Image Features

Edges

Formal Design of an
Optimal Edge Detector

- Edge detection involves 3 steps:
- Noise smoothing
- Edge enhancement
- Edge localization

» J. Canny formalized these steps to
design an optimal edge detector
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Canny Edge Detector

- Experiments consistently show that it
performs very well

* Probably, the most used by C.V.
practitioners
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Canny Edge Detector

- Uses a mathematical model of the
edge and the noise

* Formalizes a performance criteria
* Synthesizes the best filter

2/11/2004 Octavia I. Camps 4




Edge Model (1D)

* An ideal edge can be modeled as an
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Performance Criteria (1)

« Good detection

- The filter must have a stronger response
at the edge location (x=0) than to noise
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Performance Criteria (2)

« Good Localization

- The filter response must be maximum
very close to x=0
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Performance Criteria (3)

- Low False Positives

- There should be only one maximum in a
reasonable neighborhood of x=0
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Canny Edge Detector

» Canny found a linear, continuous filter
that maximized the three given
criteria.

- There is no close-form solution for
the optimal filter.

- However, it looks VERY SIMILAR to
the derivative of a Gaussian.
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Algorithm CANNY_ENHANCER

* The input is image I; G is a zero mean
Gaussian filter (std = o)

1. J=1I%6G (smoothing)
2. For each pixel (i,j): (edge enhancement)
- Compute the image gradient
> D3(L) = (T00).3,0.0)
- Estimate edge strength
> egij) = (3,204 T 232
- Estimate edge orientation
> ey(i,j) = arctan(J,(i.j)/J,(i.j))

+  The output are images E, and E,
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CANNY_ENHANCER

Edge strength - gradient magnitude

v
* The output image E, has the
magnitudes of the smoothed gradient.

» Sigma determines the amount of
smoothing.

- E, has large values at edges

mmp  Edge ENHANCER
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How do we "detect” edges?

* E, has large values at edges:
- Find local maxima
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- ... but it also may have wide ridges
around the local maxima (large values
around the edges)

Th
Ah"\n/w"" e o k’qn—"’\}'—tuf NNHL‘NL i

2/11/2004 Octavia I. Camps 13

NONMAX_SUPRESSION

Edge orientation

The inputs are E, & E, (outputs of CANNY_ENHANCER)
Consider 4 directions D={ 0,45,90,135} wrt x

For each pixel (i,j) do:
1. Find the direction dOD s.t. dOE(i,j) (normal to the edge)

2. If{Ei,j)is smaller than at least one of its neigh. along d}
I\ (i.j)=0
Otherwise, I(i,j)= EJ(i.j)

*  The output is the thinned edge image Iy
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Graphical Interpretation
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Thresholding

- Edges are found by thresholding the
output of NONMAX_SUPRESSION
* If the threshold is too high:

- Very few (none) edges
* High MISDETECTIONS, many gaps

« If the threshold is too low:

- Too many (all pixels) edges
* High FALSE POSITIVES, many extra edges
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SOLUTION:
Hysteresis Thresholding
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Strong edges reinforce
adjacent weak edges




HYSTERESIS_THRESH

Inputs:
= T (output of NONMAX_SUPRESSION),
- E, (output of CANNY_ENHANCER),

- thresholds L and H.

*  For all pixels in I,and scanning in a fixed order:
1. Locate the next unvisited pixel s.t. I\(i,j)>H

2. Starting from I (i,j), follow the chains of connected local
maxima, in both directions perpendicular to the edge normal,
as long as I pL.

- Mark all visited points, and save the location of the contour
points.

Output: a set of lists describing the contours.
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Hysteresis Thresholding
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Other Edge Detectors

(2" order derivative filters)
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First-order derivative filters

(1D)

* Sharp changes in gray level of the
input image correspond to “peaks” of
the first-derivative of the input

Signal. F(x)

F'(x)
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Second-order derivative filters

(1D)

* Peaks of the first-derivative of the
input signal, correspond to “zero-
crossings” of the second-derivative
of the input signal.
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* F"(x)=0 is not enoughl!
- F'(x) = ¢ has F"(x) = O, but there is no edge

* The second-derivative must change sign, --
i.e. from (+) to (-) or from (-) to (+)

* The sign transition depends on the
intensity change of the image - i.e. from
dark to bright or vice versa.

NOTE:
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Edge Detection (2D)
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Notes about the Laplacian:

* [2I(x,y) is a SCALAR
- 1 Can be found using a SINGLE mask
- | Orientation information is lost
+ [?I(x,y) is the sum of SECOND-order derivatives
- But taking derivatives increases noise
- Very noise sensitive!
* It is always combined with a smoothing operation:

I(x.y) , O(x.y)
"| Smooth|—| Laplacian
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LOG Filter

* First smooth (Gaussian filter),
* Then, find zero-crossings (Laplacian
filter):
- O(xy) = D3(I(x.y) * 6(x.y))
* Using linearity:
- O(xy) = D%6(x.y) * I(x.y)

- This filter is called: "Laplacian of the Gaussian”
(LOG)
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1D Gaussian
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First Derivative of a Gaussian

X2 .X'2
1 dxe 200 = =2 o 20
207 o’

g'(x)=-

% Negative j

As a mask, it is also computing a difference (derivative)
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Second Derivative of a
Gaussian
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