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Why do we need Linear Algebra?

We will associate coordinates to
— 3D points in the scene
— 2D points in the CCD array
— 2D points in the image
Coordinates will be used to
— Perform geometrical transformations
— Associate 3D with 2D points
Images are matrices of numbers
— We will find properties of these numbers



Matrices

Sum:
[ a11 al2 ... A1m | Cnxm = Anxm + anm
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A and B must have the same
dimensions
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Example:



Matrices

Product:
A and B must have
Cop = Anx%%wxp compatible dimensions

Cij=

aikbkj A B =B A

nxn nxn

Examples:
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Matrices

Transpose:
men = ATnxm (A + B)T - AT + BT
¢y =4 (AB) =B" 4"
it A" =4 A is symmetric
Examples: P
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Matrices

Determinant: A must be square

det a;; dyp _ a; dyp —ua 4 a
1142 — Ay,
Ay Ay dy; 22
d; dyp dp 4 4 4
det|a a a.l=a.| > P|- 2!
21 22 23 11 12
sy iy 3

2 5
Example: det[3 1]=2—15=—13




Matrices

Inverse: A must be square
-1 —1
Anan nxn = 4 ”annxn =/
_1
dyp dp _ 1 dy d,
dy dy A Ay —dydy [—dy 4y
6 217 1[5 =2
Example: =—
1 5 281-1 6



2D,3D Vectors

ot
vV = [ i; c RQ vV — ig = R3
Magnitude: || v||= \/xlz +x,

If ||v|=1, V isaUNIT vector

A X X, :
— = , Is a unit vector
(v Vvl v

I x
Orientation: 6 = tan 1(—2)

X2

X1

v



Vector Addition



Vector Subtraction



Scalar Product



V/ o
g
U = un
| U3
(u,v) = ul

v = u1v1 + upv + u3zv3

Inner (dot) Product

v
uwl'y = { U1 U } { Ul w = u1.v1 + un.vo
2

The inner product is a SCALAR!

U1

. ] = [lul|[Jv]| cos a
2

oTo = u uz][

uTv=O<—>uJ_v
—‘01-
UV = (%9
| U3

cos(h) = A%

ullflv]]

lull = VaTu = \JuF +u3 + u3 norm of a vector



Vector (cross) Product

U=vxXWw

Wﬂ

The cross product is a VECTOR!

Magnitude:

Orientation:

[ull=llvw|=|v]|w|sme
wlov—ulv = (uxv)v=0
UXv = —vXu

a(u X v) = au X v=1u X av

u || u— (uXxv) 0



 Cross product between two vectorsin ¢ =a X b

Vector (cross) Product

0
as

where

0
aj

an

0
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b1
bo
- _b3_
—a3bo + axb3
a3zb1 — ay1b3
—anby + a1bo




Standard base vectors:

Coordinates of a point p in space:
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O
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Orthonormal Basis in 3D
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Linear Algebra
Prerequisites - continued
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Matrices

A € jpnxm N X m matrix

meaning / \
m points from n-dimensional space transformation
C = AAT \
. . . A € R2X2
Covariance matrix — symmetric
Square matrix associated with y = Ax

The data points (after mean

has been subtracted) in 2D Special case

matrix is square
2.
- N oo ns n .2
2.1 TiY; 1Y;



Geometric interpretation

Lines in 2D space - row solution
Equations are considered isolation

2c —y = 1
r+y = O

Linear combination of vectors in 2D
Column solution

po— — — — — —

21 .11, -1
1" R i

We already know how to multiply the vector by scalar



Linear equations

In 3D 2 1 11w ] 5 ]
4 —6 O v | = | =2
_—2 7 2__w_ _9_

When is RHS a linear combination of LHS

2 1 1 5
4 \u+| 6 |v4+ |0 |lw=]| =2
| -2 | 7 2 9
Ax =y
Solving linear n equations with n unknows det(A) # O

If matrix is invertible - compute the inverse  4-14x = 4-1y

Columns are linearly independent x=A"ly



Linear equations

Not all matrices are invertible

Simple examples:
Inverse of a 2x2 matrix (determinant non-zero)
Inverse of a diagonal matrix

Computing inverse - solve for the columns
Independently or using Gauss-Jordan method

2 | P | I 0
4 —6 0 X1 X9 X3 — 0 1
-2 7 2 0 0




Vector spaces (informally)

Vector space in n-dimensional space R"
n-dimensional columns with real entries

Operations of addition, multiplication and scalar
multiplication

Additions of the vectors and multiplication of a vector

by a scalar always produces vectors which lie in the
space

Matrices also make up vector space - e.g. consider
. C
all 3x3 matrices as elements of R space



Vector subspace

A subspace of a vector space is a non-empty set

Of vectors closed under vector addition and scalar
multiplication

Example: over-constrained system - more equations
then unknowns

Ui U b-

1 1 1
955

{4/ 9 {0 9 [ N ] — [)2

Uz s b:

3 3 3

The solution exists if b is in the subspace spanned
by vectors u and v

(V3] U1 b I
U9 2+ V9o ro = bQ
Us (V! b 3

— — —

— — —



Linear Systems - Nullspace

When matrix is square and invertible
When the matrix is square and noninvertible
When the matrix is nhon-square with more

constraints then unknowns

Ax =D

Solution exists when b is in column space of A
Special case

W=

All the vectors which satisfy Ax = () lie in the
NULLSPACE of matrix A



Vector space basis

« nx n matrix Ais invertible if it is of a full rank

* Rank of the matrix - number of linearly
iIndependent rows (see definition next page)

» If the rows of columns of the matrix A are linearly
iIndependent - the null space of contains only 0 vector

- Set of linearly independent vectors forms a basis of
the vector space

- @Given a basis, the representation of every vector is unique
Basis is not unique ( examples)



Linear independence

Definition A.1 (A linear space). A set of vectors V is
considered, as a linear space if, so-called vectors are close
under scalar multiplication and vector summation. Given any
two vectors v1,v2 and any two scalars o, 8 € R the linear
combination v = av; + Pvs is also a vector in V.

Definition A.4 (Linear independence) the set of vectors
S = {v;};~is said to be linearly independent if the equation
implies a1v1 + aovo + ...+ v, =0

a1 =09 =...=a, =0
Definition A.5 (Basis) A set of vectors of a linear space V
Is said o be basis, if B is a linearly independent set and B
Spans the entire space V = span(B)



Linear Equations

1
0
2

2

1
Vector space spanned by columns of A { 4

—6
7

u -+ v+

—2

-3

In general A € R™*™
Four basic subspaces

« Column space of A — dimension of C(A)

number of linearly independent columns

r = rank(A)

* Row space of A - dimension of R(A)

number of linearly independent rows

r = rank(AT)
* Null space of A - dimension of N(A) n-r
* Left null space of A — dimension of N(AAT) m —r
- Maximal rank - min(n,m) — smaller of the two dimensions



Linear Equations

Vector space spanned by columns of A { 4

In general A € R""*™

Four basic possibilities, suppose that the matrix A has full rank
Then:

e if n < m number of equations is less then number of
unknowns, the set of solutions is (m-n) dimensional vector
subspace of R"m

 if n = m there is a unique solution

e if n > m number of equations is more then number of
unknowns, there is no solution



Linear Equations — Square Matrices

1. As square and invertible
2. A s square and non-invertible

1. System Ax = b has at most one solution —
columns are linearly independent rank(A) = n

- then the matrix is invertible x = A~ 1y

2. Columns are linearly dependent rank < n
- then the matrix is not invertible



Linear Equations — non-square matrices

Long-tin matrix _ /bl_>§\

2
over-constrained 3 |x=] bo ax = b
system 4

The solution exist when b is aligned with [2,3,4]AT

If not we have to seek some approximation; least squares
approximation; solution that minimizes squared error

e?2 = (22 — b1)? 4 (3z — b)? + (4z — b3)?

Least squares solution - find such value of x that the error
Is minimized (take a derivative, set it to zero and solve for x)

Short for such solution
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Linear equations — non-squared matrices

Similarly when A is a matrix

1 2] 4
1 3 |x=1]65
0 0 6
Ax = b
e? = ||Ax — b||? Al Ax = ATb

x = (AT A)~1 AT

- If A has linearly independent columns ATA is square,
symmetric and invertible

At = (AT A)~1 AT

IS so called pseudoinverse of matrix A



Homogeneous Systems of equations (RHS is 0)

Ax =0
- When matrix is square and non-singular, there is a

unique trivial solution x = 0 (not very useful or interesting)

If m >= n there is a non-trivial solution when rank of A
Is rank(A) < n

We need to impose some constraint to avoid trivial
Solution, for example HXH =

mind such x that || Ax||* is minimized
|Ax||? = xAT Ax

Solution: eigenvector associated with the smallest eigenvalue




Eigenvalues and Eigenvectors

|4 =5 .
AX = [ 5> _3 ] Ax /)\X\
eigenvector
eigenvalue
Solve the equation: (A—XDx =0 (1)

—is in the null space of (A — \I)
A is chosen such that (A — A\I) has a null space

Computation of eigenvalues and eigenvectors (for dim 2,3)

1. Compute determinant
2. Find roots (eigenvalues) of the polynomial such that determinant =0

3. For each eigenvalue solve the equation (1)

For larger matrices — alternative ways of computation



Eigenvalues and Eigenvectors
Ax = Ax
Only special vectors are eigenvectors

such vectors whose direction will not be changed
by the transformation A (only scale)

Example eigenvalues eigenvectors
2 0 1 0
A:{O 3} )\1:2,)\2:3 U1:|:O:| ?}2:|:1:|

Transformation action A applied to an arbitrary vector is fully
determined by its eigenvalues and eigenvectors. Verify for:

_ _ |2 2 0][2] [4
TN P L [



Eigenvalues and Eigenvectors - Diagonalization

Given a square matrix A and its eigenvalues and
eigenvectors — matrix can be diagonalized

A= SAS™1
A= SAS1
Matrix of eigenvectors / "+ Diagonal matrix of eigenvalues
AS = AS
Al xy o ... Tp | = | AMx1 Axo ... A\pIp Ax = AX
—
/_ i _>\1 i
A1T1 oo ... ApZpn | = | 1 x> ... Tn Ao L.
- L - L An_
A= SAS1

- If some of the eigenvalues are the same, eigenvectors
are not independent



Diagonalization

Independent
For Symmetric Matrices
_ T
If Ais symmetric A= V/\XAV
Diagonal

orthonormal matrix of
eigenvectors

4

f there are no zero eigenvalues — matrix is invertible
f there are no repeated eigenvalues — matrix is diagonalizable
f all the eigenvalues are different then eigenvectors are linearly

A

matrix of eigenvalues

v

o @

A is symmetric, e.g. a covariance matrix
or some matrix B = AT A




Symmetric matrices (contd.)

* Properties of diagonalization of symmetric matrices

A=VAVT
A = Vdiag{o?,...02} V7’

* Frobenius norm of a matrix

2,]



Vector (Cross) Product Computation

u X v =

u X v = uv,

O
u3
| U2

)
|

—

Skew symmetric matrix associated with vector

w,v € R3
—u3z U2

0 —U1
Uuq 0

u3

c R3X3

O
O
1

u

W/ o

(w3 — uzvo)i+ (uzvy — uv3)j + (u1v9 — usvy)K

A/\

uv

=S

a=—(a)’



