

Rotation around the coordinate axes, counter-clockwise:

$$
\begin{aligned}
& R_{x}(\alpha)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \alpha & -\sin \alpha \\
0 & \sin \alpha & \cos \alpha
\end{array}\right] \\
& R_{y}(\beta)=\left[\begin{array}{ccc}
\cos \beta & 0 & \sin \beta \\
0 & 1 & 0 \\
-\sin \beta & 0 & \cos \beta
\end{array}\right] \\
& R_{z}(\gamma)=\left[\begin{array}{ccc}
\cos \gamma & -\sin \gamma & 0 \\
\sin \gamma & \cos \gamma & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Rotation Matrices in 3D

Rotation Matrices in 3D

- 3 by 3 matrices
- 9 parameters - only three degrees of freedom
- Representations - either three Euler angles
- or axis and angle representation

$$
R=\left[\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right]
$$

- Properties of rotation matrices (constraints between the elements)
$\boldsymbol{R} \cdot \boldsymbol{R}^{T}=I$
$\operatorname{det}(R)=I$
$r_{i}^{T} r_{j}=\delta_{i j}= \begin{cases}1 & \text { for } i=j, \\ 0 & \text { for } i \neq j,\end{cases}$
$\forall i, j \in\{1,2,3\}$.
I
Columns are orthonormal

Canonical Coordinates for Rotation

Property of $\mathrm{R} \quad \boldsymbol{R}(t) R^{T}(t)=I$
Taking derivative
$\dot{H}(i) R^{T}(l)+R(l) \dot{R}^{T}(i)=0 \quad \Rightarrow \quad \dot{R}(l) R^{T}(l)=-\left(\dot{R}(l) R^{T}(l)\right)^{T}$
Skew symmetric matrix property
By algebra

$$
\dot{R}(t) \boldsymbol{R}^{T}(t)=\hat{\omega}(t)
$$

$$
\dot{R}(t)=\hat{\omega} R(t)
$$

By solution to ODE

$$
n(t)=e^{\omega t}
$$

CS682, Jana Kosecka

3D Rotation (axis \& angle)

Solution to the ODE

$$
n(t)=e^{\bar{\omega} t}
$$

$$
R=I+\widehat{\omega} \sin (\theta)+\widehat{\omega}^{2}(1-\cos (\theta))
$$

with $\left\|\omega_{s}\right\|=1$

$$
\omega=\left[\begin{array}{l}
\omega_{1} \\
\omega_{2} \\
\omega_{3}
\end{array}\right] \in \mathbb{R}^{3}
$$

or

$$
R=I+\frac{\hat{\omega}}{\|\omega\|} \sin (\|\omega\|)+\frac{\hat{\omega}^{2}}{\|\omega\|^{2}}(1-\cos (\|\omega\|))
$$

Rotation Matrices

$$
R=\left[\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{33} \\
r_{31} & r_{32} & r_{33}
\end{array}\right],
$$

Given

How to compute angle and axis
$\|\omega\|=\cos ^{-1}\left(\frac{\operatorname{trace}(R)-1}{2}\right), \quad \frac{\omega}{\|\omega\|}=\frac{1}{2 \sin (\|\omega\|)}\left[\begin{array}{l}r_{32}-r_{23} \\ r_{13}-r_{31} \\ r_{21}-r_{12}\end{array}\right]$.

Rigid Body Motion - Homogeneous Coordinates

3-D coordinates are related by: $\quad \boldsymbol{X}_{\boldsymbol{c}}=\boldsymbol{R} \boldsymbol{X}_{w}+\boldsymbol{T}$,
Homogeneous coordinates:

$$
\boldsymbol{X}=\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right] \quad \rightarrow \quad X=\left[\begin{array}{c}
X \\
Y \\
Z \\
\mathbb{Z}
\end{array}\right] \in \mathbb{R}^{4}
$$

Homogeneous coordinates are related by:

Rigid Body Motion - Homogeneous Coordinates

3-D coordinates are related by: $\quad \boldsymbol{X}_{\boldsymbol{c}}=\boldsymbol{R} \boldsymbol{X}_{\boldsymbol{w}}+\boldsymbol{T}$,
Homogeneous coordinates:

$$
X=\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right] \quad \rightarrow \quad X=\left[\begin{array}{c}
X \\
Y \\
Z \\
I
\end{array}\right] \in \mathbb{R}^{4}
$$

Homogeneous coordinates are related by:

Properties of Rigid Body Motions

Rigid body motion composition
$\bar{g}_{1} \bar{g}_{2}=\left[\begin{array}{cc}R_{1} & T_{1} \\ 0 & 1\end{array}\right]\left[\begin{array}{cc}R_{2} & T_{2} \\ 0 & 1\end{array}\right]=\left[\begin{array}{cc}R_{1} R_{2} & R_{1} T_{2}+T_{1} \\ 0 & 1\end{array}\right] \quad \in S E(3)$
Rigid body motion inverse

$$
\bar{g}^{-1}=\left[\begin{array}{ll}
R & T \\
0 & 1
\end{array}\right]^{-1}=\left[\begin{array}{cc}
R^{T} & -R^{T} T \\
0 & 1
\end{array}\right] \quad \in S E(3) .
$$

Rigid body motion acting on vectors

$$
\bar{g}_{*}(\bar{v})=\bar{g} \bar{X}(q)-\bar{g} \bar{X}(p)=\bar{g} \bar{v}
$$

Vectors are only affected by roferionaldsabmogeneous coordinate is zero

Rigid Body Motion	
$\mathrm{X}_{\mathrm{c}}(t)=R(t) \mathrm{X}_{\mathrm{E}}+\mathrm{T}(t)=\operatorname{Scos}(t) \mathrm{X}_{\mathrm{Em}}$	
- Camera is moving$\underset{g(t)}{n g}=\left[\begin{array}{cc} n(t) & T(t) \\ 0 & 1 \end{array}\right] \quad \in \mathbb{E}^{4 \times 4} .$	
$\bar{X}(t)=\bar{g}_{\text {cas }}(t) \bar{X}_{0}$	
- Notion of a twist	
	¢se(3),
$\dot{X}(t)=\hat{V}_{c o s}^{e}(t) \boldsymbol{X}(t)$	$\hat{V}_{\text {civ }}^{e}(t)=\left[\begin{array}{cc}\omega(t) & v(t) \\ 0 & 0\end{array}\right]$
- Relationship between velocities	
$\dot{X}(t)=\hat{\omega}(t) X(t)+v(t)$	
CS682, Jana Kosecka	

More on homogeneous coordinates

In homogenous coordinates - these represent the Same point in 3D

$$
[X, Y, Z, 1]^{T}, \quad\left[X W, Y W, Z W,\left.W\right|^{T} \quad \in \mathbb{R}^{4}\right.
$$

The first coordinates can be obtained from the second by division by W

What if W is zero?
Special point - point at infinity - more later
In homogeneous coordinates - there
is a difference between point and vector

Pinhole Camera Model

2-D coordinates $\quad x=\left[\begin{array}{l}x \\ y\end{array}\right]=\frac{f}{Z}\left[\begin{array}{l}X \\ Y\end{array}\right]$
Homogeneous coordinates
$\boldsymbol{x} \rightarrow\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]=\frac{1}{Z}\left[\begin{array}{c}f X \\ f Y \\ Z\end{array}\right], \quad \boldsymbol{X} \rightarrow\left[\begin{array}{c}X \\ Y \\ Z \\ 1\end{array}\right]$,

Calibration Matrix and Camera Model

$$
\begin{array}{ll}
\begin{array}{l}
\text { Calibration matrix } \\
\text { (intrinsic parameters) } \\
\text { Projection matrix }
\end{array} & \underbrace{K=K_{s} K_{f}}_{\Pi=[K, 0] \in \mathbb{R}_{s}^{3 \times 4}} \quad \Pi_{0}
\end{array}
$$

Camera model $\quad \boldsymbol{\lambda} \boldsymbol{x}^{\prime}=\boldsymbol{K} \Pi_{\mathbf{0}} \boldsymbol{X}=\boldsymbol{\Pi} \boldsymbol{X}$
CS682, Jana Kosecka

$$
\begin{aligned}
& \text { Pinhole camera Pixel coordinates } \\
& \lambda \boldsymbol{x}=K_{f} \Pi_{0} \boldsymbol{X} \quad \boldsymbol{x}^{\prime}=K_{s} \boldsymbol{x} \\
& \lambda x^{\prime}=K_{s} K_{f} \Pi_{0} \mathbf{X}=\left[\begin{array}{ccc}
f s_{x} & f s_{\theta} & o_{x} \\
0 & f s_{y} & o_{g} \\
0 & 0 & 1
\end{array}\right] \quad \underbrace{\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]}\left[\begin{array}{c}
X \\
Y \\
Z \\
1
\end{array}\right]
\end{aligned}
$$

Image of a point

Image of a line - homogeneous representation

Homogeneous representation of a 3-D line L
$\boldsymbol{X}=\left[\begin{array}{l}\boldsymbol{X} \\ \boldsymbol{Y} \\ \boldsymbol{Z} \\ 1\end{array}\right]=\left[\begin{array}{c}\boldsymbol{X}_{o} \\ \boldsymbol{Y}_{\sigma} \\ \boldsymbol{Z}_{\sigma} \\ \mathbf{1}\end{array}\right]+\mu\left[\begin{array}{c}V_{1} \\ V_{2} \\ V_{3} \\ 0\end{array}\right], \mu \in \mathbb{E}$
Homogeneous representation of its 2-D image

$$
\boldsymbol{l}=[a, b, c]^{T} \in \mathbb{R}^{3}
$$

Projection of a 3-D line to an image plane

$$
l^{T} x=l^{T} \Pi X=0
$$

$\Pi=[K R, K T] \in \mathbb{R}^{3 \times 4}$
CS682, Jana Kosecka

Image of a line $-2 D$ representations
Representation of a 3-D line
$\mathbf{X}=\left[\begin{array}{l}X \\ \mathbf{Y} \\ Z\end{array}\right]=\left[\begin{array}{l}X_{o} \\ \mathbf{Y}_{0} \\ Z_{a}\end{array}\right]+\mu\left[\begin{array}{l}V_{1} \\ V_{2} \\ V_{3}\end{array}\right], \mu \in \mathbb{R}$
Projection of a line - line in the image plane

$$
\begin{aligned}
& x=\frac{X_{0}+\lambda V_{1}}{Z_{0}+\lambda V_{3}} \\
& y=\frac{Y_{0}+\lambda V_{1}}{Z_{0}+\lambda V_{3}}
\end{aligned}
$$

Special cases - parallel to the image plane, perpendicular When $\lambda \rightarrow \infty$ - vanishing points
In art - 1-point perspective, 2-point perspective, 3-point perspective CS682, Jana Kosecka

