
5/7/14	

1	

Final	
 Exam	
 Review	

Final	
 Exam	

•  Coverage: second half of the semester	

•  Requires familiarity with most of the concepts covered in 	

 first half	

•  Goal: doable in 2 hours	

•  Cheat sheet: you are allowed two 8’11” sheets, both sides	

5/7/14	

2	

Final	
 Exam:	
 Study	
 Tips	

•  Study tips:	

–  Study each lecture	

–  Study the homework and homework solutions	

–  Study the midterm exams	

•  Re-make your previous cheat sheets	

 I recommend handwriting or typing them	

•  Think about what you should have had on it the first time…cheat

sheets is about identifying important concepts	

•  Next review of more recent topics as well as earlier topics	

Graph	
 Representa@on	

•  Adjacency list	

•  Adjacency matrix	

•  Tradeoffs: 	

–  What makes a graph dense?	

–  What makes a graph sparse?	

–  What about trees ?	

5/7/14	

3	

Basic	
 Graph	
 Algorithms	

•  Breadth-first search	

–  What can we use BFS to calculate?	

–  A: shortest-path distance to source vertex	

•  Depth-first search	

–  Tree edges, back edges, cross and forward edges	

–  What can we use DFS for?	

–  A: finding cycles, topological sort 	

DFS	
 Example	

source
vertex

d f

Tree edges Back edges Forward edges

1 |12 8 |11 13|16

14|15 5 | 6 3 | 4

2 | 7 9 |10

Cross edges

5/7/14	

4	

DFS And Cycles	

•  How would you modify the code to detect cycles?	

DFS(G)
{
 for each vertex u ∈ G->V
 {
 u->color = WHITE;
 }
 time = 0;
 for each vertex u ∈ G->V
 {
 if (u->color == WHITE)
 DFS_Visit(u);
 }
}

DFS_Visit(u)
{
 u->color = GREY;
 time = time+1;
 u->d = time;

 for each v ∈ u->Adj[]
 {
 if (v->color == WHITE)
 DFS_Visit(v);
 }
 u->color = BLACK;
 time = time+1;
 u->f = time;
}

DFS And Cycles	

•  What will be the running time?	

•  A: O(V+E)	

•  We can actually determine if cycles exist in O(V) time:	

–  In an undirected acyclic forest, |E| ≤ |V| - 1 	

–  So count the edges: if ever see |V| distinct edges, must	

–  have seen a back edge along the way	

5/7/14	

5	

Topological	
 Sort,	
 MST	

•  Topological sort	

–  Examples: getting dressed, project dependency	

–  To what kind of graph does topological sort apply?	

•  Minimum spanning tree	

–  Optimal substructure	

–  Min edge theorem (enables greedy approach)	

GeJng	
 Dressed	

Underwear Socks

Shoes Pants

Belt

Shirt

Watch

Tie

Jacket

Socks Underwear Pants Shoes Watch Shirt Belt Tie Jacket

5/7/14	

6	

Topological	
 Sort	
 Algorithm	

Topological-Sort()
{

Run DFS
When a vertex is finished, output it
On the front of linked list
Vertices are output in reverse topological
order

}
•  Time: O(V+E)	

•  Correctness: Want to prove that���
	

(u,v) ∈ G ⇒ u→f > v→f	

Correctness of Topological Sort	

•  Claim: (u,v) ∈ G ⇒ u→f > v→f	

•  Topological sort creates linear ordering of vertices	

•  Show that if there is an edge from u to v, finishing time	

 of u is greater then v (nodes are output in reverse finish. times

order – later times are output first)	

•  When (u,v) is explored, u is gray	

•  v = gray ⇒ (u,v) is back edge. Contradiction (Why?)	

•  hence v cannot be gray – since there are no cycles	

•  v = white ⇒ v becomes descendent of u ⇒ v→f < u→f	

•  (since must finish v before backtracking and finishing u)	

•  v = black ⇒ v already finished ⇒ v→f < u→f	

5/7/14	

7	

Strongly	
 Connected	
 Components	

•  Call DFS to compute finishing times f[u] of each vertex	

•  Create transpose graph (directions of edges reversed)	

•  Call DFS on the transpose graph, but in the main loop of DFS,

consider vertices in the decreasing order of f[u]	

•  Output the vertices of each tree in the depth-first forest formed in

line 3 as a separate strongly connected component	

•  Example	

	

ABD	
 EF	

CH	
 G	

13|14 11|16 1|10

2|7 3 | 4 12|15

8|9

5|6

D

A

C

B E F

GH

2|5 1|6 7|10

14|15 12|13 3|4

8|9

16|17

D

A

C

B E F

GH

5/7/14	

8	

MST	
 Algorithms	

•  Prim’s algorithm	

–  What is the bottleneck in Prim’s algorithm?	

–  A: priority queue operations	

•  Kruskal’s algorithm	

–  What is the bottleneck in Kruskal’s algorithm?	

–  Answer: depends on disjoint-set implementation	

•  As covered in class, disjoint-set union operations 	

•  As described in book, sorting the edges	

Review:	
 Prim’s	
 Algorithm	

MST-Prim(G, w, r)
 Q = V[G];
 for each u ∈ Q
 key[u] = ∞;
 key[r] = 0;
 p[r] = NULL;
 while (Q not empty)
 u = ExtractMin(Q);
 for each v ∈ Adj[u]
 if (v ∈ Q and w(u,v) < key[v])
 p[v] = u;
 key[v] = w(u,v);

What will be the running time?
A: Depends on queue
binary heap: O(E lg V)
Fibonacci heap: O(V lg V + E)

ExtractMin total number of calls O(V log V) 	

DecreaseKey total number of calls O(E log V) 	

Total number of calls O(V logV +E logV) = O(E log V)	

Think why we can combine things in the expression above	

5/7/14	

9	

Kruskal’s	
 Algorithm	

Kruskal()
{
 T = ∅;
 for each v ∈ V
 MakeSet(v);
 sort E by increasing edge weight w
 for each (u,v) ∈ E (in sorted order)
 if FindSet(u) ≠ FindSet(v)
 T = T U {{u,v}};
 Union(FindSet(u), FindSet(v));
}

2 19

9

1

5

13

17
25

14
8

21

Run the algorithm:

Correctness	
 Of	
 Kruskal’s	
 Algorithm	

•  Sketch of a proof that this algorithm produces an MST for T:	

•  Assume algorithm is wrong: result is not an MST	

•  Then algorithm adds a wrong edge at some point	

•  If it adds a wrong edge, there must be a lower weight edge

(cut and paste argument)	

•  But algorithm chooses lowest weight edge at each step ->

Contradiction	

•  Again, important to be comfortable with cut and paste

arguments	

5/7/14	

10	

Kruskal’s	
 Algorithm	

Kruskal()
{
 T = ∅;
 for each v ∈ V
 MakeSet(v);
 sort E by increasing edge weight w
 for each (u,v) ∈ E (in sorted order)
 if FindSet(u) ≠ FindSet(v)
 T = T U {{u,v}};
 Union(FindSet(u), FindSet(v));
}

What will affect the running time?
 1 Sort

O(V) MakeSet() calls
O(E) FindSet() calls

O(V) Union() calls
(Exactly how many Union()s?)

Kruskal’s Algorithm: Running Time	

•  To summarize: 	

–  Sort edges: O(E lg E) 	

–  O(V) MakeSet()’s	

–  O(E) FindSet()’s and Union()’s 	

•  Upshot: 	

–  Best disjoint-set union algorithm makes above 	

–  3 operation stake O((V+E)⋅α(V)), α almost constant	

–  (slowly growing function of V)	

–  Since E >= V-1 then we have O(E⋅α(V))	

–  Also since α(V) = O(lg V) = O(lg E)	

–  Overall thus O(E lg E), almost linear w/o sorting	

5/7/14	

11	

Single-­‐Source	
 Shortest	
 Path	

•  Optimal substructure	

•  Key idea: relaxation of edges	

•  What does the Bellman-Ford algorithm do?	

–  What is the running time?	

•  What does Dijkstra’s algorithm do?	

–  What is the running time?	

–  When does Dijkstra’s algorithm not apply?	

Bellman-­‐Ford	
 Algorithm	

BellmanFord()
 for each v ∈ V
 d[v] = ∞;
 d[s] = 0;
 for i=1 to |V|-1
 for each edge (u,v) ∈ E
 Relax(u,v, w(u,v));
 for each edge (u,v) ∈ E
 if (d[v] > d[u] + w(u,v))
 return “no solution”;

Relax(u,v,w): if (d[v] > d[u]+w) then d[v]=d[u]+w

B

E

D C

A

-1 2

2

1 -3

5

3

4

Ex: work on board

s

5/7/14	

12	

Dijkstra’s	
 Algorithm	

Dijkstra(G)
 for each v ∈ V
 d[v] = ∞;
 d[s] = 0; S = ∅; Q = V;
 while (Q ≠ ∅)
 u = ExtractMin(Q);
 S = S U {u};
 for each v ∈ u->Adj[]
 if (d[v] > d[u]+w(u,v))
 d[v] = d[u]+w(u,v);

Relaxation
Step

Note: this
is really a
call to Q->DecreaseKey()

B

C

D A

10

4 3

2

1 5

Ex: run the algorithm

Dijkstra’s	
 Algorithm	

Dijkstra(G)
 for each v ∈ V
 d[v] = ∞;
 d[s] = 0; S = ∅; Q = V;
 while (Q ≠ ∅)
 u = ExtractMin(Q);
 S = S U {u};
 for each v ∈ u->Adj[]
 if (d[v] > d[u]+w(u,v))
 d[v] = d[u]+w(u,v);

How many times is
ExtractMin() called?

How many times is
DecraseKey() called?

A: O(E lg V) using binary heap for Q
Can acheive O(V lg V + E) with Fibonacci heaps

5/7/14	

13	

Dijkstra’s Algorithm	

Dijkstra(G)
 for each v ∈ V
 d[v] = ∞;
 d[s] = 0; S = ∅; Q = V;
 while (Q ≠ ∅)
 u = ExtractMin(Q);
 S = S U{u};
 for each v ∈ u->Adj[]
 if (d[v] > d[u]+w(u,v))
 d[v] = d[u]+w(u,v);

Correctness: we must show that when u is
removed from Q, it has already converged

Correctness Of Dijkstra's Algorithm	

s

x
y

u
p2

p2

1.  See the description of the proof in the book	

Show that Dijkstra’s algorithm will terminate with 	

The cost of each node to be the cost of shortest path.	

Idea: show that when the vertex is added to the set the 	

cost of that vertex is the length of the shortest path	

Reminder: We always add the vertex with minimal cost	

5/7/14	

14	

Correctness Of Dijkstra's Algorithm	

•  Want to show that when vertex is added to set S, d[u] = δ(s,u)	

•  and throughout note that d[u] ≥ δ(s,u) ∀u 	

•  Proof by contradiction d[u] is not equal to δ(s,u), when added to S	

•  Before u gets added, some other vertex y on that shortest path needs	

 to be added; claim that d[y] = δ(s,y) when added. 	

•  Know that d[x] = δ(s,x) and δ(s,y) <= δ(s,u) and d[y] = δ(s,y), so d[y] <= d[u] 	

•  But both y and u are outside of S when is chosen so d[u] <= d[y] 	

•  Hence d[y] = d[u] = δ(s,y) = δ(s,y)	

	

s

x
y

u
p2

p2

Disjoint-­‐Set	
 Union	

•  We talked about representing sets as linked lists, every element
stores pointer to list head	

•  What is the cost of merging sets A and B?	

–  A: O(max(|A|, |B|))	

•  What is the maximum cost of merging n ���
1-element sets into a single n-element set?	

–  A: O(n2)	

•  How did we improve this? By how much?	

–  A: always copy smaller into larger: O(n lg n)	

5/7/14	

15	

Amor@zed	
 Analysis	

•  Idea: worst-case cost of an operation may overestimate its cost
over course of algorithm	

•  Goal: get a tighter amortized bound on its cost	

•  Aggregate method: total cost of operation over course of
algorithm divided by # operations Example: disjoint-set union	

•  Accounting method: “charge” a cost to each operation, accumulate
unused cost in bank, never go negative	

Analysis Of Dynamic Tables	

•  Let ci = cost of i-th insert	

•  ci = i if i-1 is exact power of 2, 1 otherwise	

•  Example:	

–  Operation	

Table Size	

 Cost	

Insert(1) 1 1 1
Insert(2) 2 1 + 1 2
Insert(3) 4 1 + 2
Insert(4) 4 1
Insert(5) 8 1 + 4
Insert(6) 8 1
Insert(7) 8 1
Insert(8) 8 1
Insert(9) 16 1 + 8

1
2
3
4
5
6
7
8
9

5/7/14	

16	

Aggregate Analysis	

•  n Insert() operations cost	

•  At most n operations are of cost 1 + costs of expansions	

•  Expansion happens only where (i-1) is power of 2	

•  Average cost of operation ���

= (total cost)/(# operations) < 3	

•  Asymptotically, then, a dynamic table costs the same as a fixed-

size table	

•  Both O(1) per Insert() operation	

nnnnc
n

j

j
n

i
i 3)12(2

lg

01
<−+=+≤ ∑∑

==

Review:	
 The	
 Master	
 Theorem	

•  Given: a divide and conquer algorithm	

 An algorithm that divides the problem of size n into a subproblems,

each of size n/b	

•  Let the cost of each stage (i.e., the work to divide the problem +

combine solved subproblems) be described by the function f(n)	

•  Then, the Master Theorem gives us a cookbook for the algorithm’s

running time:	

5/7/14	

17	

Review:	
 The	
 Master	
 Theorem	

•  if T(n) = aT(n/b) + f(n) then	

()

()

()

()

()

()
⎪
⎪
⎪
⎪
⎪

⎩

⎪⎪
⎪
⎪
⎪

⎨

⎧

<

>ε

⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪

⎬

⎫

<

Ω=

Θ=

=

Θ

Θ

Θ

=

ε+

ε−

1
0

largefor)()/(
 AND)(

)(

)(

)(

log)(

log

log

log

log

log

c

nncfbnaf
nnf

nnf

nOnf

nf

nn

n

nT

a

a

a

a

a

b

b

b

b

b

LCS	
 Via	
 Dynamic	
 Programming	
 	

•  Longest common subsequence (LCS) problem: 	

–  Given two sequences x[1..m] and y[1..n], find the longest

subsequence which occurs in both	

•  Brute-force algorithm: 2m subsequences of x to check against n

elements of y: O(n 2m)	

•  Define c[i,j] = length of LCS of x[1..i], y[1..j]	

•  Theorem: 	

⎩
⎨
⎧

−−

=+−−
=

otherwise]),1[],1,[max(
],[][if1]1,1[

],[
jicjic

jyixjic
jic

5/7/14	

18	

LCS Example (0)	

j 0 1 2 3 4 5 	

0	

1	

2	

3	

4	

i	

Xi	

A	

B	

C	

B	

Yj	

 B	

B	

 A	

C	

D	

X = ABCB; m = |X| = 4	

Y = BDCAB; n = |Y| = 5	

Allocate array c[5,4] 	

	

ABCB	

BDCAB	

Weighted	
 Interval	
 Scheduling	

• Weighted interval scheduling problem.	

–  Job j starts at sj, finishes at fj, and has weight or value vj . 	

–  Two jobs compatible if they don't overlap.	

–  Goal: find maximum weight subset of mutually compatible

jobs.	

Time	

0	
 1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	

f	

g	

h	

e	

a	

b	

c	

d	

5/7/14	

19	

Unweighted	
 Interval	
 Scheduling	
 Review	

•  Observation. Greedy algorithm can fail spectacularly if
arbitrary weights are allowed.	

Time	

0	
 1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 1

0	

1
1	

b	

a	

weight	
 =	
 999	

weight	
 =	
 1	

Weighted	
 Interval	
 Scheduling	

Notation. Label jobs by finishing time: f1 ≤ f2 ≤ . . . ≤ fn .	

Def. p(j) = largest index i < j such that job i is compatible with j.
Ex: p(8) = 5, p(7) = 3, p(2) = 0.	

Time	

0	
 1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 11	

6	

7	

8	

4	

3	

1	

2	

5	

5/7/14	

20	

Dynamic	
 Programming:	
 	
 Binary	
 Choice	

•  Notation. OPT(j) = value of optimal solution to the problem
consisting of job requests 1, 2, ..., j.	

–  Case 1: OPT selects job j.	

•  can't use incompatible jobs { p(j) + 1, p(j) + 2, ..., j - 1 }	

•  must include optimal solution to problem consisting of

remaining compatible jobs 1, 2, ..., p(j)	

–  Case 2: OPT does not select job j.	

•  must include optimal solution to problem consisting of
remaining compatible jobs 1, 2, ..., j-1	

€

OPT(j) =
0 if j = 0

max v j + OPT(p(j)), OPT(j −1){ } otherwise

$
%

op@mal	
 substructure	

Matrix Chain Multiplication	

•  Define the cost recursively m[i,j] cost of multiplying 	

€

m[i, j] =
0 if i = j,

min
i≤k< j

{m[i,k] + m[k +1, j] + pi−1pk p j} otherwise
$
%
&

' &

€

AiA j

5/7/14	

21	

All pairs shortest path	

•  Final representation of the solution is in adjacency matrix 	

•  δ(i,j) will be the length of the shortest path from i to j	

•  Structure of the optimal solution	

•  Weight of the shortest path with m-1 edges and minimum of the weight
of any path consisting of at most m edges	

€

dij
0 =

0 if i = j
∞ otherwise

$
%

€

dij
(m) =min(dij

(m−1),min1≤k≤n{dik
(m−1) + wkj})

5/7/14	

22	

Example all shortest paths	

€

0 3 8 ∞ −4
∞ 0 ∞ 1 7
∞ 4 0 ∞ ∞

2 ∞ −5 0 ∞

∞ ∞ ∞ 6 0

€

0 3 8 2 −4
3 0 −4 1 7
∞ 4 0 5 11
2 −1 −5 0 −2
8 ∞ 1 6 0

€

D(0)

€

D(1)

3	

 4	

-4	

-5	

6	

7	

8	

1	

2	

•  Matrix multiplication	

•  Repeated Squaring 	

€

Θ(n4)

€

Θ(n3 lgn)

€

D(0) =W

€

D(1) = D(0)W =WW

€

D(2) = D(1)W = D(0)WW

€

dij
(m) =min(dij

(m−1),min1≤k≤n{dik
(m−1) + wkj})

1	

2	

3	

5	

 4	

Like matrix multiplication + => min . => +	

Example all shortest paths	

€

0 3 8 ∞ −4
∞ 0 ∞ 1 7
∞ 4 0 ∞ ∞

2 ∞ −5 0 ∞

∞ ∞ ∞ 6 0

€

0 3 8 2 −4
3 0 −4 1 7
∞ 4 0 5 11
2 −1 −5 0 −2
8 ∞ 1 6 0

€

0 3 −3 2 −4
3 0 −4 1 −1
7 4 0 5 11
2 −1 −5 0 −2
8 5 1 6 0

€

0 1 −3 2 −4
3 0 −4 1 −1
7 4 0 5 3
2 −1 −5 0 −2
8 5 1 6 0

€

D(0)

€

D(1)

€

D(2)

€

D(3)

3	

 4	

-4	

-5	

6	

7	

8	

1	

2	

•  Matrix multiplication	

•  Repeated Squaring 	

€

Θ(n4)

€

Θ(n3 lgn)

€

D(0) =W

€

D(1) = D(0)W =WW

€

D(2) = D(1)W = D(0)WW

1	

2	

3	

4	

5	

5/7/14	

23	

Greedy	
 Algorithms	

•  Indicators: 	

–  Optimal substructure	

–  Greedy choice property: a locally optimal choice leads to a

globally optimal solution	

•  Example problems:	

•  Activity selection: Set of activities, with start and end times.
Maximize compatible set of activities.	

•  Fractional knapsack: sort items by $/lb, then take items in sorted
order MST	

Review:	
 Dynamic	
 Programming	

•  Optimization problems	

•  What is the structure of the sub-problem 	

•  Common pattern: 	

•  Optimal solution requires making a choice which leads to

optimal solution 	

•  Hard part: what is the optimal subproblem structure	

 How many sub-problems ? 	

 How many choices we have which sub-problem to use ? 	

	

•  Matrix chain multiplication: 2 subproblems, j-i choices	

•  LCS: 3 suproblems 3 choices	

•  Subtleties (graph examples) shortest path, longest path	

	

5/7/14	

24	

Review: Greedy Algorithms	

•  A greedy algorithm always makes the choice that looks best at the
moment	

•  The hope: a locally optimal choice will lead to a globally optimal
solution	

•  Minimum weight spanning tree, Dijstra’s algorithm (greedy)	

•  Dynamic programming can be overkill; greedy algorithms are
easier	

•  Example: Activity Selection	

Greedy	
 Choice	
 Property	

•  Dynamic programming? Memoize? Yes, but…	

•  Activity selection problem also exhibits the greedy choice

property:	

•  Locally optimal choice ⇒ globally optimal sol’n	

•  Them 17.1: if S is an activity selection problem sorted by finish
time, then ∃ optimal solution A ⊆ S such that {1} ∈ A	

•  Sketch of proof: if ∃ optimal solution B that does not contain {1},
can always replace first activity in B with {1} (Why?). Same
number of activities, thus optimal.	

5/7/14	

25	

Review:	
 Ac@vity-­‐Selec@on	
 Problem	

•  The activity selection problem: get your money’s worth out of a
carnival	

–  Buy a wristband that lets you onto any ride	

–  Lots of rides, starting and ending at different times	

–  Your goal: ride as many rides as possible	

•  Naïve first-year CS major strategy: 	

–  Ride the first ride, when get off, get on the very next ride

possible, repeat until carnival ends	

•  What is the sophisticated third-year strategy?	

Review:	
 Ac@vity-­‐Selec@on	

•  Formally:	

–  Given a set S of n activities	

•  si = start time of activity fi = finish time of activity i	

–  Find max-size subset A of compatible activities	

–  Assume activities sorted by finish time	

•  What is optimal substructure for this problem?	

5/7/14	

26	

Review:	
 Ac@vity-­‐Selec@on	

•  Formally:	

–  Given a set S of n activities	

•  si = start time of activity i 	

fi = finish time of activity
i	

–  Find max-size subset A of compatible activities	

–  Assume activities sorted by finish time	

•  What is optimal substructure for this problem?	

–  A: If k is the activity in A with the earliest finish time, then

A - {k} is an optimal solution to ���
S’ = {i ∈ S: si ≥ fk}	

Huffman	
 coding	
 	

•  Design of optimal codes	

•  Example (on the board)	

•  Idea how to design optimal code ? 	

•  Notion of prefix code	

•  Greedy Algorithm for constructing optimal codes	

Algorithm:	

1. Keep the frequencies in Priority Queue (build heap)	

2. Take two minimal elements (extract min) 	

3. Insert their sum to queue	

4. Until queue is empty	

	

Running time O(n lgn)	

	

5/7/14	

27	

Huffman	
 coding	

•  What is the optimal substructure and greedy choice property ?	

•  Given alphabet C each character has frequency f[c]	

•  Suppose x and y are characters with lowest frequencies	

•  Then there exist an optimal code where x and y have same

length and differ only in last bit.	

•  Optimal substructure property	

•  Given C and C’ with the x and y removed and new symbol 	

•  Added where f[z] = f[x]+f[y]. If we have a tree T’ which

represents optimal code for C’ then replacing node z with two
children x and y will yield optimal code for C	

���
The Knapsack Problem	

•  The famous knapsack problem:	

–  A thief breaks into a museum. Fabulous paintings,	

–  sculptures, and jewels are everywhere. The thief has a good	

–  eye for the value of these objects, and knows that each will	

–  fetch hundreds or thousands of dollars on the clandestine art	

–  collector’s market. But, the thief has only brought a single	

–  knapsack to the scene of the robbery, and can take away	

–  only what he can carry. What items should the thief take to	

–  maximize the haul?	

5/7/14	

28	

The Knapsack Problem	

•  More formally, the 0-1 knapsack problem:	

•  The thief must choose among n items, where the ith item worth vi
dollars and weighs wi pounds	

•  Carrying at most W pounds, maximize value	

•  Note: assume vi, wi, and W are all integers	

•  “0-1” b/c each item must be taken or left in entirety	

•  A variation, the fractional knapsack problem:	

–  Thief can take fractions of items	

–  Think of items in 0-1 problem as gold ingots, in fractional	

–  problem as buckets of gold dust	

The Knapsack Problem ���
And Optimal Substructure	

•  Both variations exhibit optimal substructure	

•  To show this for the 0-1 problem, consider the most valuable load

weighing at most W pounds	

•  If we remove item j from the load, what do we know about the
remaining load?	

•  A: remainder must be the most valuable load weighing at most W -
wj that thief could take from museum, excluding item j 	

5/7/14	

29	

Solving	
 The	
 Knapsack	
 Problem	

•  The optimal solution to the fractional knapsack problem can be found
with a greedy algorithm	

–  How?	

•  The optimal solution to the 0-1 problem cannot be found with the same
greedy strategy	

•  Greedy strategy: take in order of dollars/pound	

–  Example: 3 items weighing 10, 20, and 30 pounds, knapsack	

–  can hold 50 pounds	

•  Suppose item 2 is worth $100. Assign values to the other items
so that the greedy strategy will fail 	

The	
 Knapsack	
 Problem:	
 	

Greedy	
 Vs.	
 Dynamic	

•  The fractional problem can be solved greedily	

•  The 0-1 problem cannot be solved with a greedy approach	

•  As you have seen, however, it can be solved with dynamic

programming	

5/7/14	

30	

0-­‐1	
 Knapsack	
 problem:	

a	
 picture	

W	
 =	
 20	

wi	
 bi	

10	
 9	

8	
 5	

5	
 4	

4	
 3	

3	
 2	

Weight	
 Benefit	
 value	

This	
 is	
 a	
 knapsack	

Max	
 weight:	
 W	
 =	
 20	

Items	

0-­‐1	
 Knapsack	
 problem	

•  Problem, in other words, is to find

∑∑
∈∈

≤
Ti

i
Ti

i Wwb subject to max

  The	
 problem	
 is	
 called	
 a	
 “0-­‐1”	
 problem,	
 because	

each	
 item	
 must	
 be	
 en@rely	
 accepted	
 or	
 rejected.	

  Just	
 another	
 version	
 of	
 this	
 problem	
 is	
 the	

“Frac*onal	
 Knapsack	
 Problem”,	
 where	
 we	
 can	

take	
 frac@ons	
 of	
 items.	

5/7/14	

31	

0-­‐1	
 Knapsack	
 problem:	
 brute-­‐force	

approach	

Let’s first solve this problem with a straightforward algorithm
•  Since there are n items, there are 2n possible combinations

of items.
•  We go through all combinations and find the one with the

most total value and with total weight less or equal to W
•  Running time will be O(2n)

•  Can we do better?
•  Yes, with an algorithm based on dynamic programming
•  We need to carefully identify the subproblems

Defining a Subproblem 	

If items are labeled 1..n, then a subproblem would be to find
an optimal solution for Sk = {items labeled 1, 2, .. k}

•  This is a valid subproblem definition.
•  The question is: can we describe the final solution (Sn) in

terms of subproblems (Sk)?
•  Unfortunately, we can’t do that. Explanation follows….

5/7/14	

32	

Defining	
 a	
 Subproblem	

Max	
 weight:	
 W	
 =	
 20	

For	
 S4:	

Total	
 weight:	
 14;	

total	
 benefit:	
 20	

w1	
 =2	

b1	
 =3	

w2	
 =4	

b2	
 =5	

w3	
 =5	

b3	
 =8	

w4	
 =3	

b4	
 =4	

wi	
 bi	

10	

8	
 5	

5	
 4	

4	
 3	

3	
 2	

Weight	
 Benefit	

9	

Item	

#	

4	

3	

2	

1	

5	

S4	

S5	

w1	
 =2	

b1	
 =3	

w2	
 =4	

b2	
 =5	

w3	
 =5	

b3	
 =8	

w4	
 =9	

b4	
 =10	

For	
 S5:	

Total	
 weight:	
 20	

total	
 benefit:	
 26	

Solu@on	
 for	
 S4	
 is	
 not	
 part	
 of	

the	
 solu@on	
 for	
 S5!!!	

?	

Defining	
 a	
 Subproblem	
 (con@nued)	

•  As we have seen, the solution for S4 is not part of the
solution for S5

•  So our definition of a subproblem is flawed and we need
another one!

•  Let’s add another parameter: w, which will represent the
exact weight for each subset of items

•  The subproblem then will be to compute B[k,w]	

5/7/14	

33	

Recursive	
 Formula	
 for	
 subproblems	

•  It means, that the best subset of Sk that has total weight w
is one of the two:

1) the best subset of Sk-1 that has total weight w, or
2) the best subset of Sk-1 that has total weight w-wk plus the

item k

⎩
⎨
⎧

+−−−

>−
=

else }],1[],,1[max{
 if],1[

],[
kk

k

bwwkBwkB
wwwkB

wkB

  Recursive formula for subproblems:	

Recursive	
 Formula	

•  The best subset of Sk that has the total weight w, either
contains item k or not.

•  First case: wk>w. Item k can’t be part of the solution,
since if it was, the total weight would be > w, which is
unacceptable

•  Second case: wk <=w. Then the item k can be in the
solution, and we choose the case with greater value

⎩
⎨
⎧

+−−−

>−
=

else }],1[],,1[max{
 if],1[

],[
kk

k

bwwkBwkB
wwwkB

wkB

5/7/14	

34	

0-­‐1	
 Knapsack	
 Algorithm	

for w = 0 to W!
!B[0,w] = 0!

for i = 0 to n!
!B[i,0] = 0!
!for w = 0 to W!
!!if wi <= w // item i can be part of the solution!
!! !if bi + B[i-1,w-wi] > B[i-1,w]!
!! ! !B[i,w] = bi + B[i-1,w- wi]!
!! !else!
!! ! !B[i,w] = B[i-1,w]!
!!else B[i,w] = B[i-1,w] // wi > w !

68	

Running	
 @me	

for w = 0 to W!
!B[0,w] = 0!
for i = 0 to n!
!B[i,0] = 0!
!for w = 0 to W!
!!< the rest of the code >!
What is the running time of this algorithm?	

O(W)	

O(W)	

Repeat n times	

O(nW)	

Remember that the brute-force algorithm 	

takes O(2n)	

5/7/14	

35	

Example	

Let’s run our algorithm on the 	

following data:	

	

n = 4 (# of elements)	

W = 5 (max weight)	

Elements (weight, benefit):	

(2,3), (3,4), (4,5), (5,6)	

Comments	

•  This algorithm only finds the max possible value that can
be carried in the knapsack

•  To know the items that make this maximum value, an
addition to this algorithm is necessary

•  Please see LCS algorithm from the previous lecture for the
example how to extract this data from the table we built

5/7/14	

36	

Conclusion	

•  Dynamic programming is a useful technique of solving

certain kind of problems
•  When the solution can be recursively described in terms of

partial solutions, we can store these partial solutions and
re-use them as necessary

•  Running time (Dynamic Programming algorithm vs. naïve
algorithm):
–  LCS: O(mn) vs. O(n 2m)
–  0-1 Knapsack problem: O(Wn) vs. O(2n)

•  Caveat 0-1 Knapsack is NP- complete
•  W is not polynomial in the size of the input, length of

W is proportional to number of bits needed to represent
that word

72	

• Flow	
 network.	

–  Abstrac@on	
 for	
 material	
 flowing	
 through	
 the	
 edges.	

–  G	
 =	
 (V,	
 E)	
 =	
 directed	
 graph,	
 no	
 parallel	
 edges.	

–  Two	
 dis@nguished	
 nodes:	
 	
 s	
 =	
 source,	
 t	
 =	
 sink.	

–  c(e)	
 =	
 capacity	
 of	
 edge	
 e.	

Minimum	
 Cut	
 Problem	

s	

2	

3	

4	

5	

6	

7	

t	

 15	

 5	

 30	

 15	

 10	

 8	

 15	

 9	

 6	

 10	

 10	

 10	

 15	

 4	

 4	

capacity	

source	

 sink	

5/7/14	

37	

73	

• Def.	
 	
 An	
 s-­‐t	
 cut	
 is	
 a	
 par@@on	
 (A,	
 B)	
 of	
 V	
 with	
 s	
 ∈	
 A	
 and	
 t	
 ∈	
 B.	

• Def.	
 The	
 capacity	
 of	
 a	
 cut	
 (A,	
 B)	
 is:	

Cuts	

s	

2	

3	

4	

5	

6	

7	

t	

 15	

 5	

 30	

 15	

 10	

 8	

 15	

 9	

 6	

 10	

 10	

 10	

 15	

 4	

 4	

 Capacity = 10 + 5 + 15���
 = 30	

 A	

€

cap(A, B) = c(e)
e out of A
∑

74	

s	

2	

3	

4	

5	

6	

7	

t	

 15	

 5	

 30	

 15	

 10	

 8	

 15	

 9	

 6	

 10	

 10	

 10	

 15	

 4	

 4	

 A	

Cuts	

• Def.	
 	
 An	
 s-­‐t	
 cut	
 is	
 a	
 par@@on	
 (A,	
 B)	
 of	
 V	
 with	
 s	
 ∈	
 A	
 and	
 t	
 ∈	
 B.	

• Def.	
 The	
 capacity	
 of	
 a	
 cut	
 (A,	
 B)	
 is:	

€

cap(A, B) = c(e)
e out of A
∑

 Capacity = 9 + 15 + 8 + 30���
 = 62	

5/7/14	

38	

75	

• Min	
 s-­‐t	
 cut	
 problem.	
 	
 Find	
 an	
 s-­‐t	
 cut	
 of	
 minimum	
 capacity.	

Minimum	
 Cut	
 Problem	

s	

2	

3	

4	

5	

6	

7	

t	

 15	

 5	

 30	

 15	

 10	

 8	

 15	

 9	

 6	

 10	

 10	

 10	

 15	

 4	

 4	

 A	

 Capacity = 10 + 8 + 10���
 = 28	

76	

• Weak	
 duality.	
 	
 Let	
 f	
 be	
 any	
 flow.	
 	
 Then,	
 for	
 any	
 s-­‐t	
 cut	
 (A,	
 B)	

we	
 have	

v(f)	
 ≤	
 cap(A,	
 B).	

• Pf.	

	

Flows	
 and	
 Cuts	

€

v(f) = f (e)
e out of A
∑ − f (e)

e in to A
∑

≤ f (e)
e out of A
∑

≤ c(e)
e out of A
∑

= cap(A,B)
s	

t	

A	

 B	

 7	

6	

 8	

4	

5/7/14	

39	

77	

Cer@ficate	
 of	
 Op@mality	

• Corollary.	
 	
 Let	
 f	
 be	
 any	
 flow,	
 and	
 let	
 (A,	
 B)	
 be	
 any	
 cut.	

If	
 v(f)	
 =	
 cap(A,	
 B),	
 then	
 f	
 is	
 a	
 max	
 flow	
 and	
 (A,	
 B)	
 is	
 a	
 min	
 cut.	

Value of flow = 28���
Cut capacity = 28 ⇒ Flow value ≤ 28	

10	

9	

9	

14	

4	

 10	

4	

 8	

 9	

1	

0	

 0	

0	

14	

s	

2	

3	

4	

5	

6	

7	

t	

 15	

 5	

 30	

 15	

 10	

 8	

 15	

 9	

 6	

 10	

 10	

 10	

 15	

 4	

 4	

 0	

A	

78	

• Max	
 flow	
 formula@on.	

–  Create	
 digraph	
 G'	
 =	
 (L	
 ∪	
 R	
 ∪	
 {s,	
 t},	
 	
 E'	
).	

–  Direct	
 all	
 edges	
 from	
 L	
 to	
 R,	
 and	
 assign	
 infinite	
 (or	
 unit)	

capacity.	

–  Add	
 source	
 s,	
 and	
 unit	
 capacity	
 edges	
 from	
 s	
 to	
 each	
 node	
 in	
 L.	

–  Add	
 sink	
 t,	
 and	
 unit	
 capacity	
 edges	
 from	
 each	
 node	
 in	
 R	
 to	
 t.	

Bipar@te	
 Matching	

s	

1	

3	

5	

1'	

3'	

5'	

t	

2	

4	

2'	

4'	

1	

 1	

∞	

R	

L	

G'	

5/7/14	

40	

79	

• Disjoint	
 path	
 problem.	
 	
 Given	
 a	
 digraph	
 G	
 =	
 (V,	
 E)	
 and	
 two	
 nodes	
 s	

and	
 t,	
 find	
 the	
 max	
 number	
 of	
 edge-­‐disjoint	
 s-­‐t	
 paths.	

• Def.	
 	
 Two	
 paths	
 are	
 edge-­‐disjoint	
 if	
 they	
 have	
 no	
 edge	
 in	
 common.	

• Ex:	
 	
 communica@on	
 networks.	

s	

2	

3	

4	

Edge	
 Disjoint	
 Paths	

5	

6	

7	

t	

80	

• Max	
 flow	
 formula@on:	
 	
 assign	
 unit	
 capacity	
 to	
 every	
 edge.	

• Theorem.	
 	
 Max	
 number	
 edge-­‐disjoint	
 s-­‐t	
 paths	
 equals	
 max	
 flow	
 value.	

• Pf.	
 	
 	
 ≤	
 	

–  Suppose	
 there	
 are	
 k	
 edge-­‐disjoint	
 paths	
 P1,	
 .	
 .	
 .	
 ,	
 Pk.	

–  Set	
 f(e)	
 =	
 1	
 if	
 e	
 par@cipates	
 in	
 some	
 path	
 Pi	
 ;	
 	
 else	
 set	
 f(e)	
 =	
 0.	

–  Since	
 paths	
 are	
 edge-­‐disjoint,	
 f	
 is	
 a	
 flow	
 of	
 value	
 k.	
 	
 	
 ▪	

Edge	
 Disjoint	
 Paths	

s	

 t	

1	

1	

1	

1	

1	

1	

1	

1	

1	

1	

1	

1	

1	

1	

5/7/14	

41	

81	

• Network	
 connec@vity.	
 	
 Given	
 a	
 digraph	
 G	
 =	
 (V,	
 E)	
 and	
 two	
 nodes	
 s	

and	
 t,	
 	
 find	
 min	
 number	
 of	
 edges	
 whose	
 removal	
 disconnects	
 t	
 from	

s.	

• Def.	
 	
 A	
 set	
 of	
 edges	
 F	
 ⊆	
 E	
 disconnects	
 t	
 from	
 s	
 if	
 all	
 s-­‐t	
 paths	
 uses	
 at	

least	
 on	
 edge	
 in	
 F.	

Network	
 Connec@vity	

s	

2	

3	

4	

5	

6	

7	

t	

82	

Edge	
 Disjoint	
 Paths	
 and	
 Network	
 Connec@vity	

• Theorem.	
 	
 [Menger	
 1927]	
 	
 The	
 max	
 number	
 of	
 edge-­‐disjoint	
 s-­‐
t	
 paths	
 is	
 equal	
 to	
 the	
 min	
 number	
 of	
 edges	
 whose	
 removal	

disconnects	
 t	
 from	
 s.	

• Pf.	
 	
 ≤	
 	

–  Suppose	
 the	
 removal	
 of	
 F	
 ⊆	
 E	
 disconnects	
 t	
 from	
 s,	
 and	
 |
F|	
 =	
 k.	

–  All	
 s-­‐t	
 paths	
 use	
 at	
 least	
 one	
 edge	
 of	
 F.	
 Hence,	
 the	

number	
 of	
 edge-­‐disjoint	
 paths	
 is	
 at	
 most	
 k.	
 	
 ▪	

s	

2	

3	

4	

5	

6	

7	

t	

 s	

2	

3	

4	

5	

6	

7	

t	

5/7/14	

42	

Review:	
 P	
 and	
 NP	

•  What do we mean when we say a problem ���
is in P?	

•  What do we mean when we say a problem ���
is in NP?	

•  What is the relation between P and NP?	

Review:	
 P	
 and	
 NP	

•  What do we mean when we say a problem ���
is in P?	

–  A: A solution can be found in polynomial time	

•  What do we mean when we say a problem ���
is in NP?	

–  A: A solution can be verified in polynomial time	

•  What is the relation between P and NP?	

–  A: P ⊆ NP, but no one knows whether P = NP	

5/7/14	

43	

Review:	
 NP-­‐Complete	

•  What, intuitively, does it mean if we can reduce problem
P to problem Q?	

–  P is “no harder than” Q	

•  How do we reduce P to Q?	

–  Transform instances of P to instances of Q in polynomial time

s.t. Q: “yes” iff P: “yes”	

•  What does it mean if Q is NP-Hard ?	

–  Every problem P∈NP ≤p Q	

•  What does it mean if Q is NP-Complete?	

–  Q is NP-Hard and Q ∈ NP	

NP

P

NP complete problems – problems which are in NP but are as
hard as any other problem in NP	

•  NP hard which are not NP-complete, e.g. halting problem (is
still possible to reduce any problem in NP to halting problem)	

•  Some other non-decision problems	

	

NP-Hard and NP-Complete	

NPC	

NP-hard	

5/7/14	

44	

Review:	
 	

Proving	
 Problems	
 NP-­‐Complete	

•  What was the first problem shown to be ���
NP-Complete?	

•  A: Circuit satisfiability (SAT), by Cook	

•  How do we usually prove that a problem R���

is NP-Complete?	

•  A: Show R ∈NP, and reduce a known ���

NP-Complete problem Q to R	

Review:	
 	

Reduc@ons	

•  Review the reductions we’ve covered:	

	

–  Independent set <-> vertex cover	

–  Directed hamiltonian cycle  undirected hamiltonian cycle	

–  Undirected hamiltonian cycle  traveling salesman problem	

–  3-CNF  k-clique	

–  k-clique  vertex cover	

5/7/14	

45	

Independent	
 Set	

• INDEPENDENT SET: Given a graph G = (V, E) and an integer k, is
there a subset of vertices S ⊆ V such that |S| ≥ k, and for each
edge at most one of its endpoints is in S?	

• Ex. Is there an independent set of size ≥ 6? Yes.	

• Ex. Is there an independent set of size ≥ 7? No.	

independent set

Vertex	
 Cover	

• VERTEX COVER: Given a graph G = (V, E) and an integer k, is
there a subset of vertices S ⊆ V such that |S| ≤ k, and for each
edge, at least one of its endpoints is in S?	

• Ex. Is there a vertex cover of size ≤ 4? Yes.	

• Ex. Is there a vertex cover of size ≤ 3? No.	

vertex cover

5/7/14	

46	

Vertex	
 Cover	
 and	
 Independent	
 Set	

• Claim. VERTEX-COVER ≡P INDEPENDENT-SET.	

• Pf. We show S is an independent set iff V - S is a vertex cover.	

vertex cover

independent set

SET COVER

U = { 1, 2, 3, 4, 5, 6, 7 }
k = 2
Sa = {3, 7} Sb = {2, 4}
Sc = {3, 4, 5, 6} Sd = {5}
Se = {1} Sf= {1, 2, 6, 7}

Vertex	
 Cover	
 Reduces	
 to	
 Set	
 Cover	

• Claim. VERTEX-COVER ≤ P SET-COVER.	

• Pf. Given a VERTEX-COVER instance G = (V, E), k, we construct a set
cover instance whose size equals the size of the vertex cover
instance.	

• Construction. 	

–  Create SET-COVER instance:	

•  k = k, U = E, Sv = {e ∈ E : e incident to v }	

–  Set-cover of size ≤ k iff vertex cover of size ≤ k. ▪	

a

d

b

e

f c

VERTEX COVER

k = 2
e1

e2 e3

e5

e4

e6

e7

5/7/14	

47	

	

•  Circuit SAT is NP can be verified in polynomial time 	

 i.e. given a circuit and an input we can verify in polynomial time	

 whether the input is a satisfying assignment. 	

•  Circuit SAT is NP-hard Every problem in NP is reducible to 	

 circuit SAT; Proof: 	

1.  Problem is in NP; can be verified in polynomial time by some	

 algorithm	

2.  Each step of the algorithm runs on a computer (huge boolean	

 circuit)	

3.  Chaining together all circuits which correspond to the steps	

 of the algorithm – we get large circuit which describes the	

 run of the algorithm	

4.  If we plug in the input of a problem A then YES / NO answer	

 when circuit is/is not satisfiable	

Review:	
 Circuit	
 Sa@sfiablity	
 	

∧
¬

u-­‐v	

∨	

1	

independent	
 set	
 of	
 size	
 2?	

n	
 inputs	
 (nodes	
 in	
 independent	
 set)	
 hard-­‐coded	
 inputs	
 (graph	
 descrip@on)	

∨	

∨	

∧	

u-­‐w	

0	

∧	

v-­‐w	

1	

∧	

u	

?	

∧	

v	

?	

∧	

w	

?	

∧	

∨	

set	
 of	
 size	
 2?	

both	
 endpoints	
 of	
 some	
 edge	
 have	
 been	
 chosen?	

independent	
 set?	

Example	

• Ex. Construction below creates a circuit K whose inputs can be set
so that K outputs true iff graph G has an independent set of size 2.	

u	

v	
 w	

€

n
2

"

$

%

&
'

G	
 =	
 (V,	
 E),	
 n	
 =	
 3	

5/7/14	

48	

Circuit SAT	

3-SAT	

Hamilton Cycle	

Traveling Salesmen 	

Independent Set	

Vertex Cover 	

 Clique	

3D matching	

knapsack	

Rela@onships	
 between	
 known	
 NP	
 –
complete	
 problems	

Review:	
 Formula	
 Sa@sfiability	

•  Show that it is easy to verify the solution 	

•  Reduce circuit satisfiability to SAT	

•  Any instance of circuit satisfiability can be reduced to

formula satisfiability	

•  Strategy: express every gate as a formula (Example). 	

	

5/7/14	

49	

3-­‐SAT	
 is	
 NP-­‐Complete	

• Theorem. 3-SAT is NP-complete.	

• Pf. Suffices to show that CIRCUIT-SAT ≤ P 3-SAT since 3-SAT is in NP. Let K be any
circuit.	

–  Create a 3-SAT variable xi for each circuit element i.	

–  Make circuit compute correct values at each node:	

•  x2 = ¬ x3 ⇒ add 2 clauses:	

•  x1 = x4 ∨ x5 ⇒ add 3 clauses:	

•  x0 = x1 ∧ x2 ⇒ add 3 clauses:	

	

–  Hard-coded input values and output value.	

•  x5 = 0 ⇒ add 1 clause:	

•  x0 = 1 ⇒ add 1 clause:	

–  Final step: turn clauses of length < 3 into���
clauses of length exactly 3. ▪	

 ∨	

∧	

¬	

0	
 ?	
 ?	

output	

x0	

x2	
 x1	

€

x2 ∨ x3 , x2 ∨ x3

€

x1 ∨ x4 , x1 ∨ x5 , x1 ∨ x4 ∨ x5

€

x0 ∨ x1 , x0 ∨ x2 , x0 ∨ x1 ∨ x2

x3	
 x4	
 x5	

€

x5

€

x0

Review:	
 Conjunc@ve	
 Normal	
 Form	

•  Even if the form of the Boolean expression is simplified, the
problem may be NP-Complete	

–  Literal: an occurrence of a Boolean or its negation	

–  A Boolean formula is in conjunctive normal form, or CNF, if

it is an AND of clauses, each of which is an OR of literals	

•  Ex: (x1 ∨ ¬x2) ∧ (¬x1 ∨ x3 ∨ x4) ∧ (¬x5)	

–  3-CNF: each clause has exactly 3 distinct literals	

•  Ex: (x1 ∨ ¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x3 ∨ x4) ∧ (¬x5 ∨ x3 ∨ x4)	

•  Notice: true if at least one literal in each clause is true	

	

5/7/14	

50	

Review:	
 The	
 3-­‐CNF	
 Problem	

•  Thm 36.10: Satisfiability of Boolean formulas in 3-CNF form (the
3-CNF Problem) is NP-Complete	

•  The reason we care about the 3-CNF problem is that it is relatively
easy to reduce to others 	

•  Thus by proving 3-CNF NP-Complete we can prove many
seemingly unrelated problems NP-Complete	

Review:	
 3-­‐CNF	
 Sa@sfiability	

•  Show that it is easy to verify the solution 	

•  Reduce Satisfiability to 3-CNF	

•  Strategy: Get Binary Parse Tree, introduce new variables,	

 get clauses	

•  Convert Clauses to CNF form using De Morgan’s Laws	

	

5/7/14	

51	

3-­‐CNF	
 →	
 Clique	

•  What is a clique of a graph G?	

•  A: a subset of vertices fully connected to each other, i.e. a

complete subgraph of G	

•  The clique problem: how large is the maximum-size clique in a

graph?	

•  Can we turn this into a decision problem?	

•  A: Yes, we call this the k-clique problem	

•  Is there a clique of size k in the graph G ?	

•  Is the k-clique problem within NP?	

•  Naïve approach ? Check all possible subsets of k vertices 	

Directed Hamiltonian Cycle ⇒���
Undirected Hamiltonian Cycle	

•  What was the hamiltonian cycle problem again?	

•  For my next trick, I will reduce the directed hamiltonian cycle

problem to the undirected hamiltonian cycle problem before your
eyes	

–  Which variant am I proving NP-Complete?	

•  Draw a directed example on the board	

–  What transformation do I need to effect?	

5/7/14	

52	

103	

Directed	
 Hamiltonian	
 Cycle	

• DIR-­‐HAM-­‐CYCLE:	
 	
 given	
 a	
 digraph	
 G	
 =	
 (V,	
 E),	
 does	
 there	
 exists	
 a	
 simple	

directed	
 cycle	
 Γ	
 that	
 contains	
 every	
 node	
 in	
 V	

• Claim.	
 	
 DIR-­‐HAM-­‐CYCLE	
 ≤	
 P	
 HAM-­‐CYCLE.	

• Pf.	
 	
 Given	
 a	
 directed	
 graph	
 G	
 =	
 (V,	
 E),	
 construct	
 an	
 undirected	
 graph	

G'	
 with	
 3n	
 nodes.	

v	

a	

b	

c	

d	

e	

vin	

aout	

bout	

cout	

din	

ein	

G	
 G'	

v	
 vout	

Clique	
 →	
 Vertex	
 Cover	

•  A vertex cover for a graph G is a set of vertices
incident to every edge in G	

•  The vertex cover problem: what is the minimum size
vertex cover in G?	

•  Restated as a decision problem: does a vertex cover
of size k exist in G?	

•  Thm 36.12: vertex cover is NP-Complete	

Example	
 of	
 vertex	
 cover	
 of	
 size	
 2	

Example	
 of	
 vertex	
 cover	
 of	
 size	
 2	

5/7/14	

53	

Clique	
 →	
 Vertex	
 Cover	

•  First, show vertex cover in NP (How?)	

•  How to decide whether graph G has a vertex cover of size k	

•  Reduce k-clique to vertex cover	

•  The complement GC of a graph G contains exactly those edges

not in G	

•  Compute GC in polynomial time	

•  G has a clique of size k iff GC has a vertex cover of size |V| - k 	

Clique of size 4	

 Vertex cover of size 2	

Circuit SAT	

3-SAT	

Hamilton Cycle	

Traveling Salesmen 	

Independent Set	

Vertex Cover 	

 Clique	

3D matching	

knapsack	

Rela@onships	
 between	
 known	
 NP	
 –
complete	
 problems	

