  from	
  each	
  node	
  in	
  R	
  to	
  t.	
  

Bipar@te	
  Matching	
  

s	



1	



3	



5	



1'	



3'	



5'	



t	



2	



4	



2'	



4'	



1	

 1	



∞	



R	

L	



G'	
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• Disjoint	
  path	
  problem.	
  	
  Given	
  a	
  digraph	
  G	
  =	
  (V,	
  E)	
  and	
  two	
  nodes	
  s	
  
and	
  t,	
  find	
  the	
  max	
  number	
  of	
  edge-­‐disjoint	
  s-­‐t	
  paths.	
  
• Def.	
  	
  Two	
  paths	
  are	
  edge-­‐disjoint	
  if	
  they	
  have	
  no	
  edge	
  in	
  common.	
  
• Ex:	
  	
  communica@on	
  networks.	
  

s	



2	



3	



4	



Edge	
  Disjoint	
  Paths	
  

5	



6	



7	



t	



80	
  

• Max	
  flow	
  formula@on:	
  	
  assign	
  unit	
  capacity	
  to	
  every	
  edge.	
  

• Theorem.	
  	
  Max	
  number	
  edge-­‐disjoint	
  s-­‐t	
  paths	
  equals	
  max	
  flow	
  value.	
  
• Pf.	
  	
  	
  ≤	
  	
  

–  Suppose	
  there	
  are	
  k	
  edge-­‐disjoint	
  paths	
  P1,	
  .	
  .	
  .	
  ,	
  Pk.	
  
–  Set	
  f(e)	
  =	
  1	
  if	
  e	
  par@cipates	
  in	
  some	
  path	
  Pi	
  ;	
  	
  else	
  set	
  f(e)	
  =	
  0.	
  
–  Since	
  paths	
  are	
  edge-­‐disjoint,	
  f	
  is	
  a	
  flow	
  of	
  value	
  k.	
  	
  	
  ▪	
  

Edge	
  Disjoint	
  Paths	
  

s	

 t	



1	



1	



1	



1	



1	



1	



1	


1	



1	



1	



1	



1	



1	



1	
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• Network	
  connec@vity.	
  	
  Given	
  a	
  digraph	
  G	
  =	
  (V,	
  E)	
  and	
  two	
  nodes	
  s	
  
and	
  t,	
  	
  find	
  min	
  number	
  of	
  edges	
  whose	
  removal	
  disconnects	
  t	
  from	
  
s.	
  

• Def.	
  	
  A	
  set	
  of	
  edges	
  F	
  ⊆	
  E	
  disconnects	
  t	
  from	
  s	
  if	
  all	
  s-­‐t	
  paths	
  uses	
  at	
  
least	
  on	
  edge	
  in	
  F.	
  

Network	
  Connec@vity	
  

s	



2	



3	



4	



5	



6	



7	



t	
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Edge	
  Disjoint	
  Paths	
  and	
  Network	
  Connec@vity	
  
• Theorem.	
  	
  [Menger	
  1927]	
  	
  The	
  max	
  number	
  of	
  edge-­‐disjoint	
  s-­‐
t	
  paths	
  is	
  equal	
  to	
  the	
  min	
  number	
  of	
  edges	
  whose	
  removal	
  
disconnects	
  t	
  from	
  s.	
  

• Pf.	
  	
  ≤	
  	
  
–  Suppose	
  the	
  removal	
  of	
  F	
  ⊆	
  E	
  disconnects	
  t	
  from	
  s,	
  and	
  |
F|	
  =	
  k.	
  

–  All	
  s-­‐t	
  paths	
  use	
  at	
  least	
  one	
  edge	
  of	
  F.	
  Hence,	
  the	
  
number	
  of	
  edge-­‐disjoint	
  paths	
  is	
  at	
  most	
  k.	
  	
  ▪	
  

s	



2	



3	



4	



5	



6	



7	



t	

 s	



2	



3	



4	



5	



6	



7	
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Review:	
  P	
  and	
  NP	
  

•  What do we mean when we say a problem ���
is in P?	



•  What do we mean when we say a problem ���
is in NP?	



•  What is the relation between P and NP?	



Review:	
  P	
  and	
  NP	
  

•  What do we mean when we say a problem ���
is in P?	


–  A: A solution can be found in polynomial time	



•  What do we mean when we say a problem ���
is in NP?	


–  A: A solution can be verified in polynomial time	



•  What is the relation between P and NP?	


–  A: P ⊆ NP, but no one knows whether P = NP	





5/7/14	
  

43	
  

Review:	
  NP-­‐Complete	
  

•  What, intuitively, does it mean if we can reduce problem 
P to problem Q?	


–  P is “no harder than” Q	



•  How do we reduce P to Q?	


–  Transform instances of P to instances of Q in polynomial time 

s.t. Q: “yes” iff P: “yes”	


•  What does it mean if Q is NP-Hard ?	



–  Every problem P∈NP ≤p Q	


•  What does it mean if Q is NP-Complete?	



–  Q is NP-Hard and Q ∈ NP	



NP 

P 

NP complete problems  – problems which are in NP but are as       
hard as any other problem in NP	



•  NP hard which are not NP-complete, e.g. halting problem (is 
still possible to reduce any problem in NP to halting problem)	



•  Some other non-decision problems	



	



NP-Hard and NP-Complete	



NPC	

NP-hard	
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Review:	
  	
  
Proving	
  Problems	
  NP-­‐Complete	
  

•  What was the first problem shown to be ���
NP-Complete?	



•  A: Circuit satisfiability (SAT), by Cook	


•  How do we usually prove that a problem R���

is NP-Complete?	


•  A: Show R ∈NP, and reduce a known ���

NP-Complete problem Q to R	



Review:	
  	
  
Reduc@ons	
  

•  Review the reductions we’ve covered:	


	



–  Independent set <-> vertex cover	


–  Directed hamiltonian cycle  undirected hamiltonian cycle	


–  Undirected hamiltonian cycle  traveling salesman problem	


–  3-CNF  k-clique	


–  k-clique  vertex cover	
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Independent	
  Set	
  
• INDEPENDENT SET:  Given a graph G = (V, E) and an integer k, is 
there a subset of vertices S ⊆ V such that |S| ≥ k, and for each 
edge at most one of its endpoints is in S?	


• Ex.  Is there an independent set of size ≥ 6?  Yes.	


• Ex.  Is there an independent set of size ≥ 7?  No.	



independent set 

Vertex	
  Cover	
  
• VERTEX COVER:  Given a graph G = (V, E) and an integer k, is 
there a subset of vertices S ⊆ V such that |S| ≤ k, and for each 
edge, at least one of its endpoints is in S?	



• Ex.  Is there a vertex cover of size ≤ 4?  Yes.	


• Ex.  Is there a vertex cover of size ≤ 3?  No.	



vertex cover 
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Vertex	
  Cover	
  and	
  Independent	
  Set	
  

• Claim.  VERTEX-COVER ≡P INDEPENDENT-SET.	


• Pf.  We show S is an independent set iff V - S is a vertex cover.	



vertex cover 

independent set 

SET COVER 
 
U = { 1, 2, 3, 4, 5, 6, 7 } 
k = 2 
Sa = {3, 7}   Sb = {2, 4} 
Sc = {3, 4, 5, 6}  Sd = {5} 
Se = {1}   Sf= {1, 2, 6, 7} 

Vertex	
  Cover	
  Reduces	
  to	
  Set	
  Cover	
  
• Claim.  VERTEX-COVER ≤ P SET-COVER.	


• Pf.  Given a VERTEX-COVER instance G = (V, E), k, we construct a set 
cover instance whose size equals the size of the vertex cover 
instance.	


• Construction.  	



–  Create SET-COVER instance:	


•  k = k,  U = E,  Sv = {e ∈ E : e incident to v }	



–  Set-cover of size ≤ k iff vertex cover of size ≤ k.  ▪	


a 

d 

b 

e 

f c 

VERTEX COVER 

k = 2 
e1  

e2  e3  

e5  

e4  

e6  

e7  
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•  Circuit SAT is NP can be verified in polynomial time 	


      i.e. given a circuit and an input we can verify in polynomial time	


      whether the input is a satisfying assignment. 	


•  Circuit SAT is NP-hard Every problem in NP is reducible to 	


    circuit SAT; Proof: 	


1.  Problem is in NP; can be verified in polynomial time by some	


      algorithm	


2.  Each step of the algorithm runs on a computer (huge boolean	


      circuit)	


3.  Chaining together all circuits which correspond to the steps	


      of the algorithm – we get large circuit which describes the	


      run of the algorithm	


4.  If we plug in the input of a problem A then YES / NO answer	


       when circuit is/is not satisfiable	



Review:	
  Circuit	
  Sa@sfiablity	
  	
  

∧ 
¬ 

u-­‐v	
  

∨	
  

1	
  

independent	
  set	
  of	
  size	
  2?	
  

n	
  inputs	
  (nodes	
  in	
  independent	
  set)	
  hard-­‐coded	
  inputs	
  (graph	
  descrip@on)	
  

∨	
  

∨	
  

∧	
  

u-­‐w	
  

0	
  

∧	
  

v-­‐w	
  

1	
  

∧	
  

u	
  

?	
  

∧	
  

v	
  

?	
  

∧	
  

w	
  

?	
  

∧	
  

∨	
  

set	
  of	
  size	
  2?	
  

both	
  endpoints	
  of	
  some	
  edge	
  have	
  been	
  chosen?	
  

independent	
  set?	
  

Example	
  

• Ex.  Construction below creates a circuit K whose inputs can be set 
so that K outputs true iff graph G has an independent set of size 2.	



u	
  

v	
   w	
  

€ 

n
2

" 

# 
$ 

% 

& 
' 

G	
  =	
  (V,	
  E),	
  n	
  =	
  3	
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Circuit SAT	



3-SAT	



Hamilton Cycle	



Traveling Salesmen 	



Independent Set	



Vertex Cover 	

 Clique	



3D matching	



knapsack	



Rela@onships	
  between	
  known	
  NP	
  –
complete	
  problems	
  

Review:	
  Formula	
  Sa@sfiability	
  

•  Show that it is easy to verify the solution 	


•  Reduce circuit satisfiability to SAT	


•  Any instance of circuit satisfiability can be reduced to 

formula satisfiability	


•  Strategy:  express every gate as a formula (Example). 	



	





5/7/14	
  

49	
  

3-­‐SAT	
  is	
  NP-­‐Complete	
  
• Theorem.  3-SAT is NP-complete.	


• Pf.  Suffices to show that CIRCUIT-SAT ≤ P 3-SAT since 3-SAT is in NP. Let K be any 
circuit.	



–  Create a 3-SAT variable xi for each circuit element i.	


–  Make circuit compute correct values at each node:	



•  x2 = ¬ x3      ⇒  add 2 clauses:	


•  x1 = x4 ∨ x5   ⇒  add 3 clauses:	


•  x0 = x1 ∧ x2   ⇒  add 3 clauses:	



	


–  Hard-coded input values and output value.	



•  x5 = 0  ⇒  add 1 clause:	


•  x0 = 1  ⇒  add 1 clause:	



–  Final step:  turn clauses of length < 3 into���
clauses of length exactly 3.  ▪	

 ∨	
  

∧	
  

¬	
  

0	
   ?	
   ?	
  

output	
  

x0	
  

x2	
  x1	
  

  

€ 

x2 ∨ x3  , x2 ∨ x3

€ 

x1 ∨ x4 , x1 ∨ x5  ,  x1 ∨ x4 ∨ x5

€ 

x0 ∨ x1 , x0 ∨ x2 , x0 ∨ x1 ∨ x2

x3	
  x4	
  x5	
  

  

€ 

x5
  

€ 

x0

Review:	
  Conjunc@ve	
  Normal	
  Form	
  

•  Even if the form of the Boolean expression is simplified, the 
problem may be NP-Complete	


–  Literal: an occurrence of a Boolean or its negation	


–  A Boolean formula is in conjunctive normal form, or CNF, if 

it is an AND of clauses, each of which is an OR of literals	


•  Ex: (x1 ∨ ¬x2) ∧ (¬x1 ∨ x3 ∨ x4) ∧ (¬x5)	



–  3-CNF: each clause has exactly 3 distinct literals	


•  Ex: (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x3 ∨ x4) ∧ (¬x5 ∨ x3 ∨ x4)	


•  Notice: true if at least one literal in each clause is true	
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Review:	
  The	
  3-­‐CNF	
  Problem	
  

•  Thm 36.10: Satisfiability of Boolean formulas in 3-CNF form (the 
3-CNF Problem) is NP-Complete	



•  The reason we care about the 3-CNF problem is that it is relatively 
easy to reduce to others 	



•  Thus by proving 3-CNF NP-Complete we can prove many 
seemingly unrelated problems NP-Complete	



Review:	
  3-­‐CNF	
  Sa@sfiability	
  

•  Show that it is easy to verify the solution 	


•  Reduce Satisfiability to 3-CNF	


•  Strategy: Get Binary Parse Tree, introduce new variables,	


   get clauses	


•  Convert Clauses to CNF form using De Morgan’s Laws	
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3-­‐CNF	
  →	
  Clique	
  

•  What is a clique of a graph G?	


•  A: a subset of vertices fully connected to each other, i.e. a 

complete subgraph of G	


•  The clique problem: how large is the maximum-size clique in a 

graph?	


•  Can we turn this into a decision problem?	


•  A: Yes, we call this the k-clique problem	


•  Is there a clique of size k in the graph G ?	


•  Is the k-clique problem within NP?	


•  Naïve approach ? Check all possible subsets of k vertices 	



Directed Hamiltonian Cycle ⇒���
Undirected Hamiltonian Cycle	



•  What was the hamiltonian cycle problem again?	


•  For my next trick, I will reduce the directed hamiltonian cycle 

problem to the undirected hamiltonian cycle problem before your 
eyes	


–  Which variant am I proving NP-Complete?	



•  Draw a directed example on the board	


–  What transformation do I need to effect?	
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Directed	
  Hamiltonian	
  Cycle	
  

• DIR-­‐HAM-­‐CYCLE:	
  	
  given	
  a	
  digraph	
  G	
  =	
  (V,	
  E),	
  does	
  there	
  exists	
  a	
  simple	
  
directed	
  cycle	
  Γ	
  that	
  contains	
  every	
  node	
  in	
  V	
  
• Claim.	
  	
  DIR-­‐HAM-­‐CYCLE	
  ≤	
  P	
  HAM-­‐CYCLE.	
  

• Pf.	
  	
  Given	
  a	
  directed	
  graph	
  G	
  =	
  (V,	
  E),	
  construct	
  an	
  undirected	
  graph	
  
G'	
  with	
  3n	
  nodes.	
  

v	
  

a	
  

b	
  

c	
  

d	
  

e	
  
vin	
  

aout	
  

bout	
  

cout	
  

din	
  

ein	
  
G	
   G'	
  

v	
   vout	
  

Clique	
  →	
  Vertex	
  Cover	
  

•  A vertex cover for a graph G is a set of vertices 
incident to every edge in G	



•  The vertex cover problem: what is the minimum size 
vertex cover in G?	



•  Restated as a decision problem: does a vertex cover 
of size k exist in G?	



•  Thm 36.12: vertex cover is NP-Complete	



Example	
  of	
  vertex	
  cover	
  of	
  size	
  2	
  
Example	
  of	
  vertex	
  cover	
  of	
  size	
  2	
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Clique	
  →	
  Vertex	
  Cover	
  

•  First, show vertex cover in NP (How?)	


•  How to decide whether graph G has a vertex cover of size k	


•  Reduce k-clique to vertex cover	


•  The complement GC of a graph G contains exactly those edges 

not in G	


•  Compute GC in polynomial time	


•  G has a clique of size k iff GC has a vertex cover of size |V| - k 	



Clique  of size 4	

 Vertex cover  of size 2	



Circuit SAT	



3-SAT	



Hamilton Cycle	



Traveling Salesmen 	



Independent Set	



Vertex Cover 	

 Clique	



3D matching	



knapsack	



Rela@onships	
  between	
  known	
  NP	
  –
complete	
  problems	
  


