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Control basics

• Use some concepts from control theory to understand and 
learn how to control robots

• Control Theory – general field studies control and 
understanding of behavior of dynamical systems 
(robots, epidemics, biological systems, stock markets etc.)
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Control basics

• Basic ingredients 
- state of the system                      current position of the robot
- dynamics behavior of the systems as a function of time
(description how system state changes as a function of time)

- system of differential equations 

- control input which can affect the behavior 
- controller which takes some function of the goal, the state 


x = [x, y,θ ]

x = v cosθ
y = v sinθ
θ =ω

u = [v,ω]

x = f( x, u )
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Control basics

• Basic ingredients 
- controller which takes some function of the goal, the state
- y output, measurement of some aspect of the state

• Feedback control – how to compute the control based on output 
(state) and the desired objective

• Difference equations (examples)

u x
r y
+

-

xk+1 = f( xk , uk )
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Simple control strategies

• Moving to a point – go to a point
• Consider a problem of moving to a point (x,y)
• How to control angular and linear velocity of the 

mobile robot
• Linear velocity – proportional to distance 
• Angular velocity – steer towards the goal 

• Following a line – steer toward a line
• Angular velocity proportional to the combination 

distance from the line and also to alignment with the 
line
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Moving to a point

! = Kh(✓
⇤ � ✓)

v = Kv

p
(x⇤ � x)2 + (y⇤ � y)2)

• Differential drive robot – go from the current pose 
to desired point with coordinates 

✓⇤ = tan�1 y⇤ � y

x⇤ � x

[x⇤, y⇤]T

{I}
�

{R}

✓⇤

✓

[x, y, ✓]T

[x⇤, y⇤]T
[x, y, ✓]T

Source P. Corke: Robotics, Vision and 
Control. Springer
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Moving to a line

• Equation of a line 
• Shortest distance of the robot 
the line
• Orientation of the line 

• Steer towards the line and align the robot with the 
line 

{I}
�

{R}

✓

[x, y, ✓]T

ax+ by + c = 0

d =
[a, b, c][x, y, 1]Tp

a2 + b2

↵d = �Kdd Kd > 0

✓⇤ = tan�1 �a

b

↵h = Kh(✓
⇤ � ✓)

! = �Kdd+Kh(✓
⇤ � ✓)
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Following a path

! = Kh(✓
⇤ � ✓)

• Same as going to the point – now sequence of 
waypoints 

✓⇤ = tan�1 y⇤ � y

x⇤ � x[x⇤, y⇤]T

{I}
�

{R}

✓⇤

✓

[x, y, ✓]T

x(t), y(t)

e = Kv

p
(x⇤ � x)2 + (y⇤ � y)2)� d⇤

v = Kve+Ki

Z
edt

distance behind the pursuit pointd⇤

Source P. Corke: Robotics, Vision and Control, Springer
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Kinematic Position Control

The kinematic of a differential drive 
mobile robot described in the initial 
frame {xI, yI, q} is given by,

relating the linear velocities in the 
direction of the xI and yI of the initial 
frame.
Let a denote the angle between the 
xR axis of the robots reference frame 
and the vector  connecting the center 
of the axle of the wheels with the 
final position. 

ú
û

ù
ê
ë

é

ú
ú
ú

û

ù

ê
ê
ê

ë

é
=

ú
ú
ú

û

ù

ê
ê
ê

ë

é

w
q
q

q

v
y
xI

10
0sin
0cos

!

!

!

Dy

© R. Siegwart, I. Nourbakhsh
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Move to Pose

• Set intermediate positions lying on the requested path. 
• Given a goal how to compute the control commands for 
• linear and angular velocities to reach the desired configuration

Problem statement 
• Given arbitrary position and orientation of the robot 

how to reach desired goal orientation and position 

3.6.1

© R. Siegwart, I. Nourbakhsh

€ 

[x,y,θ]

€ 

[xg ,yg,θg ]

Dy
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yR

xR

goal

v(t)

w(t)

q

start e

Move to Pose: Feedback Control, Problem 
Statement

• Find a control matrix K, if 
exists

• with kij=k(t,e)
• such that the control of 

v(t) and w(t)

• drives the error e to zero.
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3.6.2

© R. Siegwart, I. Nourbakhsh

• note previous slide the goal is set at zero
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• The kinematic of a differential drive mobile robot 
described in the initial frame {xI, yI, q} is given by,

where  and  are the linear velocities in the direction of 
the xI and yI of the initial frame.
Let a denote the angle between the xR axis of the 
robots reference frame and the vector  connecting the 
center of the axle of the wheels with the final position. 
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Move to Pose: Coordinates Transformation
3.6.2

Dy

For       from for

Coordinates transformation into polar coordinates 
with its origin at goal position:

System description, in the new polar coordinates

€ 

α
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Move to Pose:  Remarks

• The coordinates transformation is not defined at x = y = 0; as in such 
a point the determinant of the Jacobian matrix of the transformation is 
not defined, i.e. it is unbounded

• For                the forward direction of the robot points toward 
the goal, for             it is the backward direction.

• By properly defining the forward direction of the robot at its initial 
configuration, it is always possible to have            at t = 0. However 
this does not mean that a remains in I1 for all time t. 

3.6.2
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Move to Pose: The Control Law

• It can be shown, that with

the feedback controlled system 

• will drive the robot to 
• The control signal v has always constant sign, 

– the direction of movement is kept positive or negative 
during movement 

– parking maneuver is performed always in the most natural way 
and without ever inverting its motion.

– Further details : How to select the constant parameters k’s so as 
to achieve that the error will go to zero

( ) ( )000 ,,,, =bar

3.6.2
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Quadcopters model

• Popular unmanned areal vehicles (description adopted 
from (Robotics, Vision and control book, P. Corke 
http://www.petercorke.com/RVC/)

• Upward thrust                  moving up in the negative z dir.  
• Lift const. b depends on air density, blade radius and 

chord length

Ti = bωi
2

T1

T2

T3

T4

z

x

y ω1

ω3

ω2

ω4

30
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Quadcopters

• Translational dynamics (Newton’s law – includes 
mass/acceleration/ forces) (Gravity – Total thrust (rotated to the 
world frame)

• Rotations are generated by pairwise differences in rotor thrusts 
(d distance from the center) 

• Rolling and pitching torques around x and y
• Torque in z – yaw torque

m v =
0
0
mg
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, T = Ti

i=1..4
∑

τ x = dT4 − dT2
τ x = db(ω4

2 −ω2
2 )

τ y = db(ω1

2 −ω3
2 )

Qi = kωi
2

τ z = (Q1 −Q2 +Q3 −Q4 )

Torque applied by the motor as opposed to 
Aerodynamic drag
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Quadcopter dynamics
• Rotational Dynamics, rot. acceleration in the airframe, Euler’s 

eq. of motion

• Where J is 3x3  inertia matrix
• Rotational Inertia of a body in 3D is represented by a 3x3 

symmetric matrix J 
• Diagonal elements are moments of inertia and off-diagonal are 

products of inertia
• Inertia matrix is a constant and depends on the mass and the 

shape of the body

J ω = −

ω × J


ω + Γ, Γ = [τ x,τ y,τ z ]

T

J =

Jxx Jxy Jxz
Jxy Jyy Jyz
Jxz Jyz Jzz
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• Forces and torques acting of the airframe obtained integrating 
forward the eq. above and Newton’s second law (prev. slide)

• The goal of control is then derive proper thrust and torque to 
achieve desired goal – compute the rotor speeds

• Substitute these to translational and rotational dynamics and get 
forward dynamics equations of quadropter

Quadcopter dynamics
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Paths and Trajectories

• In general – control problem – need to generate set of 
control commands to accomplish the task

• In an open loop setting there are two components

1. Geometric Path Generation 
2. Trajectory tracking (trajectory – time indexed path)

34
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1D trajectories

• Trajectory, scalar function of time
• We want smooth trajectories
• Temporal derivatives
• Continuous velocity and acceleration profiles 

35

Several Possible Path Shapes for a 
Single Joint

Initial 
position

Goal 
position

36
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Cubic Polynomials

4 constraints on
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These 4 constraints can be satisfied by a polynomial 
of at least third degree.

: initial and final values

: the function is continuous 
in velocity
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The cubic polynomial that 
connects any initial joint angle 
position with any desired final 
position when the joint starts and 
Finishes at zero velocity.

Cubic Polynomials

: combining with constraints
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Example  
A single-link robot with a rotary 
joint:

Move the joint in a smooth manner 
from q=15 to q=75 in 3 seconds

0a =15.0

1a = 0.0

2a = 20.0

3a = −4.44

θ(t) =15.0+ 20.0t2 − 4.44t3

θ
•

(t) = 40.0 t −13.33t2

θ
••

(t) = 40.0− 26.66 t
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1D trajectories

• Acceleration profile not smooth – higher order 
polynomial

• Continuous velocity and acceleration profiles

• Given initial and final conditions for t=0 and t=T 

θ(t) = at5 + bt 4 + ct3 + dt2 + et + f
θ(t) = 5at 4 + 4bt3 +3ct2 + 2dt + e
θ (t) = 20at3 +12bt2 + 5ct + 2d

θ θ θ
θ0 θ0 θ0
θT θT θT

40
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1-D trajectories

• Solve for coefficients, plot trajectories

• Non-zero initial values – velocity overshoot at T

41

Problems with polynomials
• Overshoots velocity at final value T
• Velocity peaks in the middle, otherwise is far less 

then maximum
• We should like to have a flatter velocity profiles
• Solution: hybrid trajectories with polynomial 

segments for acceleration and de=acceleration
• Linear segments with parabolic blends (trapezoidal 

velocity profiles)

42
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Linear Function With Parabolic Blends

Constant
acceleration

The linear function and the two parabolic functions are 
splined together so that the entire path is continuous in 
position and velocity.

43

The parabolic blends have the same duration,
are symmetric about the halfway point in time, 
and the halfway point in position.

bq

Linear Function With Parabolic Blends

44
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The velocity at the end of the 
blend region must equal the 
velocity of the linear section.
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: the constraints
on acceleration

When equality occurs, the linear portion has shrunk to zero length.

Linear Function With Parabolic Blends

Usually acceleration is 
chosen and then solve for tb

45

Two possible 
choices of linear 
path with parabolic 
blends
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Multi-segment trajectories

• Often need to move through set of way points without 
stopping

• E.g. to avoid obstacles, or perform a task 
• Over constrained problem, we need to surrender 

ability to reach every point 

47

Linear Function With Parabolic Blends for 
a Path With Via Points

Linear function connects the via points and 
parabolic blend regions are around each via point

48
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The Path Generator

• The results of computations constitute a plan for the 
trajectory. At execution time the path generator will 
use these numbers to compute   ,    , ••

q
•

qq
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Paths and Trajectories

• In general – control problem – need to generate set of 
control commands to accomplish the task

• In an open loop setting there are two components

1. Geometric Path Generation 
2. Trajectory tracking (trajectory – time indexed path)

• Example omni-directional robot – can control all degress 
of freedom independently

€ 

δM = δm +δ s = 3+ 0 = 3

50
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Path / Trajectory Considerations: Two-Steer
3.4.3

© R. Siegwart, I. Nourbakhsh

Move for 1s with constant speed along X, rotate steered wheels by 
-50/50  degrees; change orientation counterclockwise by 90 
degrees in 1s, move for 1s with constant speed along Y
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Pose trajectories

• Examples so far: 1D trajectories (and velocity and 
acceleration profiles)

• Multi-segment 1D trajectories
• Multi-segment 2D trajectories comprised of lines and 

circles

• How to generate trajectory for rigid body so as to 
move from initial pose           to final pose

• Interpolation
• Translation only case for              generate 

intermediate translations as: 

(R0,T0 ) (R1,T1)

T = (1− s)T0 + sT1

s = [0,1]

52
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Interpolation of rotations 

• Interpolation of rotations

• This won’t work, rotation matrix properties are 
violated 

• Spherical interpolation using quaternions 
• Interpolation using exponential parametrization

• Similarly for full Rigid Body Motion 

R = (1− s)R0 + sR1


ω = (1− s) ω0 + s


ω1
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Incremental Motion 

• Small incremental rotations

• Inertial Navigation Systems 
• Estimate velocity, orientation, and position wrt to 

inertial frame (frame of reference with respect to 
which is motion described)

• IMU – inertial measurement unit - measures 
accelerations and angular velocities and integrate 
them over time (3 orthogonally mounted gyros 
measure the angular velocity of the body)

R1 = (ω̂σ t + I )R0
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