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Image Features

Edges
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Formal Design of an
Optimal Edge Detector

• Edge detection involves 3 steps:
– Noise smoothing
– Edge enhancement
– Edge localization

• J. Canny formalized these steps to 
design an optimal edge detector
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Canny Edge Detector

• Experiments consistently show that it 
performs very well 

• Probably, the most used by C.V. 
practitioners
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Canny Edge Detector

• Uses a mathematical model of the 
edge and the noise

• Formalizes a performance criteria
• Synthesizes the best filter 
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Edge Model (1D)

• An ideal edge can be modeled as an 
step
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Performance Criteria (1)
• Good detection

– The filter must have a stronger response 
at the edge location (x=0) than to noise
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Performance Criteria (2)
• Good Localization

– The filter response must be maximum 
very close to x=0

X=0X=0

2/11/2004 Octavia I. Camps 8

Performance Criteria (3)
• Low False Positives

– There should be only one maximum in a 
reasonable neighborhood of x=0

largelarge



55

2/11/2004 Octavia I. Camps 9

Canny Edge Detector

• Canny found a linear, continuous filter 
that maximized the three given 
criteria.

• There is no close-form solution for 
the optimal filter.

• However, it looks VERY SIMILAR to 
the derivative of a Gaussian.

2/11/2004 Octavia I. Camps 10

Algorithm CANNY_ENHANCER
• The input is image I; G is a zero mean 

Gaussian filter (std = σ)

1. J = I * G (smoothing)
2. For each pixel (i,j): (edge enhancement)

– Compute the image gradient 
» ∇ J(i,j) = (Jx(i,j),Jy(i,j))’

– Estimate edge strength 
» es(i,j) = (Jx

2(i,j)+ Jy
2(i,j))1/2

– Estimate edge orientation 
» eo(i,j) = arctan(Jx(i,j)/Jy(i,j))

• The output are images Es and Eo
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CANNY_ENHANCER

• The output image Es has the 
magnitudes of the smoothed gradient.

• Sigma determines the amount of 
smoothing.

• Es has large values at edges

Edge Edge ENHANCERENHANCER

Edge strength Edge strength –– gradient magnitudegradient magnitude
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How do we “detect” edges?
• Es has large values at edges:

– Find local maxima

ThTh
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• … but it also may have wide ridges 
around the local maxima (large values 
around the edges)

ThTh
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NONMAX_SUPRESSION

• The inputs are Es & Eo (outputs of CANNY_ENHANCER)

• Consider 4 directions D={ 0,45,90,135} wrt x

• For each pixel (i,j) do:
1. Find the direction d∈ D s.t. d≅ Eo(i,j) (normal to the edge)
2. If {Es(i,j) is smaller than at least one of its neigh. along d}

• IN(i,j)=0
• Otherwise, IN(i,j)= Es(i,j)

• The output is the thinned edge image IN

Edge orientationEdge orientation
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Graphical Interpretation

xx xx
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Thresholding

• Edges are found by thresholding the 
output of NONMAX_SUPRESSION

• If the threshold is too high:
– Very few (none) edges 

• High MISDETECTIONS, many gaps
• If the threshold is too low:

– Too many (all pixels) edges
• High FALSE POSITIVES, many extra edges
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SOLUTION:
Hysteresis Thresholding

Es(i,j)> HEs(i,j)> H

Es(i,j)<HEs(i,j)<H
Es(i,j)>LEs(i,j)>L

Es(i,j)<LEs(i,j)<LEs(i,j)>LEs(i,j)>L

Strong edges reinforce 
adjacent weak edges
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HYSTERESIS_THRESH
Inputs: 

– IN (output of  NONMAX_SUPRESSION), 

– Eo (output of CANNY_ENHANCER),

– thresholds L and H.

• For all pixels in IN and scanning in a fixed order:
1. Locate the next unvisited pixel s.t. IN(i,j)>H
2. Starting from IN(i,j), follow the chains of connected local 

maxima, in both directions perpendicular to the edge normal, 
as long as IN>L. 

– Mark all visited points, and save the location of the contour 
points. 

Output:  a set of lists describing the contours.
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Hysteresis Thresholding

Es(i,j)> HEs(i,j)> HEs(i,j)>LEs(i,j)>L
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Other Edge Detectors

(2nd order derivative filters)
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First-order derivative filters 
(1D)

• Sharp changes in gray level of the 
input image correspond to “peaks” of 
the first-derivative of the input 
signal. F(x)F(x) F ’(x)F ’(x)

xx
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Second-order derivative filters 
(1D)

• Peaks of the first-derivative of the 
input signal, correspond to “zero-
crossings” of the second-derivative 
of the input signal.

F(x)F(x) F ’(x)F ’(x)

xx

F’’(x)F’’(x)
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NOTE:

• F’’(x)=0  is not enough!
– F’(x) = c has F’’(x) = 0, but there is no edge

• The second-derivative must change sign, --
i.e. from (+) to (-) or from (-) to (+)

• The sign transition depends on the 
intensity change of the image – i.e. from 
dark to bright or vice versa.
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Edge Detection (2D)

1D1D 2D2D

I(x)I(x) I(x,y)I(x,y)

dd22I(x)I(x)
dxdx22

= 0= 0

xx

yy

||∇∇ I(x,y)| =(II(x,y)| =(Ix x 
22(x,y) + I(x,y) + Iyy

22(x,y))(x,y))1/2 1/2 > > ThTh

tan tan θθ = I= Ixx(x,y)/ (x,y)/ IIyy(x,y(x,y) ) 

F(x)F(x)

xx

dI(xdI(x))
dxdx

> > ThTh

∇∇ 22I(x,y) =II(x,y) =Ix x x x (x,y) + (x,y) + IIyyyy (x,y)=0(x,y)=0

LaplacianLaplacian
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Notes about the Laplacian:
• ∇∇ 22I(x,y) is a SCALARI(x,y) is a SCALAR

–– ↑↑ Can be found using a SINGLE maskCan be found using a SINGLE mask
–– ↓↓ Orientation information is lostOrientation information is lost

•• ∇∇ 22I(x,y) is the sum of SECONDI(x,y) is the sum of SECOND--order derivativesorder derivatives
–– But taking derivatives increases noiseBut taking derivatives increases noise
–– Very noise sensitive!Very noise sensitive!

•• It is always combined with a smoothing operation:It is always combined with a smoothing operation:

SmoothSmooth LaplacianLaplacian
I(x,y)I(x,y) O(x,y)O(x,y)
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LOG Filter

• First smooth (Gaussian filter),
• Then, find zero-crossings (Laplacian

filter):
– O(x,y) = ∇∇ 22((I(x,y) * G(x,y))I(x,y) * G(x,y))

• Using linearity:
–– O(x,y) = ∇∇ 22G(x,y) * I(x,y)G(x,y) * I(x,y)
–– This filter is called: “This filter is called: “LaplacianLaplacian of the Gaussian” of the Gaussian” 

(LOG)(LOG)
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1D Gaussian
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First Derivative of a Gaussian
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As a mask, it is also computing a difference (derivative)As a mask, it is also computing a difference (derivative)
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Second Derivative of a 
Gaussian
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