5/7/14

Final Exam Review

Final Exam

* Coverage: second half of the semester

* Requires familiarity with most of the concepts covered in
first half

* Goal: doable in 2 hours

* Cheat sheet: you are allowed two 8’11 sheets, both sides

Final Exam: Study Tips

 Study tips:
— Study each lecture
— Study the homework and homework solutions
— Study the midterm exams
* Re-make your previous cheat sheets
I recommend handwriting or typing them

¢ Think about what you should have had on it the first time...cheat
sheets is about identifying important concepts

* Next review of more recent topics as well as earlier topics

Graph Representation

* Adjacency list

* Adjacency matrix

* Tradeoffs:
— What makes a graph dense?
— What makes a graph sparse?
— What about trees ?

5/7/14

Basic Graph Algorithms

* Breadth-first search
— What can we use BFS to calculate?
— A: shortest-path distance to source vertex
* Depth-first search
— Tree edges, back edges, cross and forward edges
— What can we use DF'S for?
— A: finding cycles, topological sort

DFS Example

source
vertex

Tree edges Back edges Forward edges

5/7/14

DFS And Cycles

* How would you modify the code to detect cycles?

DFS (G)
{
for each vertex u € G->V
{
u->color = WHITE;
}
time = 0;
for each vertex u € G->V
{
if (u->color == WHITE)
DFS_Visit(u);

DFS_Visit (u)

{

u->color = GREY;
time = time+l;
u->d = time;
for each v € u->Adj[]
{
if (v->color == WHITE)
DFS_Visit(v);
}
u->color = BLACK;
time = time+l;

u->f = time;

DFS And Cycles

* What will be the running time?

« A:O(V+E)

* We can actually determine if cycles exist in O(V) time:

— In an undirected acyclic forest, [El < [VI- 1

— So count the edges: if ever see |VI distinct edges, must

— have seen a back edge along the way

5/7/14

5/7/14

Topological Sort, MST

* Topological sort

— Examples: getting dressed, project dependency

— To what kind of graph does topological sort apply?
* Minimum spanning tree

— Optimal substructure

— Min edge theorem (enables greedy approach)

Getting Dressed

Underwea

Pants |

Belt
Tie
Jacket

oy .
[Sock4 [UnderweaH Pants H Shoes] [Watch] [Shirt’%[_Bj

Topological Sort Algorithm

Topological-Sort()
{
Run DFS
When a vertex is finished, output it
On the front of linked 1list
Vertices are output in reverse topological
order
}
* Time: O(V+E)
¢ Correctness: Want to prove that
(u,y) € G = u—f>v—f

Correctness of Topological Sort

* Claim: (u,v) € G = u—f > v—f
* Topological sort creates linear ordering of vertices
» Show that if there is an edge from u to v, finishing time

of u is greater then v (nodes are output in reverse finish. times
order — later times are output first)

* When (u,v) is explored, u is gray
e v =gray = (u,v) is back edge. Contradiction (W/y?)
* hence v cannot be gray — since there are no cycles
* v = white = v becomes descendent of u = v—>f < u—f
* (since must finish v before backtracking and finishing u)
* v = black = v already finished = v—f < y—f

5/7/14

5/7/14

Strongly Connected Components

» Call DFS to compute finishing times f{u] of each vertex
* Create transpose graph (directions of edges reversed)

» Call DFS on the transpose graph, but in the main loop of DFS,
consider vertices in the decreasing order of ffu]

* OQutput the vertices of each tree in the depth-first forest formed in
line 3 as a separate strongly connected component

» Example

U

MST Algorithms

e Prim’s algorithm
— What is the bottleneck in Prim’s algorithm?
— A: priority queue operations
* Kruskal’s algorithm
— What is the bottleneck in Kruskal’s algorithm?
— Answer: depends on disjoint-set implementation
* As covered in class, disjoint-set union operations
* As described in book, sorting the edges

Review: Prim’s Algorithm

MST-Prim(G, w, r) What will be the running time?

Q = VI[G]; A: Depends on queue
for Eac}[‘ ;’ €Q binary heap: O(E Ig V)
ey[u] = »; . . .
keylz] = 0; Fibonacci heap: O(VIgV + E)

plr] = NULL;
while (Q not empty)
u = ExtractMin (Q) ;
for each v € Adj[u]
if (v € Q and w(u,v) < key[v])
plvl = u;
key[v] = w(u,v);

ExtractMin total number of calls O(V log V)
DecreaseKey total number of calls O(E log V)

Total number of calls O(V logV +E logV) = O(E log V)
Think why we can combine things in the expression above

5/7/14

Kruskal’s Algorithm

Run the algorithm:

Kruskal () O 2 . 19 O

{ . 14 . 17
T = J; 5

for each v € V 21 13 1
MakeSet (v) ; . .

sort E by increasing edge weight w

9

for each (u,v) € E (in sorted order)
if FindSet (u) = FindSet (v)
T=TU {{u,v}};
Union (FindSet(u), FindSet(v));

Correctness Of Kruskal’s Algorithm

 Sketch of a proof that this algorithm produces an MST for 7
* Assume algorithm is wrong: result is not an MST
* Then algorithm adds a wrong edge at some point

 If it adds a wrong edge, there must be a lower weight edge
(cut and paste argument)

* But algorithm chooses lowest weight edge at each step ->
Contradiction

* Again, important to be comfortable with cut and paste
arguments

5/7/14

Kruskal’s Algorithm

Kruskal () What will affect the running time?
1 Sort

{ O(V) MakeSet() calls
T = J; O(E) FindSet() calls
for each v € V O(V) Union() calls
MakeSet (v) ; (Exactly how many Union()s?)

sort E by increasing edge weight w
for each (u,v) € E (in sorted order)
if FindSet (u) = FindSet (v)
T=Tu {{u,v}};
Union (FindSet(u), FindSet(v));

Kruskal's Algorithm: Running Time

To summarize:

— Sortedges: O(E Ig E)
— O(V) MakeSet()'s
— O(E) FindSet()’s and Union()’s

Upshot:

— Best disjoint-set union algorithm makes above

— 3 operation stake O((V+E)-a(V)), o. almost constant
— (slowly growing function of V)

— Since E >= V-1 then we have O(E-o(V))

— Also since (V) = O(lg V) = O(Ig E)

— Overall thus O(E Ig E), almost linear w/o sorting

5/7/14

10

Single-Source Shortest Path

* Optimal substructure

» Key idea: relaxation of edges

* What does the Bellman-Ford algorithm do?
— What is the running time?

* What does Dijkstra’s algorithm do?
— What is the running time?

— When does Dijkstra’s algorithm not apply?

Bellman-Ford Algorithm

BellmanFord ()
for each v € V

d[v] = »; s _ \A‘
d[s] = 0;
for i=1 to |V|-1 2
for each edge (u,v) € E

Relax(u,v, w(u,v)); 4 -3
for each edge (u,v) € E

if (d[v] > d[u] + w(u,v)) @ 5

return “no solution”;

Ex: work on board

Relax(u,v,w): if (d[v] > d[u]+w) then d[v]=d[u]+w

5/7/14

11

Dijkstra’s Algorithm
Dijkstra (G)
for each v € V
d[v] = o;

d[s] =0; S =UJ; Q =V;
while (Q = J)
u = ExtractMin (Q) ;

Ex: run the algorithm

S =8 U {u}; :
Relaxation
for each v € u->Adj[] Step
if (d[v] > d[u]l+w(u,Vv))
Note: this
is really a d[v] = d[u]+w(u,v);

call to Q->DecreaseKey ()

Dijkstra’s Algorithm

Dijkstra(G)
for each v €V How many times is
d[v] = o; ExtractMin () called?

d[s] = 0; S =J; Q =V;
while (Q =) How many times is
u = ExtractMin(Q); pecraseKey() called?
S =8 U {u};
for each v € u->Adj[]
if (d[v] > d[u]l+w(u,v))
d[v] = d[ul+w(u,v);

A: O(E 1g V) using binary heap for Q
Can acheive O(V 1g V + E) with Fibonacci heaps

5/7/14

12

Dijkstra’s Algorithm
Dijkstra(G)
for each v € V
d[v] = x;

d[s] = 0; S =J; Q =V;
while (Q = Q)
u = ExtractMin(Q) ;
S =8 U{u};
for each v € u->Adj[]
if (d[v] > d[u]l+w(u,v))
d[v] = d[ul+w(u,v);

Correctness: we must show that when u is
removed from Q, it has already converged

Correctness Of Dijkstra's Algorithm

o0
o Y

I. See the description of the proof in the book

P2

Show that Dijkstra’s algorithm will terminate with

The cost of each node to be the cost of shortest path.
Idea: show that when the vertex is added to the set the
cost of that vertex is the length of the shortest path
Reminder: We always add the vertex with minimal cost

5/7/14

13

Correctness Of Dijkstra's Algorithm
P2
g ®
©,
P2 e

Want to show that when vertex is added to set S, d[u] = 8(s,u)
and throughout note that d[u] = 8(s,u) Yu
Proof by contradiction d[u] is not equal to 8(s,u), when added to S
Before u gets added, some other vertex y on that shortest path needs
to be added; claim that d[y] = 8(s,y) when added.
Know that d[x] = 8(s,x) and 8(s,y) <= 8(s,u) and d[y] = 8(s,y), so d[y] <= d[u]
But both y and u are outside of S when is chosen so d[u] <= d[y]
Hence d[y] = d[u] = d(s,y) = 8(s,y)

Disjoint-Set Union

We talked about representing sets as linked lists, every element
stores pointer to list head

What is the cost of merging sets A and B?
— A: O(max(lAl, IBl))

What is the maximum cost of merging n
[-element sets into a single n-element set?

— A: O(n?)
How did we improve this? By how much?

— A: always copy smaller into larger: O(n 1g n)

5/7/14

14

5/7/14

Amortized Analysis

Idea: worst-case cost of an operation may overestimate its cost
over course of algorithm

Goal: get a tighter amortized bound on its cost

Aggregate method: total cost of operation over course of
algorithm divided by # operations Example: disjoint-set union

Accounting method: “charge” a cost to each operation, accumulate
unused cost in bank, never go negative

Analysis Of Dynamic Tables

* Letc, = cost of i-th insert

e ¢;=1i1fi-1 1is exact power of 2, 1 otherwise

* Example:

— Operation Table Size Cost

Insert (1)
Insert(2)
Insert (3)
Insert (4)
Insert (5)
Insert (6)
Insert(7)
Insert (8)
Insert (9)

W (N oy 0| WIN |

H 0o BN R
HF R R RRRBRRBBR
+
[~

15

Aggregate Analysis

n Insert() operations cost

n Ign

Ecl. sn+221 =n+(2n-1)<3n

i=1 7=0

At most n operations are of cost 1 + costs of expansions
Expansion happens only where (i-1) is power of 2

Average cost of operation
= (total cost)/(# operations) < 3

Asymptotically, then, a dynamic table costs the same as a fixed-
size table

Both O(1) per Insert() operation

Review: The Master Theorem

* Given: a divide and conquer algorithm

An algorithm that divides the problem of size » into a subproblems,
each of size n/b

* Let the cost of each stage (i.e., the work to divide the problem +

combine solved subproblems) be described by the function f{(n)

* Then, the Master Theorem gives us a cookbook for the algorithm’s

running time:

5/7/14

16

5/7/14

Review: The Master Theorem

* if T(n) =aT(n/b) + f(n) then

@(nlogba) f(n) = O(nlogba—s)

>0

T(n) = 10" logn) f(n)=0(n"*) ;Z »
o(f(n)) 7(n) = Qn"“**) AND

af (n/b) < cf (n) for large n|

LCS Via Dynamic Programming

* Longest common subsequence (LCS) problem:

— Given two sequences x[1..m] and y[1..n], find the longest
subsequence which occurs in both

* Brute-force algorithm: 2™ subsequences of x to check against n
elements of y: O(n 2™)

* Define c[i,j] = length of LCS of x[1..i], y[1.,]

¢ Theorem:

i,] = di-1j-1]+1 if x{i] = y[/1,
aLsI= { max(c[i, j —1],c[i—1,j]) otherwise

17

5/7/14

ABCB
LCS Example (0) BDCAB
i 0 2 3 4 5
I Yj B D C A B
0 Xi
| A
2 B
3 C
4 B

X =ABCB; m=|X|=4
Y =BDCAB;n=|Y| =5
Allocate array c[5,4]

Weighted Interval Scheduling

*Weighted interval scheduling problem.
— Job j starts at S; finishes at fj, and has weight or value Vi
— Two jobs compatible if they don't overlap.

— Goal: find maximum weight subset of mutually compatible

jobs.
a

3 — — Time

18

Unweighted Interval Scheduling Review

* Observation. Greedy algorithm can fail spectacularly if
arbitrary weights are allowed.

weight =999 b

weight=1 a

— Time
o 1 2 3 4 5 6 7 8 9 1

Weighted Interval Scheduling

Notation. Label jobs by finishing time: f; < f, =...=<f.

Def. p(j) = largest index i < j such that job i is compatible with j.

Ex: p(8)=5,p(7) =3,p(2) =0.

Time

5/7/14

19

Dynamic Programming: Binary Choice

* Notation. OPT(j) = value of optimal solution to the problem
consisting of job requests 1,2, ..., .

— Case 1: OPT selects job j. N
* can't use incompatible jobs { p(j) + 1,p(J) +2, ...,j- 1}
* must include optimal solution to problem consisting of
remaining compatible jobs 1, 2, ..4 p(j)
— Case 2: OPT does not select job j.

* must include optimal solution to problem consisting of
remaining compatible jobs 1,2, ..., j-1

0 if j=0
PT(j)=
OPT()) {max{ v, + OPT(p(j)), OPT(j-1)} otherwise

Matrix Chain Multiplication

* Define the cost recursively m[i,j] cost of multiplying

A-A,
0 ifi= j’
min{m[i,k]+ m[k +1,j]1+ p,_p.p,;} otherwise

isk<j

m[la]] =

5/7/14

20

All pairs shortest path

* Final representation of the solution is in adjacency matrix
* 0(i,)) will be the length of the shortest path from i to j
» Structure of the optimal solution

0 ifi=j
o otherwise
(m) _ e a(m=l) (m 1)
d;” =min(d;""",min,_,_ {d;""" +w,})

* Weight of the shortest path with m-/ edges and minimum of the weight
of any path consisting of at most m edges

ALGORITHMS

S Proof of claim

:\\‘\‘ : k,S

dl.j(’") = min, {d, (™D + a; }

A
1 edges

om_
S
<mc

Relaxation!
fork<« 1ton
doifd,>dy +ay
then dij «—dy+ ay; <m— 1 edges

Note: No negative-weight cycles implies
8(i, /) = d, D = g, D — g (D) ...

November 21, 2005 Copyright © 2001-5 by Erik D. Demaine and Charles E. Leiserson L19.9

5/7/14

21

5/7/14

Example all shortest paths

0 3 8 o 4
© 0 1 7

o 4 (0 o o
2 o -5 0 o
© o o 6 0

D(O)
2
DY =w

DV =D"W =WW

. D(Z) - D(I)W - D(O)WW

0 3 8 2 4

30 41 7

o 4 0 5 11

2 -1 -5 0 -2

8 o 1 6 0
p»

* Matrix multiplication @(n*)

* Repeated Squaring @(n’lIgn)

(m) _ __ - (m-1) .3 (m-1)
d; =min(d;""",min,_,_ {d;""" +w,})
6
Like matrix multiplication + => min .=>+
Example all shortest paths
0 3 8 w» 4|0 3 8 2 410 3 32 -410 1 -3 2 -4
© 0 1 713 4 1 7] 3 41 -1[3 0 -4 1 -1
w 4 0 o oo|®o 4 0 5 11| 7 4 0 5 11(7 4 0 5 3
2 » -5 0 o|2 -1 50 =22 -1-50-=2]/2-1-520 -2
© © o 6 0|8 » 1 6 08 5 1 6 01(8 5 1 60
D© DV D?® e
DO —w * Matrix multiplication @(n*)

DV =D"W =WwW
. D(Z) - D(I)W - D(O)“rnz

* Repeated Squaring @(n’lIgn)

22

Greedy Algorithms

Indicators:
— Optimal substructure

— Greedy choice property: a locally optimal choice leads to a
globally optimal solution

Example problems:

Activity selection: Set of activities, with start and end times.
Maximize compatible set of activities.

Fractional knapsack: sort items by $/Ib, then take items in sorted
order MST

Review: Dynamic Programming

* Optimization problems
* What is the structure of the sub-problem
¢ Common pattern:

* Optimal solution requires making a choice which leads to
optimal solution

* Hard part: what is the optimal subproblem structure
How many sub-problems ?
How many choices we have which sub-problem to use ?

¢ Matrix chain multiplication: 2 subproblems, j-i choices
* LCS: 3 suproblems 3 choices
* Subtleties (graph examples) shortest path, longest path

5/7/14

23

Review: Greedy Algorithms

A greedy algorithm always makes the choice that looks best at the
moment

The hope: a locally optimal choice will lead to a globally optimal
solution

Minimum weight spanning tree, Dijstra’s algorithm (greedy)

Dynamic programming can be overkill; greedy algorithms are
easier

Example: Activity Selection

Greedy Choice Property

Dynamic programming? Memoize? Yes, but...

Activity selection problem also exhibits the greedy choice
property:

Locally optimal choice = globally optimal sol’n

Them 17.1: if S is an activity selection problem sorted by finish
time, then 3 optimal solution A € S such that {1} € A

Sketch of proof: if 3 optimal solution B that does not contain {1},
can always replace first activity in B with {1} (Why?). Same
number of activities, thus optimal.

5/7/14

24

Review: Activity-Selection Problem

The activity selection problem: get your money’s worth out of a
carnival

— Buy a wristband that lets you onto any ride
— Lots of rides, starting and ending at different times
— Your goal: ride as many rides as possible

Naive first-year CS major strategy:

— Ride the first ride, when get off, get on the very next ride
possible, repeat until carnival ends

What is the sophisticated third-year strategy?

Review: Activity-Selection

* Formally:

— Given a set S of n activities

* 5; = start time of activity f; = finish time of activity i
— Find max-size subset A of compatible activities
— Assume activities sorted by finish time

What is optimal substructure for this problem?

5/7/14

25

Review: Activity-Selection

* Formally:
— Given a set S of n activities

* 5; = start time of activity i f; = finish time of activity
i

— Find max-size subset A of compatible activities
— Assume activities sorted by finish time
* What is optimal substructure for this problem?

— A: If k is the activity in A with the earliest finish time, then
A - {k} is an optimal solution to
S'={ieS:s;=f}

Huffman coding

* Design of optimal codes

* Example (on the board)

* Idea how to design optimal code ?

* Notion of prefix code

* Greedy Algorithm for constructing optimal codes

Algorithm:

1. Keep the frequencies in Priority Queue (build heap)
2. Take two minimal elements (extract min)

3. Insert their sum to queue

4. Until queue is empty

Running time O(n Ign)

5/7/14

26

5/7/14

Huffman coding

* What is the optimal substructure and greedy choice property ?
* Given alphabet C each character has frequency f[c]
* Suppose x and y are characters with lowest frequencies

* Then there exist an optimal code where x and y have same
length and differ only in last bit.

* Optimal substructure property
* Given C and C’ with the x and y removed and new symbol

* Added where f[z] = f[x]+{[y]. If we have a tree T’ which
represents optimal code for C’ then replacing node z with two
children x and y will yield optimal code for C

The Knapsack Problem

* The famous knapsack problem:
— A thief breaks into a museum. Fabulous paintings,
— sculptures, and jewels are everywhere. The thief has a good
— eye for the value of these objects, and knows that each will
— fetch hundreds or thousands of dollars on the clandestine art
— collector’s market. But, the thief has only brought a single
— knapsack to the scene of the robbery, and can take away
— only what he can carry. What items should the thief take to
— maximize the haul?

27

The Knapsack Problem

More formally, the O-1 knapsack problem:

The thief must choose among n items, where the ith item worth v,
dollars and weighs w; pounds

Carrying at most W pounds, maximize value
Note: assume v;, w;, and W are all integers
* “0-1” b/c each item must be taken or left in entirety
A variation, the fractional knapsack problem:
— Thief can take fractions of items
— Think of items in 0-1 problem as gold ingots, in fractional
— problem as buckets of gold dust

The Knapsack Problem
And Optimal Substructure

Both variations exhibit optimal substructure

To show this for the 0-1 problem, consider the most valuable load
weighing at most W pounds

If we remove item j from the load, what do we know about the
remaining load?

A: remainder must be the most valuable load weighing at most W -
w; that thief could take from museum, excluding item |

5/7/14

28

Solving The Knapsack Problem

The optimal solution to the fractional knapsack problem can be found
with a greedy algorithm

— How?

The optimal solution to the 0-1 problem cannot be found with the same
greedy strategy

Greedy strategy: take in order of dollars/pound
— Example: 3 items weighing 10, 20, and 30 pounds, knapsack
— can hold 50 pounds

* Suppose item 2 is worth $100. Assign values to the other items
so that the greedy strategy will fail

The Knapsack Problem:
Greedy Vs. Dynamic

The fractional problem can be solved greedily
The 0-1 problem cannot be solved with a greedy approach

As you have seen, however, it can be solved with dynamic
programming

5/7/14

29

0-1 Knapsack problem:

a picture
Weight Benefit value

Items Wi b,
] 2 3
This is a knapsack - 3 4
Max weight: W = 20 - 4 s
" -

W =20
9 10

0-1 Knapsack problem

* Problem, in other words, is to find

max) b, subjectto Y w, =W

m The problem is called a “0-1” problem, because
each item must be entirely accepted or rejected.

m Just another version of this problem is the
“Fractional Knapsack Problem”, where we can
take fractions of items.

5/7/14

30

0-1 Knapsack problem: brute-force
approach

Let’s first solve this problem with a straightforward algorithm

 Since there are n items, there are 2" possible combinations
of items.

* We go through all combinations and find the one with the
most total value and with total weight less or equal to W

* Running time will be O(2")

* Can we do better?
* Yes, with an algorithm based on dynamic programming
* We need to carefully identify the subproblems

Defining a Subproblem

[f items are labeled /..n, then a subproblem would be to find
an optimal solution for S, = {items labeled 1, 2, .. k}

* This is a valid subproblem definition.

 The question is: can we describe the final solution (S,) in
terms of subproblems (5,)?

* Unfortunately, we can’t do that. Explanation follows....

5/7/14

31

Defining a Subproblem

v,=2 | w,=4 | wy=5 |w,=3 We\ight Ber;)eﬁt
1=3 | by=5 b;=8 |b,=4 Item ' i
? #
1 2 3
Max weight: W = 20 S
ForS,: N 2 3 4
Total welght: 14, S; 3 4 5
total benefit: 20
4 5 8
-
5 9 10
w,=2 | w,=4 w; =5 W, = | —

b,=3 | b,=5 | b,=8 | b,=10

Solution for S, is not part of
For S: the solution for Sg!!!

Total weight: 20

total benefit: 26

Defining a Subproblem (continued)

As we have seen, the solution for S, is not part of the
solution for S

So our definition of a subproblem is flawed and we need
another one!

Let’s add another parameter: w, which will represent the
exact weight for each subset of items

The subproblem then will be to compute B/k,w]

5/7/14

32

Recursive Formula for subproblems

m Recursive formula for subproblems:
Blk-1,w] ifw, >w

Blk,w] =
Lk w] {max{B[k—l,w],B[k—l,w—wk]+bk} else

* It means, that the best subset of S, that has total weight w
is one of the two:

1) the best subset of S, _; that has total weight w, or
2) the best subset of S, that has total weight w-w, plus the

item k
Recursive Formula
Blk-1,w] ifw, >w
Blk,w]=
max {Blk -1,w],Blk-1,w—w,]+b,} else

* The best subset of S, that has the total weight w, either
contains item k or not.

* First case: w,>w. Item k can’t be part of the solution,
since if it was, the total weight would be > w, which is
unacceptable

* Second case: w, <=w. Then the item k can be in the
solution, and we choose the case with greater value

5/7/14

33

0-1 Knapsack Algorithm

for w=0 to W

B[O,w] = O
for i = 0 ton
B[i,0] = 0

for w=0 to W
if w; <= w // item i can be part of the solution
if b, + B[i-1,w-w;] > B[i-1,w]
B[i,w] = b; + B[i-1,w- w;]

else
B[i,w] = B[i-1,w]
else B[i,w] = B[i-1,w] // w; > w
Running time
for w =0 to W ow)
B[O,w] =0 R .
for i = 0 to n epeat n times

for w =0 to W

< the rest of the code >
What is the running time of this algorithm?

o(nWw)

Remember that the brute-force algorithm
takes O(2")

68

5/7/14

34

5/7/14

Example

Let’s run our algorithm on the
following data:

n = 4 (# of elements)

W =35 (max weight)
Elements (weight, benefit):
(2,3),(34),(4.,5),(5,6)

Comments

* This algorithm only finds the max possible value that can
be carried in the knapsack

* To know the items that make this maximum value, an
addition to this algorithm is necessary

* Please see LCS algorithm from the previous lecture for the
example how to extract this data from the table we built

35

5/7/14

Conclusion

* Dynamic programming is a useful technique of solving
certain kind of problems
* When the solution can be recursively described in terms of
partial solutions, we can store these partial solutions and
re-use them as necessary
* Running time (Dynamic Programming algorithm vs. naive
algorithm):
— LCS: O(mn) vs. O(n 2™)
— 0-1 Knapsack problem: O(Wn) vs. O(2")

e Caveat 0-1 Knapsack is NP- complete

* W is not polynomial in the size of the input, length of
W is proportional to number of bits needed to represent
that word

Minimum Cut Problem

*Flow network.
— Abstraction for material flowing through the edges.
— G =(V, E) = directed graph, no parallel edges.
— Two distinguished nodes: s = source, t = sink.
— c(e) = capacity of edge e.

source

sink

capacity

72

36

Cuts

*Def. Ans-t cutis a partition (A, B) of V withs € Aand t €B.
cap(A4,B) = > cle)

eoutof 4

*Def. The capacity of a cut (A, B) is:

Capacity =10 +5+ 15
=30

73

Cuts

*Def. An s-t cutis a partition (A, B) of V withs € Aand t €B.
cap(4,B) = 3 c(e)

eoutof 4

*Def. The capacity of a cut (A, B) is:

74 =62

Capacity =9 + 15+ 8 + 30

5/7/14

37

Minimum Cut Problem

*Min s-t cut problem. Find an s-t cut of minimum capacity.

75

Capacity =10 + 8 + 10
=28

Flows and Cuts

*Weak duality. Let f be any flow. Then, for any s-t cut (A, B)
we have
v(f) = cap(A, B).

P - S-S
eoutof A einto A
= 2 flo
eoutof A
< S c(e)
eoutof A
= cap(A,B)

76

5/7/14

38

Certificate of Optimality

*Corollary. Let f be any flow, and let (A, B) be any cut.
If v(f) = cap(A, B), then f is a max flow and (A, B) is a min cut.

Value of flow =28
Cut capacity =28 = Flow value < 28

77

Bipartite Matching
*Max flow formulation.
— Create digraph G'=(LURU {s, t}, E').

— Direct all edges from L to R, and assign infinite (or unit)
capacity.

— Add source s, and unit capacity edges from s to each node in L.
— Add sink t, and unit capacity edges from each node in Rto t.

5/7/14

39

Edge Disjoint Paths

*Disjoint path problem. Given a digraph G = (V, E) and two nodes s

and t, find the max number of edge-disjoint s-t paths.

*Def. Two paths are edge-disjoint if they have no edge in common.

*Ex: communication networks.

79

Edge Disjoint Paths

*Max flow formulation: assign unit capacity to every edge.

©
O_l—.
*Theorem. Max number edge-disjoint s-t paths equals max flow value.
*Pf. <
— Suppose there are k edge-disjoint paths P, .. ., P,.

— Set f(e) = 1 if e participates in some path P,; else set f(e) =0.
— Since paths are edge-disjoint, f is a flow of value k. =

80

5/7/14

40

Network Connectivity

*Network connectivity. Given a digraph G = (V, E) and two nodes s
and t, find min number of edges whose removal disconnects t from
s.

*Def. A set of edges F C E disconnects t from s if all s-t paths uses at
least on edge in F.

81

Edge Disjoint Paths and Network Connectivity

*Theorem. [Menger 1927] The max number of edge-disjoint s-
t paths is equal to the min number of edges whose removal
disconnects t from s.

*Pf. <
— Suppose the removal of F C E disconnects t from s, and |
F| = k.
— All s-t paths use at least one edge of F. Hence, the
number of edge-disjoint paths is at most k. =

5/7/14

41

Review: P and NP

What do we mean when we say a problem
isinP?

What do we mean when we say a problem
isin NP?

What is the relation between P and NP?

Review: P and NP

What do we mean when we say a problem
isinP?

— A: A solution can be found in polynomial time
What do we mean when we say a problem

is in NP?

— A: A solution can be verified in polynomial time
What is the relation between P and NP?

— A: P C NP, but no one knows whether P = NP

5/7/14

42

Review: NP-Complete

What, intuitively, does it mean if we can reduce problem
P to problem Q?

— Pis “no harder than” Q
How do we reduce P to Q?

— Transform instances of P to instances of Q in polynomial time
s.t. Q: “yes” iff P: “yes”

What does it mean if Q is NP-Hard ?

— Every problem PENP <, Q

What does it mean if Q is NP-Complete?
— Qis NP-Hard and Q € NP

NP-Hard and NP-Complete

w O

NP complete problems — problems which are in NP but are as
hard as any other problem in NP

* NP hard which are not NP-complete, e.g. halting problem (is
still possible to reduce any problem in NP to halting problem)

» Some other non-decision problems

5/7/14

43

Review:
Proving Problems NP-Complete

* What was the first problem shown to be
NP-Complete?

* A: Circuit satisfiability (SAT), by Cook

* How do we usually prove that a problem R
is NP-Complete?

* A: Show R €NP, and reduce a known
NP-Complete problem Q to R

Review:
Reductions

¢ Review the reductions we’ve covered:

— Independent set <-> vertex cover

— Directed hamiltonian cycle = undirected hamiltonian cycle
— Undirected hamiltonian cycle = traveling salesman problem
— 3-CNF = k-clique

— k-clique = vertex cover

5/7/14

44

Independent Set

-INDEPENDENT SET: Given a graph G = (V, E) and an integer k, is
there a subset of vertices S C V such that ISl = k, and for each
edge at most one of its endpoints is in S?

*Ex. Is there an independent set of size = 67 Yes.

*Ex. Is there an independent set of size = 7? No.

@ independent set

N

Vertex Cover

-VERTEX COVER: Given a graph G = (V, E) and an integer k, is
there a subset of vertices S C V such that ISl < k, and for each
edge, at least one of its endpoints is in S?

*Ex. Is there a vertex cover of size < 4? Yes.

*Ex. Is there a vertex cover of size < 3? No.

@ vertex cover

N

5/7/14

45

Vertex Cover and Independent Set

*Claim. VERTEX-COVER =p INDEPENDENT-SET.
*Pf. We show S is an independent set iff V - S is a vertex cover.

F

@ independent set

@ vertex cover

Vertex Cover Reduces to Set Cover

*Claim. VERTEX-COVER < p SET-COVER.

*Pf. Given a VERTEX-COVER instance G = (V, E), k, we construct a set

cover instance whose size equals the size of the vertex cover

instance.

*Construction.

— Create SET-COVER instance:

*k=k, U=E, S,={e€E:eincidenttov }

— Set-cover of size =< k iff vertex cover of size < k. *

VERTEX COVER

/
/

>\,
2 e 4\

€6

d

e

SET COVER
={1,2,3,4,5,6,7}

3,7} S,={2,4)
3,4,5,6) S,={5}

u={
k=2
Sa={
S.={
S.={

e

1) 5={1,2,6,7}

5/7/14

46

Review: Circuit Satisfiablity

* Circuit SAT is NP can be verified in polynomial time
i.e. given a circuit and an input we can verify in polynomial time
whether the input is a satisfying assignment.

* Circuit SAT is NP-hard Every problem in NP is reducible to

circuit SAT; Proof:

1. Problem is in NP; can be verified in polynomial time by some
algorithm

2. Each step of the algorithm runs on a computer (huge boolean
circuit)

3. Chaining together all circuits which correspond to the steps
of the algorithm — we get large circuit which describes the
run of the algorithm

4. If we plug in the input of a problem A then YES / NO answer
when circuit is/is not satisfiable

Example

*Ex. Construction below creates a circuit K whose inputs can be set
so that K outputs true iff graph G has an independent set of size 2.

Q ndependent set of size 2

independent set?

set of size 2?

G=(V,E),n=3

0 1

1
(;) hard-coded inputs (graph description) n inputs (nodes in independent set)

5/7/14

47

Relationships between known NP —
complete problems

Circuit SAT

|
/S—SAT \\A

Independent Set Hamilton Cycle 3D matching
Vertex Cover Clique Traveling Salesmen knapsack

Review: Formula Satisfiability

» Show that it is easy to verify the solution

* Reduce circuit satisfiability to SAT

* Any instance of circuit satisfiability can be reduced to
formula satisfiability

* Strategy: express every gate as a formula (Example).

5/7/14

48

3-SAT is NP-Complete

*Theorem. 3-sat is NP-complete.

*Pf. Suffices to show that CIRCUIT-SAT < 3-sAT since 3-sATis in NP. Let K be any
circuit.
— Create a 3-sAT variable x; for each circuit element i.
— Make circuit compute correct values at each node:
* X,=-X; = add?2 clauses:
* X, =X,V Xs = add 3 clauses: NV Xy, XV X
* X,=X; A X, = add 3 clauses: XV Xg. XV Xs L VXV X
) Xo VX, Xy VXy, XgV X, V Xputput
Hard-coded input values and output value.

* xs=0 = add 1 clause: x5
* Xo=1 = add 1 clause: x,
Final step: turn clauses of length < 3 into X %,

clauses of length exactly 3. - fx ?
X5 X4 X3

0 ? ?

Xo

Review: Conjunctive Normal Form

* Even if the form of the Boolean expression is simplified, the
problem may be NP-Complete

— Literal: an occurrence of a Boolean or its negation

— A Boolean formula is in conjunctive normal form, or CNF, if

it is an AND of clauses, each of which is an OR of literals
* Ex: (X; V =X,) A (=X, V X3V X4) A (—=Xs)

— 3-CNF: each clause has exactly 3 distinct literals

* EX: (X, V=X,V =X3) A (7X; VX3V X)) A(=X5V X3V Xy)

* Notice: true if at least one literal in each clause is true

5/7/14

49

5/7/14

Review: The 3-CNF Problem

Thm 36.10: Satisfiability of Boolean formulas in 3-CNF form (the
3-CNF Problem) is NP-Complete

The reason we care about the 3-CNF problem is that it is relatively
easy to reduce to others

Thus by proving 3-CNF NP-Complete we can prove many
seemingly unrelated problems NP-Complete

Review: 3-CNF Satisfiability

» Show that it is easy to verify the solution

* Reduce Satisfiability to 3-CNF

* Strategy: Get Binary Parse Tree, introduce new variables,
get clauses

* Convert Clauses to CNF form using De Morgan’s Laws

50

3-CNF — Clique

What is a clique of a graph G?
A: a subset of vertices fully connected to each other, i.e. a
complete subgraph of G

The clique problem: how large is the maximum-size clique in a
graph?

Can we turn this into a decision problem?

A: Yes, we call this the k-clique problem

Is there a clique of size k in the graph G ?

Is the k-clique problem within NP?

Naive approach ? Check all possible subsets of k vertices

Directed Hamiltonian Cycle =
Undirected Hamiltonian Cycle

What was the hamiltonian cycle problem again?
For my next trick, I will reduce the directed hamiltonian cycle
problem to the undirected hamiltonian cycle problem before your
eyes

— Which variant am I proving NP-Complete?
* Draw a directed example on the board

— What transformation do I need to effect?

5/7/14

51

Directed Hamiltonian Cycle

-DIR-HAM-CYCLE: given a digraph G = (V, E), does there exists a simple
directed cycle I" that contains every node in V

Claim. DIR-HAM-CYCLE =< , HAM-CYCLE.

*Pf. Given a directed graph G = (V, E), construct an undirected graph
G' with 3n nodes.

. © @\
® (V) o
®

103

Clique — Vertex Cover

* Avertex cover for a graph G is a set of vertices
incident to every edge in G

* The vertex cover problem: what is the minimum size
vertex cover in G?

* Restated as a decision problem: does a vertex cover
of size k exist in G?

* Thm 36.12: vertex cover is NP-Complete

) Example of vertex cover of size 2
Example of vertex cover of size 2

5/7/14

52

Clique — Vertex Cover

First, show vertex cover in NP (How?)
How to decide whether graph G has a vertex cover of size k
Reduce k-clique to vertex cover

The complement G of a graph G contains exactly those edges
not in G

Compute G in polynomial time
G has a clique of size k iff G has a vertex cover of size VI - k

Clique of size 4 Vertex cover of size 2

Relationships between known NP —
complete problems

Circuit SAT

|
/S—SAT \\A

Independent Set Hamilton Cycle 3D matching
Vertex Cover Clique Traveling Salesmen knapsack

5/7/14

53

