
1

Robot Control Basics
CS 685

Jana Kosecka
George Mason University

1

Control basics

• Use some concepts from control theory to understand and
learn how to control robots

• Control Theory – general field studies control and
understanding of behavior of dynamical systems
(robots, epidemics, biological systems, stock markets etc.)

2

2

Control basics

• Basic ingredients
- state of the system current position of the robot
- dynamics behavior of the systems as a function of time
(description how system state changes as a function of time)

- system of differential equations

- control input which can affect the behavior
- controller which takes some function of the goal, the state


x = [x, y,θ]

x = v cosθ
y = v sinθ
θ =ω

u = [v,ω]

x = f(x, u)

3

Control basics

• Basic ingredients
- controller which takes some function of the goal, the state
- y output, measurement of some aspect of the state

• Feedback control – how to compute the control based on output
(state) and the desired objective

• Difference equations (examples)

u x
r y
+

-

xk+1 = f(xk , uk)

4

3

Simple control strategies

• Moving to a point – go to a point
• Consider a problem of moving to a point (x,y)
• How to control angular and linear velocity of the

mobile robot
• Linear velocity – proportional to distance
• Angular velocity – steer towards the goal

• Following a line – steer toward a line
• Angular velocity proportional to the combination

distance from the line and also to alignment with the
line

5

Moving to a point

! = Kh(✓
⇤ � ✓)

v = Kv

p
(x⇤ � x)2 + (y⇤ � y)2)

• Differential drive robot – go from the current pose
to desired point with coordinates

✓⇤ = tan�1 y⇤ � y

x⇤ � x

[x⇤, y⇤]T

{I}
�

{R}

✓⇤

✓

[x, y, ✓]T

[x⇤, y⇤]T
[x, y, ✓]T

Source P. Corke: Robotics, Vision and
Control. Springer

6

4

Moving to a line

• Equation of a line
• Shortest distance of the robot
the line
• Orientation of the line

• Steer towards the line and align the robot with the
line

{I}
�

{R}

✓

[x, y, ✓]T

ax+ by + c = 0

d =
[a, b, c][x, y, 1]Tp

a2 + b2

↵d = �Kdd Kd > 0

✓⇤ = tan�1 �a

b

↵h = Kh(✓
⇤ � ✓)

! = �Kdd+Kh(✓
⇤ � ✓)

7

Following a path

! = Kh(✓
⇤ � ✓)

• Same as going to the point – now sequence of
waypoints

✓⇤ = tan�1 y⇤ � y

x⇤ � x[x⇤, y⇤]T

{I}
�

{R}

✓⇤

✓

[x, y, ✓]T

x(t), y(t)

e = Kv

p
(x⇤ � x)2 + (y⇤ � y)2)� d⇤

v = Kve+Ki

Z
edt

distance behind the pursuit pointd⇤

Source P. Corke: Robotics, Vision and Control, Springer

8

5

Kinematic Position Control

The kinematic of a differential drive
mobile robot described in the initial
frame {xI, yI, q} is given by,

relating the linear velocities in the
direction of the xI and yI of the initial
frame.
Let a denote the angle between the
xR axis of the robots reference frame
and the vector connecting the center
of the axle of the wheels with the
final position.

ú
û

ù
ê
ë

é

ú
ú
ú

û

ù

ê
ê
ê

ë

é
=

ú
ú
ú

û

ù

ê
ê
ê

ë

é

w
q
q

q

v
y
xI

10
0sin
0cos

!

!

!

Dy

© R. Siegwart, I. Nourbakhsh

10

Move to Pose

• Set intermediate positions lying on the requested path.
• Given a goal how to compute the control commands for
• linear and angular velocities to reach the desired configuration

Problem statement
• Given arbitrary position and orientation of the robot

how to reach desired goal orientation and position

3.6.1

© R. Siegwart, I. Nourbakhsh

€

[x,y,θ]

€

[xg ,yg,θg]

Dy

11

6

yR

xR

goal

v(t)

w(t)

q

start e

Move to Pose: Feedback Control, Problem
Statement

• Find a control matrix K, if
exists

• with kij=k(t,e)
• such that the control of

v(t) and w(t)

• drives the error e to zero.

ú
û

ù
ê
ë

é
=

232221

131211

kkk
kkk

K

ú
ú
ú

û

ù

ê
ê
ê

ë

é
×=×=ú

û

ù
ê
ë

é

q
w

y
x

KeK
t
tv

R

)(
)(

0)(lim =
¥®
te

t

3.6.2

© R. Siegwart, I. Nourbakhsh

• note previous slide the goal is set at zero

12

• The kinematic of a differential drive mobile robot
described in the initial frame {xI, yI, q} is given by,

where and are the linear velocities in the direction of
the xI and yI of the initial frame.
Let a denote the angle between the xR axis of the
robots reference frame and the vector connecting the
center of the axle of the wheels with the final position.

ú
û

ù
ê
ë

é

ú
ú
ú

û

ù

ê
ê
ê

ë

é
=

ú
ú
ú

û

ù

ê
ê
ê

ë

é

w
q
q

q

v
y
xI

10
0sin
0cos

!

!

!

3.6.2

Dy

Move to Pose

13

7

Move to Pose: Coordinates Transformation
3.6.2

Dy

For from for

Coordinates transformation into polar coordinates
with its origin at goal position:

System description, in the new polar coordinates

€

α

14

Move to Pose: Remarks

• The coordinates transformation is not defined at x = y = 0; as in such
a point the determinant of the Jacobian matrix of the transformation is
not defined, i.e. it is unbounded

• For the forward direction of the robot points toward
the goal, for it is the backward direction.

• By properly defining the forward direction of the robot at its initial
configuration, it is always possible to have at t = 0. However
this does not mean that a remains in I1 for all time t.

3.6.2

15

8

Move to Pose: The Control Law

• It can be shown, that with

the feedback controlled system

• will drive the robot to
• The control signal v has always constant sign,

– the direction of movement is kept positive or negative
during movement

– parking maneuver is performed always in the most natural way
and without ever inverting its motion.

– Further details : How to select the constant parameters k’s so as
to achieve that the error will go to zero

() ()000 ,,,, =bar

3.6.2

16

Quadcopters model

• Popular unmanned areal vehicles (description adopted
from (Robotics, Vision and control book, P. Corke
http://www.petercorke.com/RVC/)

• Upward thrust moving up in the negative z dir.
• Lift const. b depends on air density, blade radius and

chord length

Ti = bωi
2

T1

T2

T3

T4

z

x

y ω1

ω3

ω2

ω4

30

9

Quadcopters

• Translational dynamics (Newton’s law – includes
mass/acceleration/ forces) (Gravity – Total thrust (rotated to the
world frame)

• Rotations are generated by pairwise differences in rotor thrusts
(d distance from the center)

• Rolling and pitching torques around x and y
• Torque in z – yaw torque

m v =
0
0
mg

!

"

#
#
#

$

%

&
&
&
− RB

0
0
0
T

!

"

#
#
#

$

%

&
&
&
, T = Ti

i=1..4
∑

τ x = dT4 − dT2
τ x = db(ω4

2 −ω2
2)

τ y = db(ω1

2 −ω3
2)

Qi = kωi
2

τ z = (Q1 −Q2 +Q3 −Q4)

Torque applied by the motor as opposed to
Aerodynamic drag

31

Quadcopter dynamics
• Rotational Dynamics, rot. acceleration in the airframe, Euler’s

eq. of motion

• Where J is 3x3 inertia matrix
• Rotational Inertia of a body in 3D is represented by a 3x3

symmetric matrix J
• Diagonal elements are moments of inertia and off-diagonal are

products of inertia
• Inertia matrix is a constant and depends on the mass and the

shape of the body

J ω = −

ω × J


ω + Γ, Γ = [τ x,τ y,τ z]

T

J =

Jxx Jxy Jxz
Jxy Jyy Jyz
Jxz Jyz Jzz

!

"

#
#
#
#

$

%

&
&
&
&

32

10

ω1
2

ω2
2

ω3
2

ω4
2

!

"

#
#
#
#
#
#

$

%

&
&
&
&
&
&

= A−1

T
τ x
τ y
τ z

!

"

#
#
#
#
#

$

%

&
&
&
&
&

T
τ x
τ y
τ z

!

"

#
#
#
#
#

$

%

&
&
&
&
&

=

−b −b −b −b
0 −db 0 db
db 0 −db 0
k −k k −k

!

"

#
#
#
#

$

%

&
&
&
&

ω1
2

ω2
2

ω3
2

ω4
2

!

"

#
#
#
#
#
#

$

%

&
&
&
&
&
&

• Forces and torques acting of the airframe obtained integrating
forward the eq. above and Newton’s second law (prev. slide)

• The goal of control is then derive proper thrust and torque to
achieve desired goal – compute the rotor speeds

• Substitute these to translational and rotational dynamics and get
forward dynamics equations of quadropter

Quadcopter dynamics

33

Paths and Trajectories

• In general – control problem – need to generate set of
control commands to accomplish the task

• In an open loop setting there are two components

1. Geometric Path Generation
2. Trajectory tracking (trajectory – time indexed path)

34

11

1D trajectories

• Trajectory, scalar function of time
• We want smooth trajectories
• Temporal derivatives
• Continuous velocity and acceleration profiles

35

Several Possible Path Shapes for a
Single Joint

Initial
position

Goal
position

36

12

Cubic Polynomials

4 constraints on

2
321

3
3

2
210

0

32)(

)(

.0)(,0)0(

,)(,)0(
)(

tataat

tatataat

t

t
t

f

ff

++=

+++=

==

==

q

q

qq

qqqq
q

!

!!

These 4 constraints can be satisfied by a polynomial
of at least third degree.

: initial and final values

: the function is continuous
in velocity

37

).(2

),(3
,0
,

.320
,0

,
,

033

022

1

00

2
321

1

3
3

2
210

00

qq

qq

q

q

q

--=

-=

=
=

++=

=

+++=

=

f
f

f
f

ff

ffff

t
a

t
a

a
a

tataa
a

tatataa
a

The cubic polynomial that
connects any initial joint angle
position with any desired final
position when the joint starts and
Finishes at zero velocity.

Cubic Polynomials

: combining with constraints

38

13

Example
A single-link robot with a rotary
joint:

Move the joint in a smooth manner
from q=15 to q=75 in 3 seconds

0a =15.0

1a = 0.0

2a = 20.0

3a = −4.44

θ(t) =15.0+ 20.0t2 − 4.44t3

θ
•

(t) = 40.0 t −13.33t2

θ
••

(t) = 40.0− 26.66 t

39

1D trajectories

• Acceleration profile not smooth – higher order
polynomial

• Continuous velocity and acceleration profiles

• Given initial and final conditions for t=0 and t=T

θ(t) = at5 + bt 4 + ct3 + dt2 + et + f
θ(t) = 5at 4 + 4bt3 +3ct2 + 2dt + e
θ (t) = 20at3 +12bt2 + 5ct + 2d

θ θ θ
θ0 θ0 θ0
θT θT θT

40

14

1-D trajectories

• Solve for coefficients, plot trajectories

• Non-zero initial values – velocity overshoot at T

41

Problems with polynomials
• Overshoots velocity at final value T
• Velocity peaks in the middle, otherwise is far less

then maximum
• We should like to have a flatter velocity profiles
• Solution: hybrid trajectories with polynomial

segments for acceleration and de=acceleration
• Linear segments with parabolic blends (trapezoidal

velocity profiles)

42

15

Linear Function With Parabolic Blends

Constant
acceleration

The linear function and the two parabolic functions are
splined together so that the entire path is continuous in
position and velocity.

43

The parabolic blends have the same duration,
are symmetric about the halfway point in time,
and the halfway point in position.

bq

Linear Function With Parabolic Blends

44

16

The velocity at the end of the
blend region must equal the
velocity of the linear section.

.
)(4
2

)(4
2

0)(

2

.
2
1

,

2
0

0
22

0
2

2
0

t

ttt

ttt

tt

t

tt
t

f

f
b

fbb

h

bb

bh

bh
b

qq
q

q

qqqq

qqqq

qqq

qqq

-
³

--
-=

=-+-

=

+=

-
-

=

!!

!!

!!!!

!!!!

!!

!!

: the constraints
on acceleration

When equality occurs, the linear portion has shrunk to zero length.

Linear Function With Parabolic Blends

Usually acceleration is
chosen and then solve for tb

45

Two possible
choices of linear
path with parabolic
blends

46

17

Multi-segment trajectories

• Often need to move through set of way points without
stopping

• E.g. to avoid obstacles, or perform a task
• Over constrained problem, we need to surrender

ability to reach every point

47

Linear Function With Parabolic Blends for
a Path With Via Points

Linear function connects the via points and
parabolic blend regions are around each via point

48

18

The Path Generator

• The results of computations constitute a plan for the
trajectory. At execution time the path generator will
use these numbers to compute , , ••

q
•

qq

49

Paths and Trajectories

• In general – control problem – need to generate set of
control commands to accomplish the task

• In an open loop setting there are two components

1. Geometric Path Generation
2. Trajectory tracking (trajectory – time indexed path)

• Example omni-directional robot – can control all degress
of freedom independently

€

δM = δm +δ s = 3+ 0 = 3

50

19

Path / Trajectory Considerations: Two-Steer
3.4.3

© R. Siegwart, I. Nourbakhsh

Move for 1s with constant speed along X, rotate steered wheels by
-50/50 degrees; change orientation counterclockwise by 90
degrees in 1s, move for 1s with constant speed along Y

51

Pose trajectories

• Examples so far: 1D trajectories (and velocity and
acceleration profiles)

• Multi-segment 1D trajectories
• Multi-segment 2D trajectories comprised of lines and

circles

• How to generate trajectory for rigid body so as to
move from initial pose to final pose

• Interpolation
• Translation only case for generate

intermediate translations as:

(R0,T0) (R1,T1)

T = (1− s)T0 + sT1

s = [0,1]

52

20

Interpolation of rotations

• Interpolation of rotations

• This won’t work, rotation matrix properties are
violated

• Spherical interpolation using quaternions
• Interpolation using exponential parametrization

• Similarly for full Rigid Body Motion

R = (1− s)R0 + sR1


ω = (1− s) ω0 + s


ω1

53

Incremental Motion

• Small incremental rotations

• Inertial Navigation Systems
• Estimate velocity, orientation, and position wrt to

inertial frame (frame of reference with respect to
which is motion described)

• IMU – inertial measurement unit - measures
accelerations and angular velocities and integrate
them over time (3 orthogonally mounted gyros
measure the angular velocity of the body)

R1 = (ω̂σ t + I)R0

54

