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Probabilistic Robotics 

Discrete Filters and Particle Filters 
Models 

Some slides adopted from: Wolfram Burgard, Cyrill Stachniss,  

Maren Bennewitz, Kai Arras and Probabilistic Robotics Book 
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Probabilistic Localization 
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Piecewise  
Constant 
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Discrete Bayes Filter Algorithm  

1.   Algorithm Discrete_Bayes_filter( Bel(x),d ): 
2.   η=0	



3.   If d is a perceptual data item z then 
4.       For all x do 
5.    
6.    
7.       For all x do 
8.    

9.   Else if d is an action data item u then 

10.       For all x do 
11.    
12.   Return Bel’(x)       
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Piecewise Constant Representation 
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Implementation (1) 
•  To update the belief upon sensory input and to carry out 

the normalization one has to iterate over all cells of the 
grid. 

•  Especially when the belief is peaked (which is generally the 
case during position tracking), one wants to avoid 
updating irrelevant aspects of the state space. 

•  One approach is not to update entire sub-spaces of the 
state space. 

•  This, however, requires to monitor whether the robot is 
de-localized or not. 

•  To achieve this, one can consider the likelihood of the 
observations given the active components of the state 
space. 



7 

Implementation (2) 
•  To efficiently update the belief upon robot motions, one typically 

assumes a bounded Gaussian model for the motion uncertainty. 
•  This reduces the update cost from O(n2) to O(n), where n is the 

number of states. 
•  The update can also be realized by shifting the data in the grid 

according to the measured motion. 
•  In a second step, the grid is then convolved using a separable 

Gaussian Kernel. 
•  Two-dimensional example: 
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  Fewer arithmetic operations 

  Easier to implement 
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Grid-based Localization 



Application Example: Rhino 

9 
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Sonars and  
Occupancy Grid Map  
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  Recall: Discrete filter 

  Discretize the continuous state space 

  High memory complexity 

  Fixed resolution (does not adapt to the belief) 

  Particle filters are a way to efficiently represent  
non-Gaussian distribution 

  Basic principle 

  Set of state hypotheses (“particles”) 

  Survival-of-the-fittest 

Motivation 



Sample-based Localization (sonar) 
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  Set of weighted samples 

Mathematical Description 

  The samples represent the posterior 

State hypothesis Importance weight 
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  Particle sets can be used to approximate functions 

Function Approximation 

  The more particles fall into an interval, the higher 
the probability of that interval 

  How to draw samples form a function/distribution? 
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  Let us assume that f(x)<1 for all x 
  Sample x from a uniform distribution 

  Sample c from [0,1] 

  if f(x) > c   keep the sample 
otherwise  reject the sampe  

Rejection Sampling 

c

x
f(x) 

c’ 

x’ 

f(x’) 

OK 
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  We can even use a different distribution g to 
generate samples from f 

  By introducing an importance weight w, we can 
account for the “differences between g and f ” 

  w = f / g 
  f is often called 

target 

  g is often called 
proposal 

  Pre-condition: 
 f(x)>0  g(x)>0 

Importance Sampling Principle 



Particle Filters 



Sensor Information: Importance Sampling 



Robot Motion 



Sensor Information: Importance Sampling 



Robot Motion 
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Particle Filter Algorithm 

  Sample the next generation for particles using the 
proposal distribution 

  Compute the importance weights : 
 weight = target distribution / proposal distribution 

  Resampling: “Replace unlikely samples by more 
likely ones” 

  [Derivation of the MCL equations on the 
blackboard] 
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1.   Algorithm particle_filter( St-1, ut-1 zt): 

2.   

3.  For                                                Generate new samples 

4.    Sample index j(i) from the discrete distribution given by wt-1 

5.   Sample     from                         using          and 

6.        Compute importance weight 

7.       Update normalization factor 
8.         Insert 
9.   For  

10.       Normalize weights 

Particle Filter Algorithm 



draw xi
t-1 from Bel(xt-1) 

draw xi
t from p(xt | xi

t-1,ut-1) 

Importance factor for xi
t: 

Particle Filter Algorithm 



Resampling 

• Given: Set S of weighted samples. 

• Wanted : Random sample, where the 
probability of drawing xi is given by wi. 

• Typically done n times with replacement to 
generate new sample set S’. 



w2 

w3 

w1 wn 

Wn-1 

Resampling 
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  Roulette wheel 

  Binary search, n log n 

  Stochastic universal sampling 

  Systematic resampling 

  Linear time complexity 

  Easy to implement, low variance 



1.   Algorithm systematic_resampling(S,n): 

2.   
3.   For    Generate cdf 
4.       
5.       Initialize threshold 

6.   For    Draw samples … 
7.     While (            )  Skip until next threshold reached 
8.          
9.       Insert 
10.                                            Increment threshold 

11.  Return S’ 

Resampling Algorithm 

€ 

u1 ~U[0,n
−1], i =1

Also called stochastic universal sampling 
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Mobile Robot Localization 

 Each particle is a potential pose of the robot 

  Proposal distribution is the motion model of 
the robot (prediction step) 

  The observation model is used to compute 
the importance weight (correction step) 

[For details, see PDF file on the lecture web page] 



Start 

Motion Model  Reminder 



Proximity Sensor Model Reminder 

Laser sensor Sonar sensor 
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Sample-based Localization (sonar) 
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Initial Distribution 
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After Incorporating Ten  
Ultrasound Scans 
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After Incorporating 65 Ultrasound 
Scans 
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Estimated Path 



Vision-based Localization 

P(z|x) 

h(x) 

z 



Under a Light 

Measurement z: P(z|x): 



Next to a Light 

Measurement z: P(z|x): 



Elsewhere 

Measurement z: P(z|x): 



Global Localization Using Vision 
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Limitations 

• The approach described so far is able to  
•  track the pose of a mobile robot and to 
• globally localize the robot. 

• How can we deal with localization errors 
(i.e., the kidnapped robot problem)? 
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Approaches 

• Randomly insert samples (the robot can be 
teleported at any point in time). 

•  Insert random samples proportional to the 
average likelihood of the particles (the 
robot has been teleported with higher 
probability when the likelihood of its 
observations drops).  
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Summary – Particle Filters 

• Particle filters are an implementation of 
recursive Bayesian filtering 

• They represent the posterior by a set of 
weighted samples 

• They can model non-Gaussian distributions 
• Proposal to draw new samples 
• Weight to account for the differences 

between the proposal and the target 
• Monte Carlo filter, Survival of the fittest, 

Condensation, Bootstrap filter 
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Summary – PF Localization 

•  In the context of localization, the particles 
are propagated according to the motion 
model. 

• They are then weighted according to the 
likelihood of the observations. 

•  In a re-sampling step, new particles are 
drawn with a probability proportional to the 
likelihood of the observation.  


