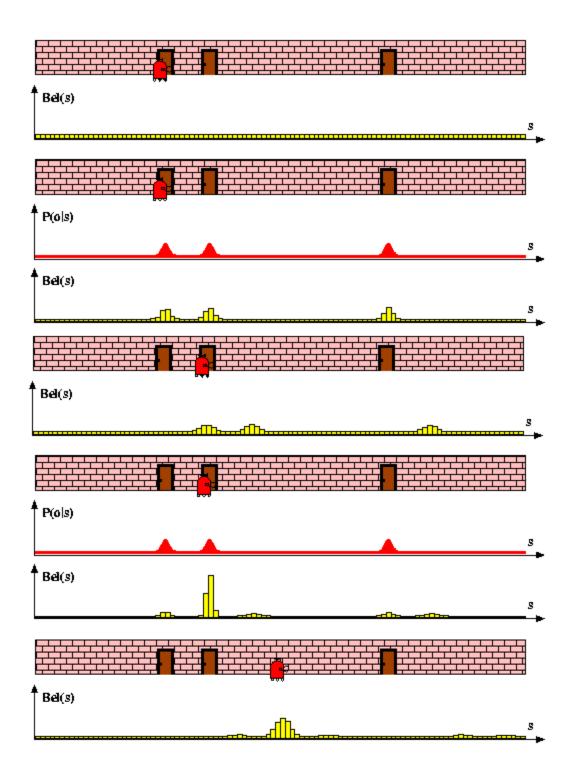
Probabilistic Robotics

Discrete Filters and Particle Filters Models

Some slides adopted from: Wolfram Burgard, Cyrill Stachniss, Maren Bennewitz, Kai Arras and Probabilistic Robotics Book

$$Bel(x \mid z, u) = \alpha p(z \mid x) \int_{x'} p(x \mid u, x') Bel(x') dx'$$

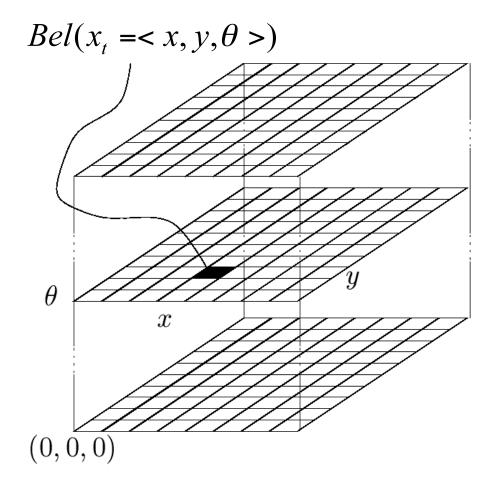
Piecewise Constant



Discrete Bayes Filter Algorithm

```
Algorithm Discrete_Bayes_filter( Bel(x),d ):
2.
     \eta=0
3.
     If d is a perceptual data item z then
4.
        For all x do
            Bel'(x) = P(z \mid x)Bel(x)
5.
6.
            \eta = \eta + Bel'(x)
7. For all x do
8.
            Bel'(x) = \eta^{-1}Bel'(x)
9.
     Else if d is an action data item u then
10.
        For all x do
            Bel'(x) = \sum P(x \mid u, x') Bel(x')
12. Return Bel'(x)
```

Piecewise Constant Representation

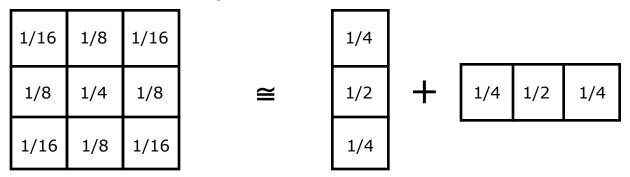


Implementation (1)

- To update the belief upon sensory input and to carry out the normalization one has to iterate over all cells of the grid.
- Especially when the belief is peaked (which is generally the case during position tracking), one wants to avoid updating irrelevant aspects of the state space.
- One approach is not to update entire sub-spaces of the state space.
- This, however, requires to monitor whether the robot is de-localized or not.
- To achieve this, one can consider the likelihood of the observations given the active components of the state space.

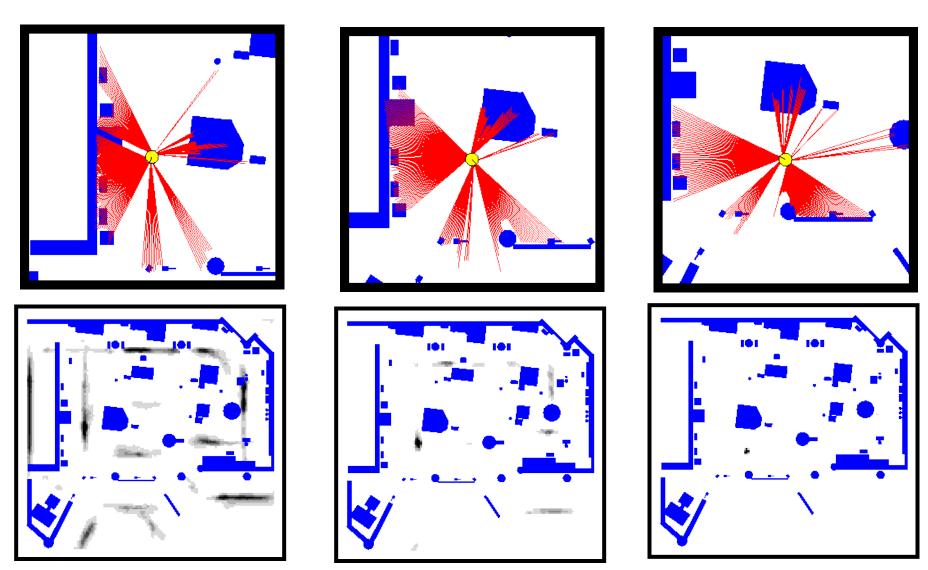
Implementation (2)

- To efficiently update the belief upon robot motions, one typically assumes a bounded Gaussian model for the motion uncertainty.
- This reduces the update cost from $O(n^2)$ to O(n), where n is the number of states.
- The update can also be realized by shifting the data in the grid according to the measured motion.
- In a second step, the grid is then convolved using a separable Gaussian Kernel.
- Two-dimensional example:



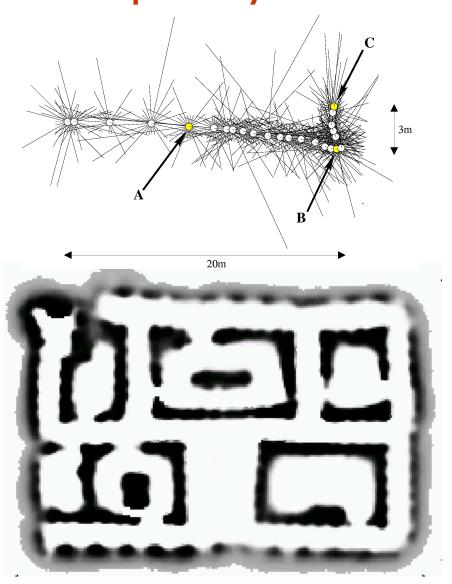
- Fewer arithmetic operations
- Easier to implement

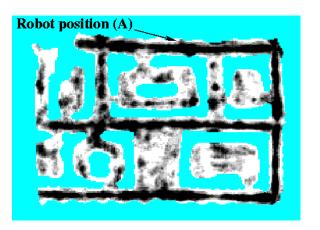
Grid-based Localization

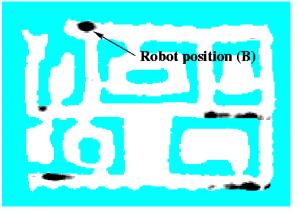


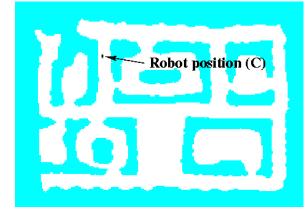
Application Example: Rhino

Sonars and Occupancy Grid Map





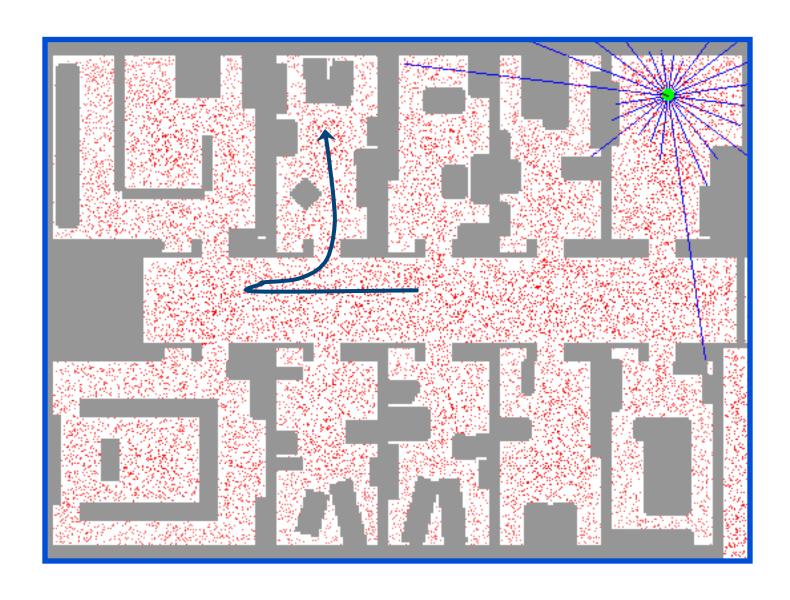




Motivation

- Recall: Discrete filter
 - Discretize the continuous state space
 - High memory complexity
 - Fixed resolution (does not adapt to the belief)
- Particle filters are a way to efficiently represent non-Gaussian distribution
- Basic principle
 - Set of state hypotheses ("particles")
 - Survival-of-the-fittest

Sample-based Localization (sonar)



Mathematical Description

Set of weighted samples

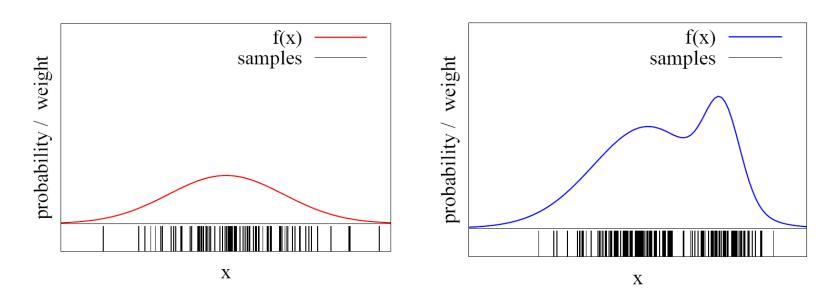
$$S = \left\{ \left\langle s^{[i]}, w^{[i]} \right\rangle \mid i = 1, \dots, N \right\}$$
 State hypothesis Importance weight

The samples represent the posterior

$$p(x) = \sum_{i=1}^{N} w_i \cdot \delta_{s[i]}(x)$$

Function Approximation

Particle sets can be used to approximate functions

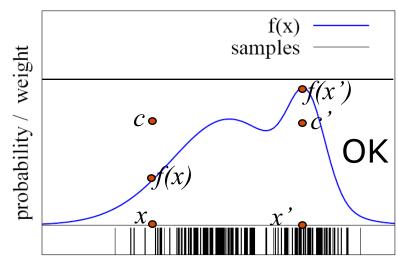


- The more particles fall into an interval, the higher the probability of that interval
- How to draw samples form a function/distribution?

Rejection Sampling

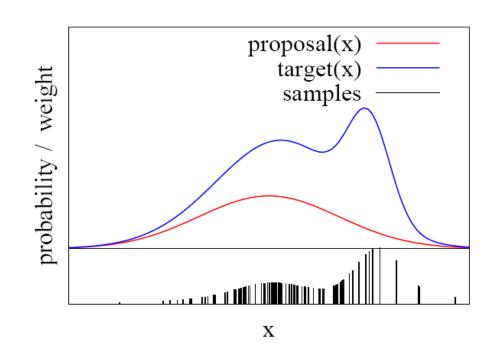
- Let us assume that f(x) < 1 for all x
- Sample x from a uniform distribution
- Sample c from [0,1]
- if f(x) > c otherwise

keep the sample reject the sampe

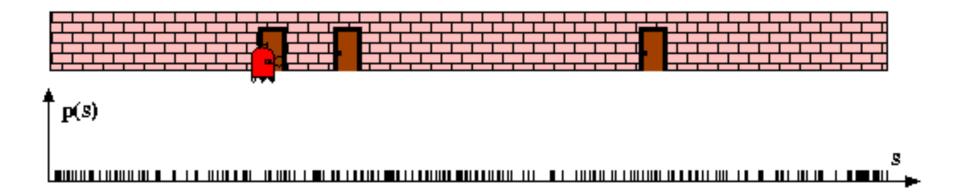


Importance Sampling Principle

- We can even use a different distribution g to generate samples from f
- By introducing an importance weight w, we can account for the "differences between g and f"
- w = f/g
- f is often called target
- g is often called proposal
- Pre-condition: $f(x) > 0 \rightarrow g(x) > 0$



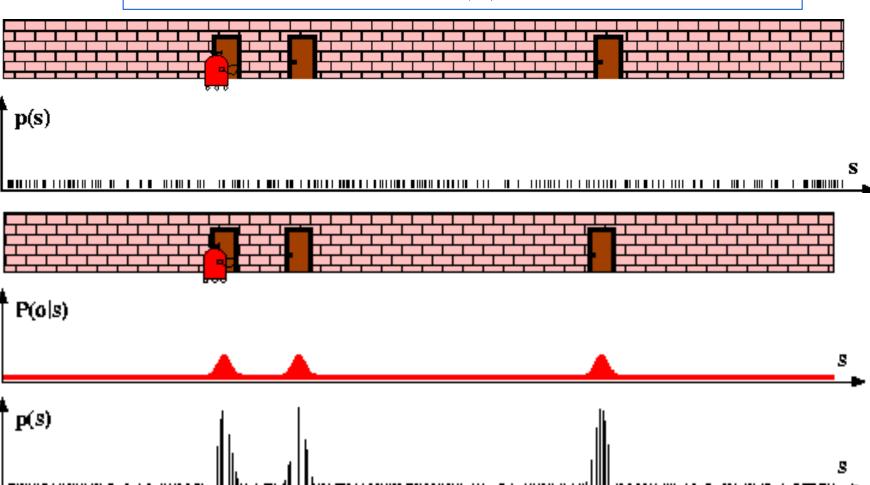
Particle Filters



Sensor Information: Importance Sampling

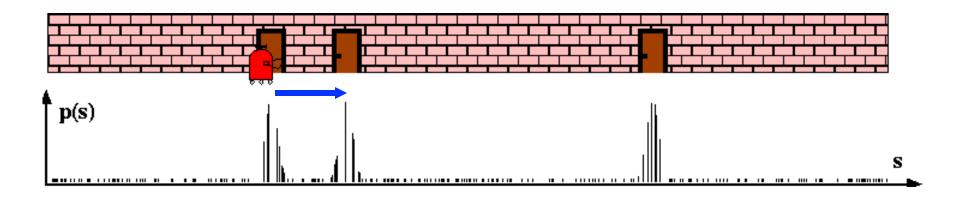
$$Bel(x) \leftarrow \alpha \ p(z \mid x) \ Bel^{-}(x)$$

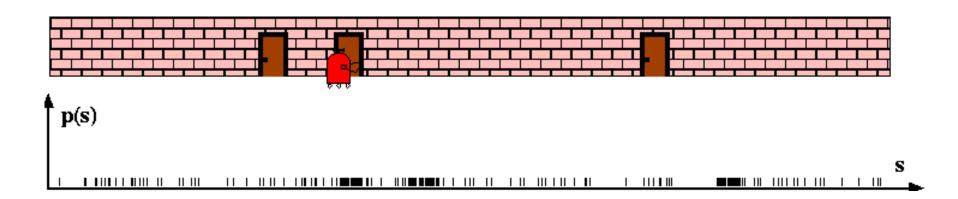
$$w \leftarrow \frac{\alpha \ p(z \mid x) \ Bel^{-}(x)}{Bel^{-}(x)} = \alpha \ p(z \mid x)$$



Robot Motion

$$Bel^{-}(x) \leftarrow \int p(x|u,x') Bel(x') dx'$$

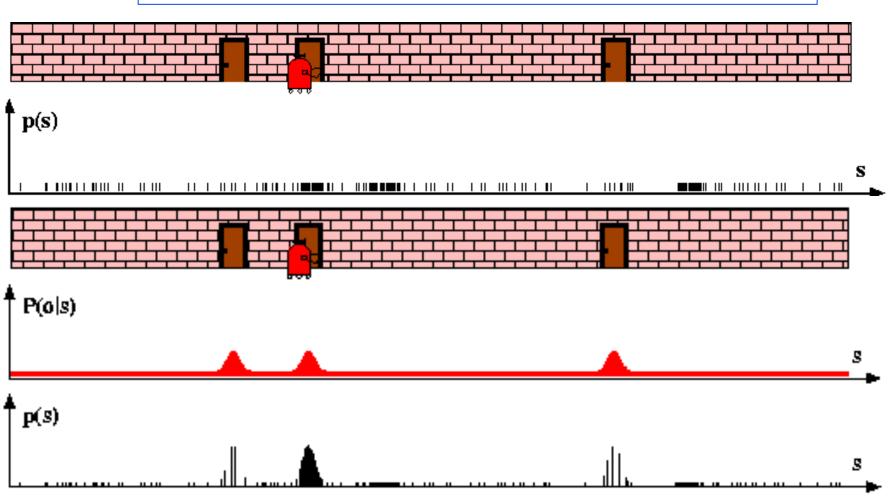




Sensor Information: Importance Sampling

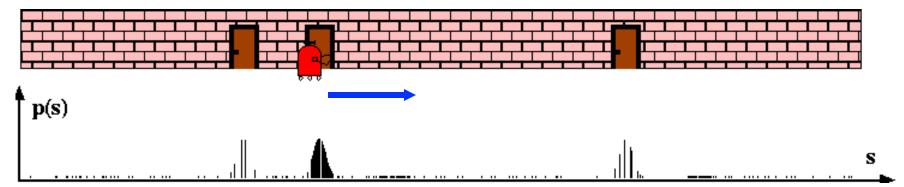
$$Bel(x) \leftarrow \alpha \ p(z \mid x) \ Bel^{-}(x)$$

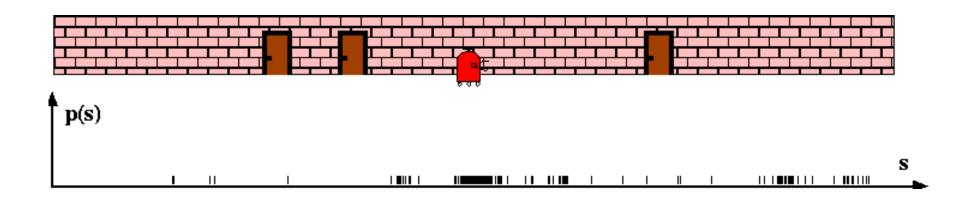
$$w \leftarrow \frac{\alpha \ p(z \mid x) \ Bel^{-}(x)}{Bel^{-}(x)} = \alpha \ p(z \mid x)$$



Robot Motion

$$Bel^{-}(x) \leftarrow \int p(x|u,x') Bel(x') dx'$$





Particle Filter Algorithm

- Sample the next generation for particles using the proposal distribution
- Compute the importance weights : weight = target distribution / proposal distribution
- Resampling: "Replace unlikely samples by more likely ones"
- [Derivation of the MCL equations on the blackboard]

Particle Filter Algorithm

- 1. Algorithm **particle_filter**(S_{t-1} , U_{t-1} Z_t):
- 2. $S_t = \emptyset$, $\eta = 0$
- 3. For i = 1...n

Generate new samples

- Sample index j(i) from the discrete distribution given by w_{t-1} 4.
- 5. Sample x_t^i from $p(x_t | x_{t-1}, u_{t-1})$ using $x_{t-1}^{j(i)}$ and
- 6. $w_t^i = p(z_t | x_t^i)$

Compute importance weight

7. $\eta = \eta + w_t^i$ Update normalization factor

8. $S_t = S_t \cup \{\langle x_t^i, w_t^i \rangle\}$

Insert

- 9. **For** i = 1...n
- 10. $W_t^i = W_t^i / \eta$

Normalize weights

Particle Filter Algorithm

$$Bel (x_{t}) = \eta \ p(z_{t} \mid x_{t}) \int p(x_{t} \mid x_{t-1}, u_{t-1}) \ Bel (x_{t-1}) \ dx_{t-1}$$

$$\rightarrow \text{draw } x^{i}_{t-1} \text{ from } Bel(x_{t-1})$$

$$\rightarrow \text{draw } x^{i}_{t} \text{ from } p(x_{t} \mid x^{i}_{t-1}, u_{t-1})$$

$$\downarrow \text{Importance factor for } x^{i}_{t}:$$

$$w^{i}_{t} = \frac{\text{target distribution}}{\text{proposal distribution}}$$

$$= \frac{\eta \ p(z_{t} \mid x_{t}) \ p(x_{t} \mid x_{t-1}, u_{t-1}) \ Bel (x_{t-1})}{p(x_{t} \mid x_{t-1}, u_{t-1}) \ Bel (x_{t-1})}$$

$$\propto p(z_{t} \mid x_{t})$$

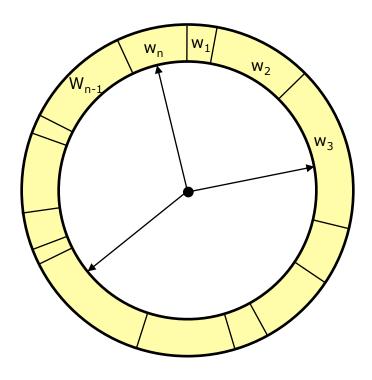
Resampling

Given: Set S of weighted samples.

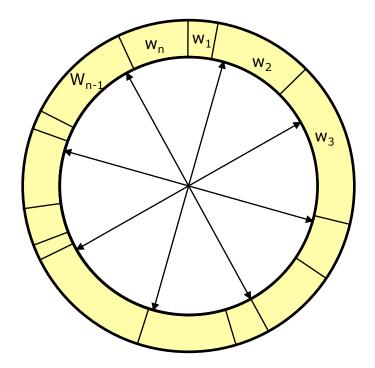
• Wanted : Random sample, where the probability of drawing x_i is given by w_i .

 Typically done n times with replacement to generate new sample set S'.

Resampling



- Roulette wheel
- Binary search, n log n



- Stochastic universal sampling
- Systematic resampling
- Linear time complexity
- Easy to implement, low variance

Resampling Algorithm

```
1. Algorithm systematic_resampling(S,n):
2. S' = \emptyset, c_1 = w^1
3. For i = 2...n
                                 Generate cdf
4. c_i = c_{i-1} + w^i
5. u_1 \sim U[0, n^{-1}], i = 1
                                Initialize threshold
6. For j = 1...n
                                Draw samples ...
7. While (u_i > c_i) Skip until next threshold reached
8. i = i + 1

9. S' = S' \cup \{ x^i, n^{-1} > \}
                              Insert
10. u_{i+1} = u_i + n^{-1}
                              Increment threshold
11. Return S'
```

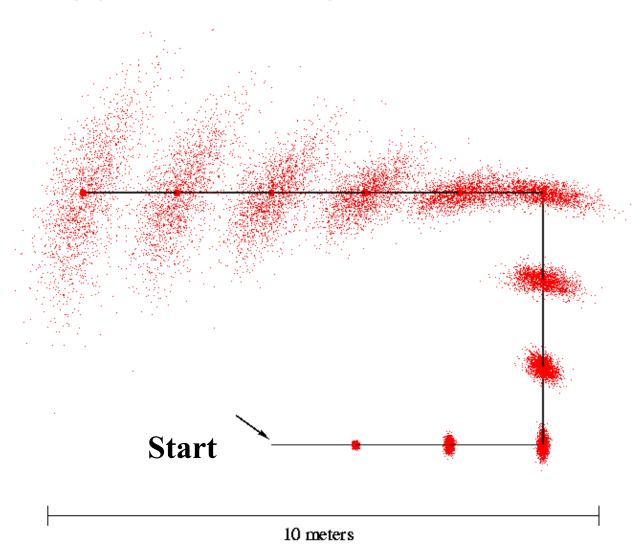
Also called stochastic universal sampling

Mobile Robot Localization

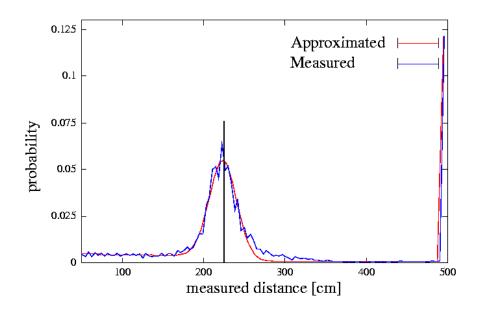
- Each particle is a potential pose of the robot
- Proposal distribution is the motion model of the robot (prediction step)
- The observation model is used to compute the importance weight (correction step)

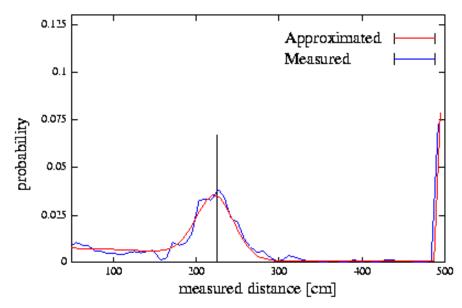
[For details, see PDF file on the lecture web page]

Motion Model Reminder



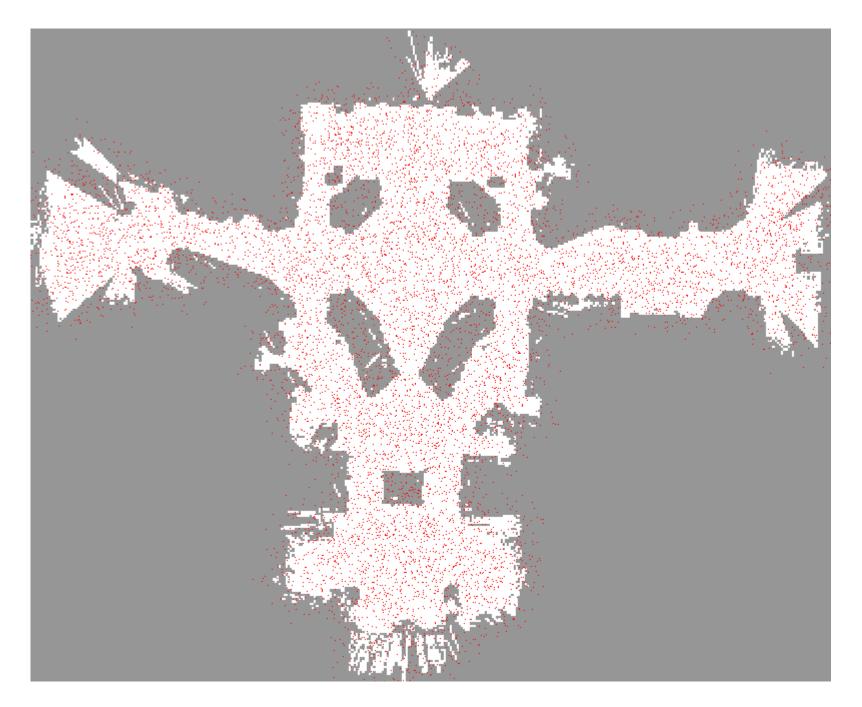
Proximity Sensor Model Reminder

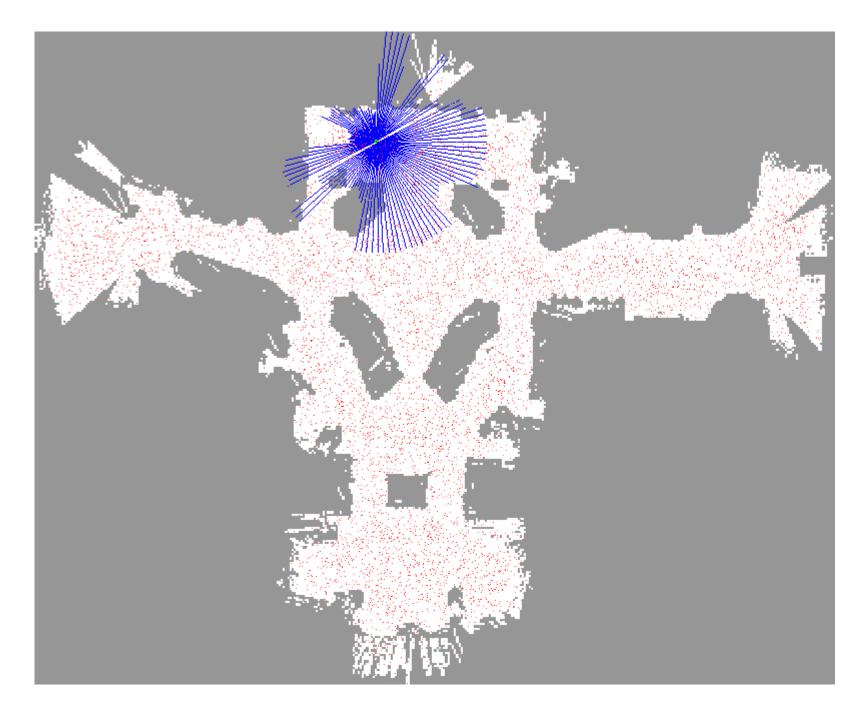


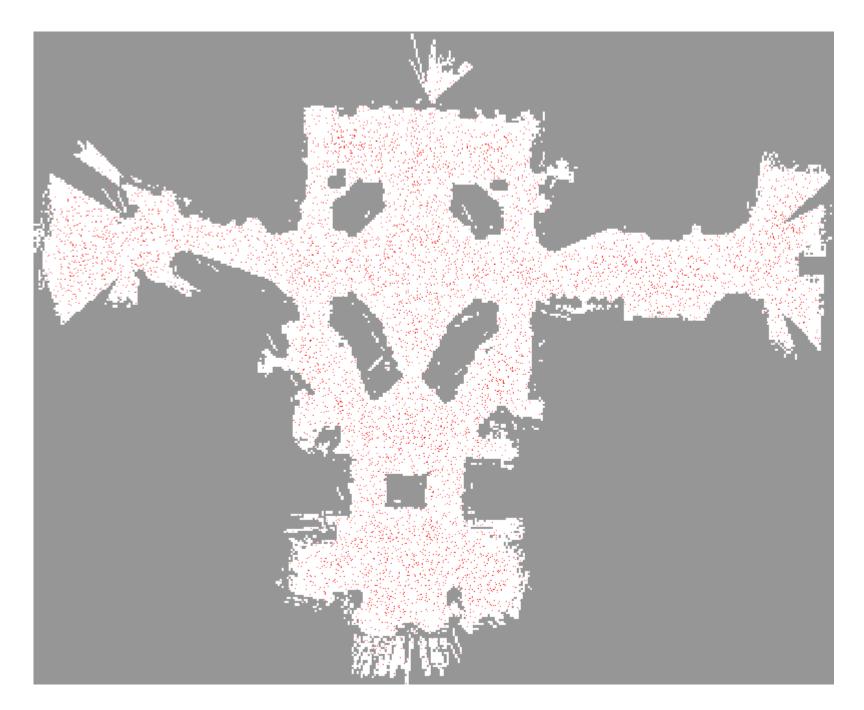


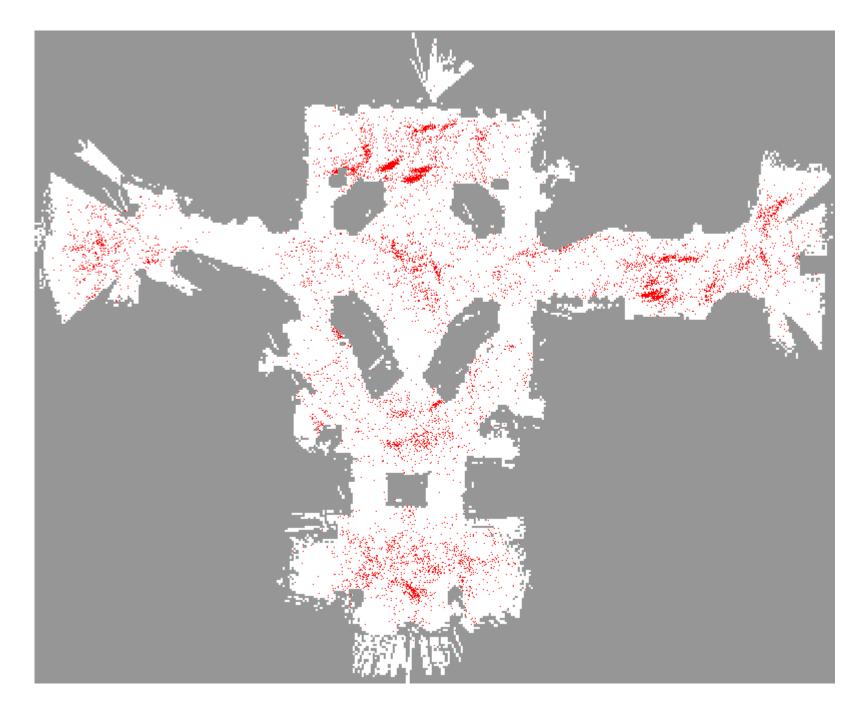
Laser sensor

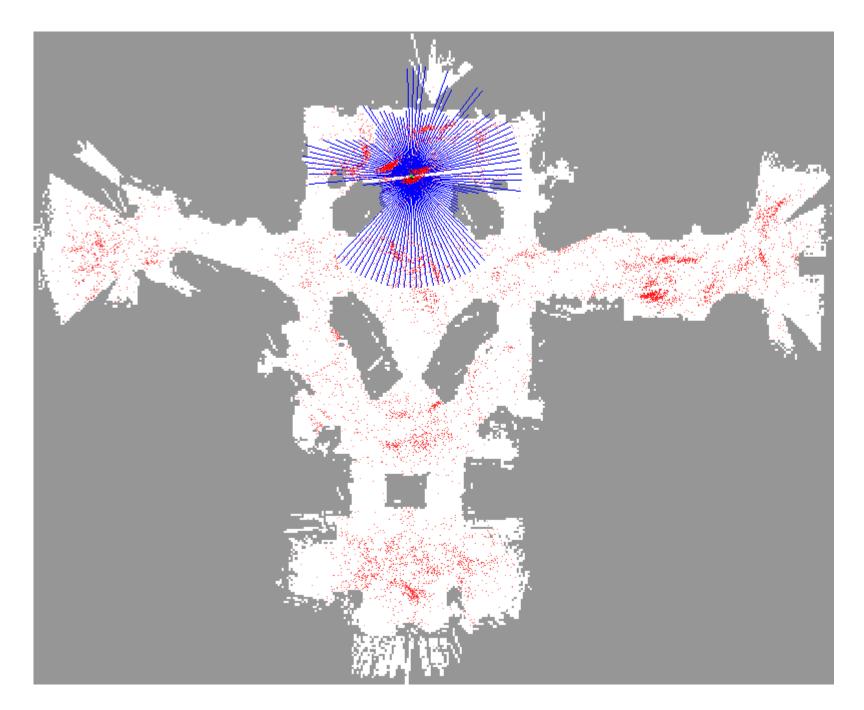
Sonar sensor

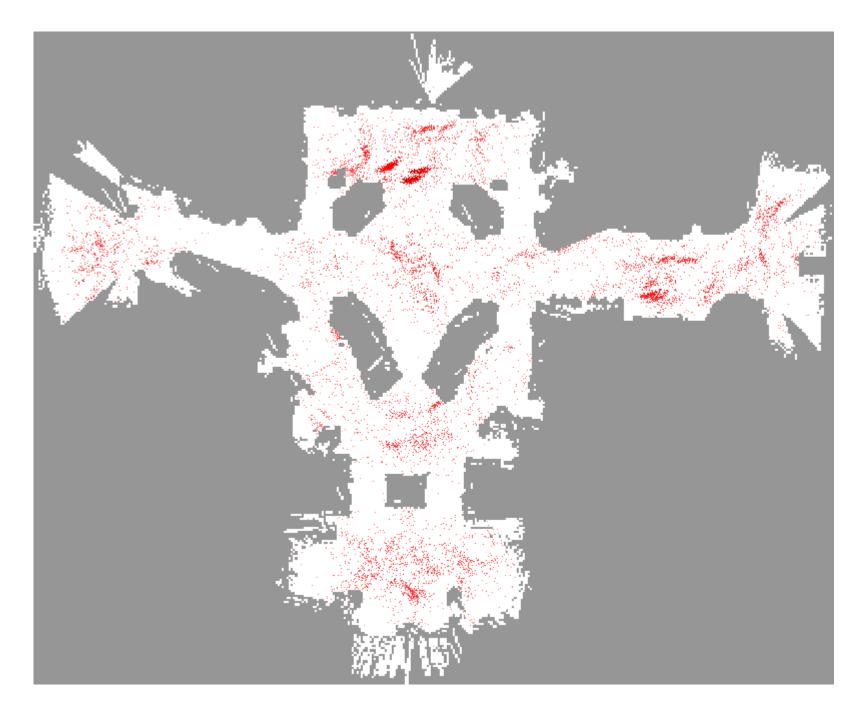


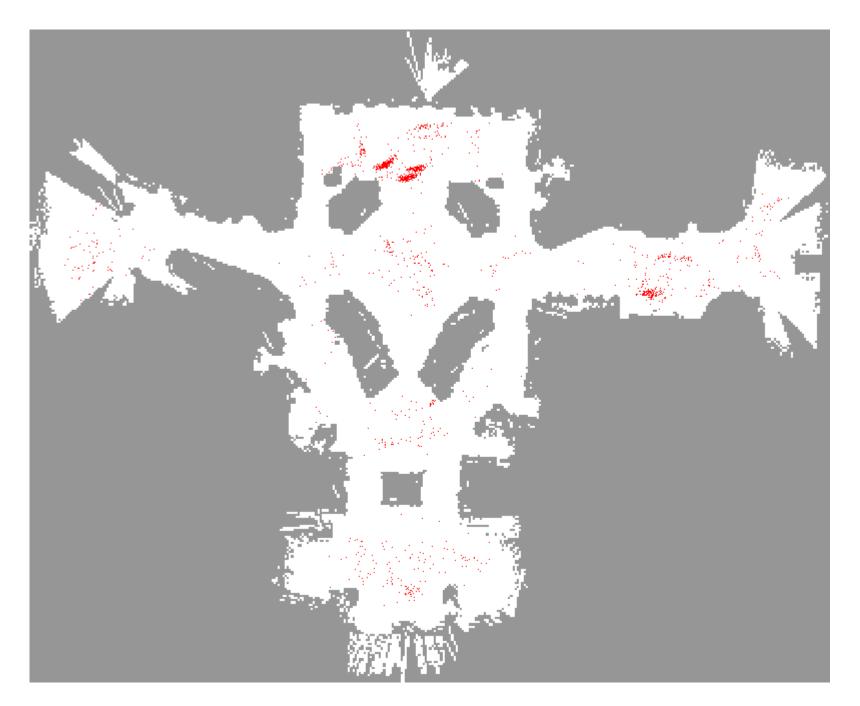


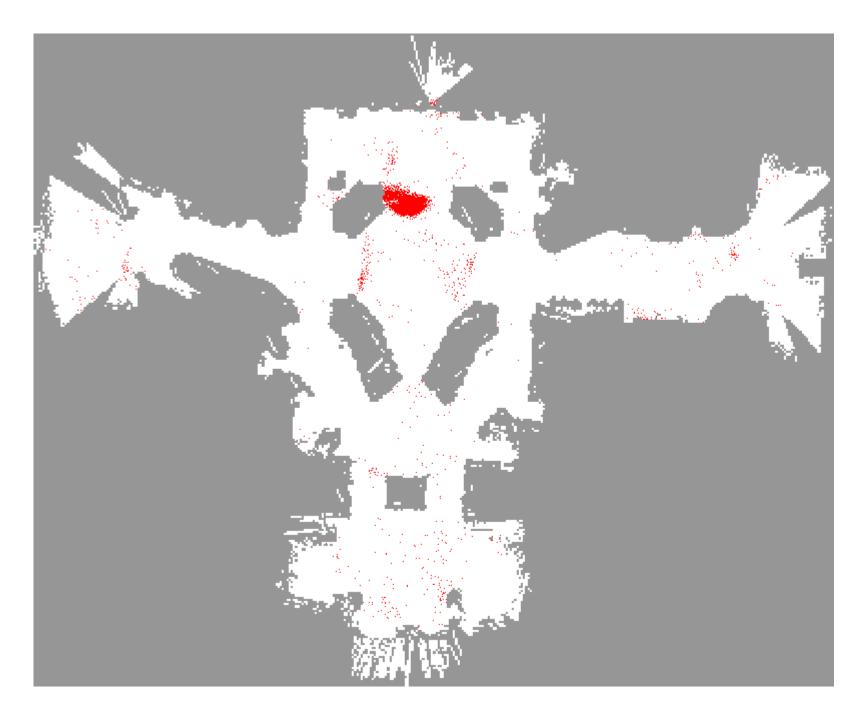


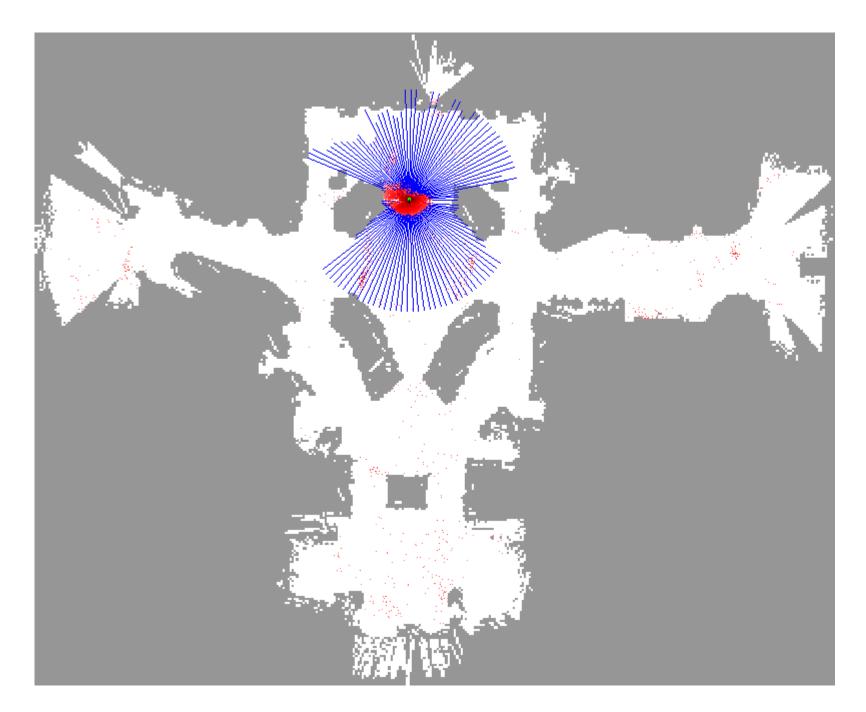


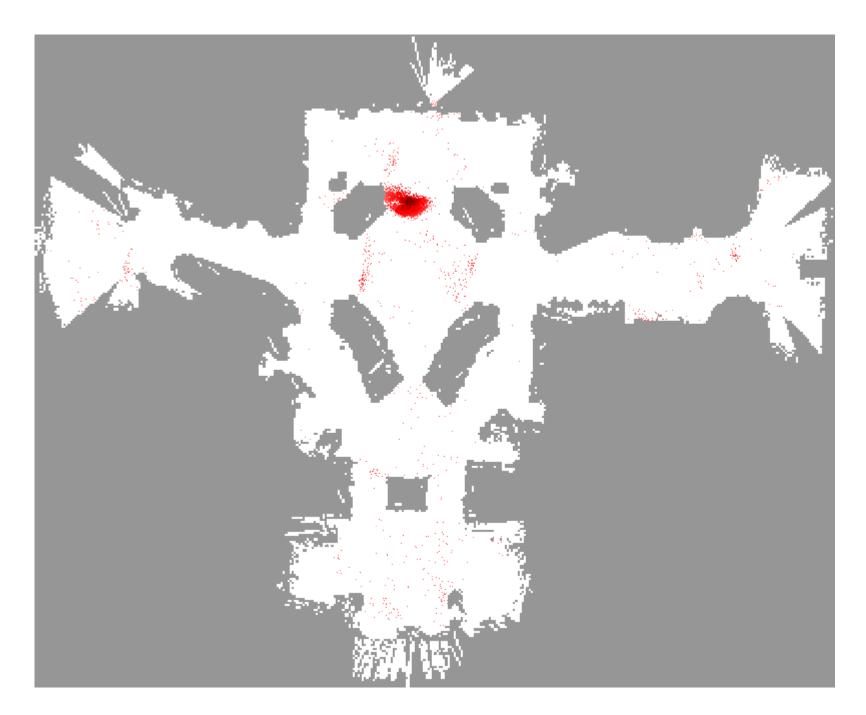


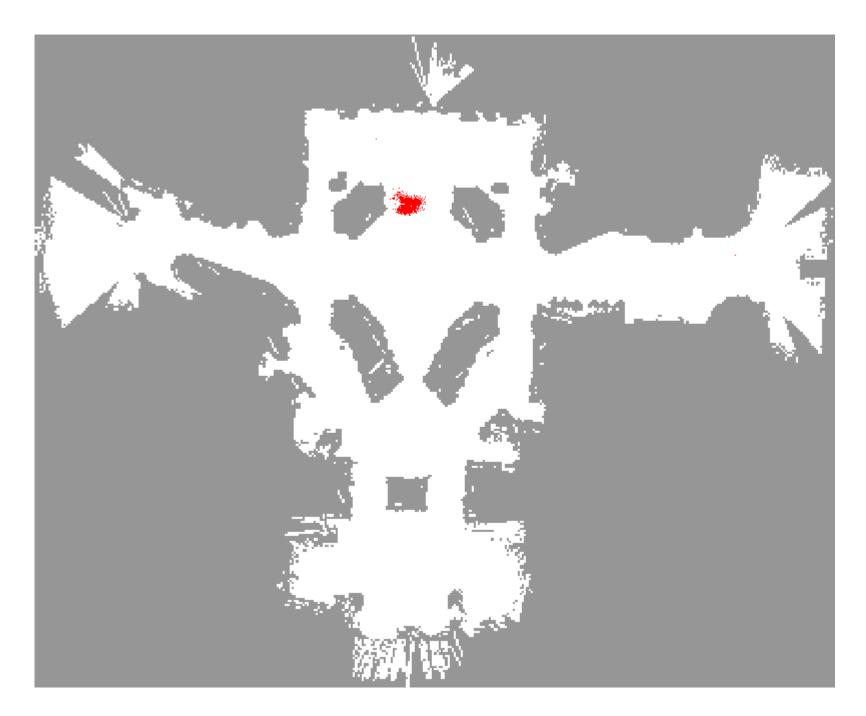


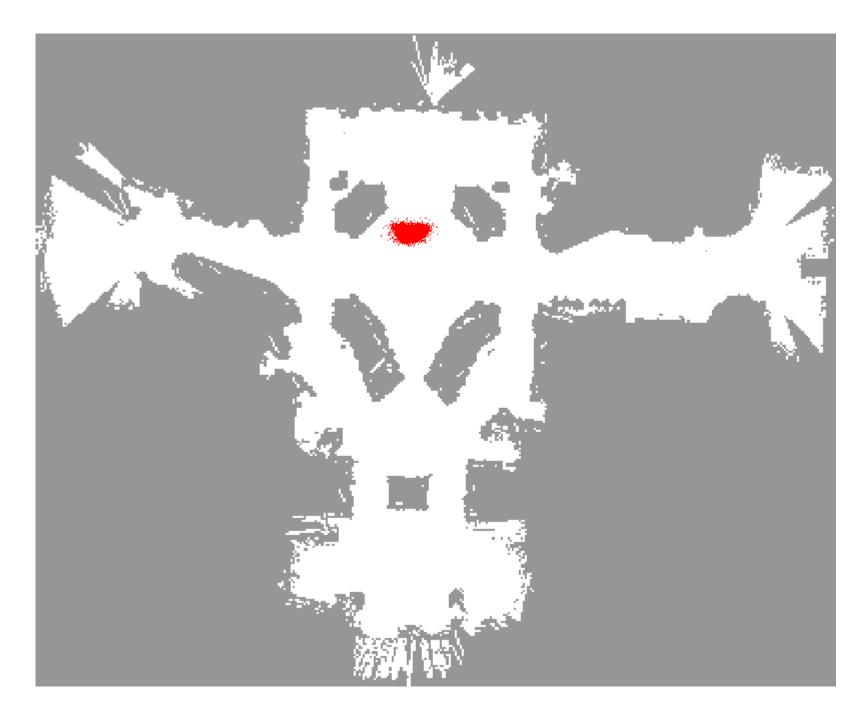


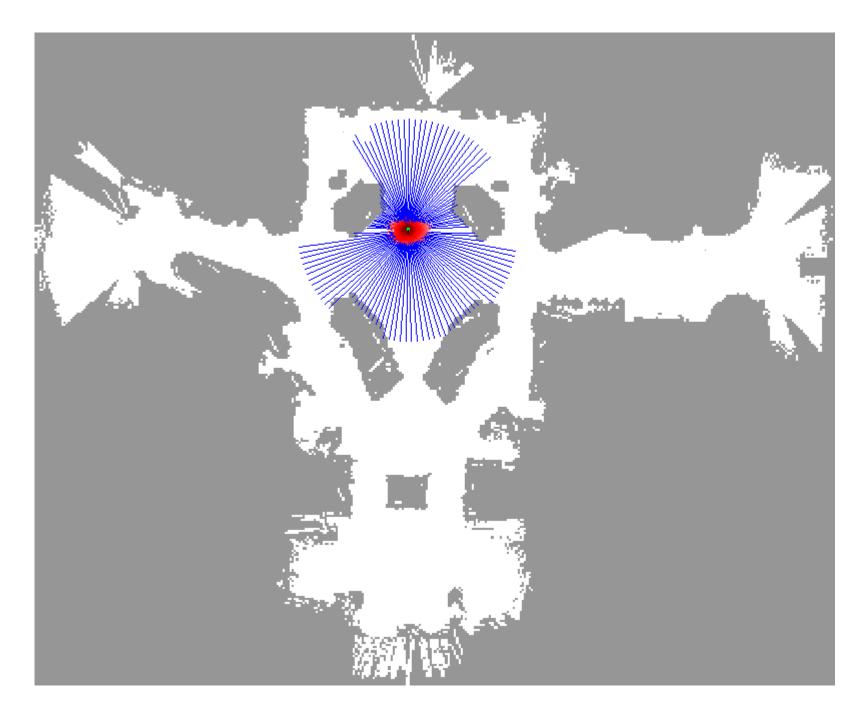


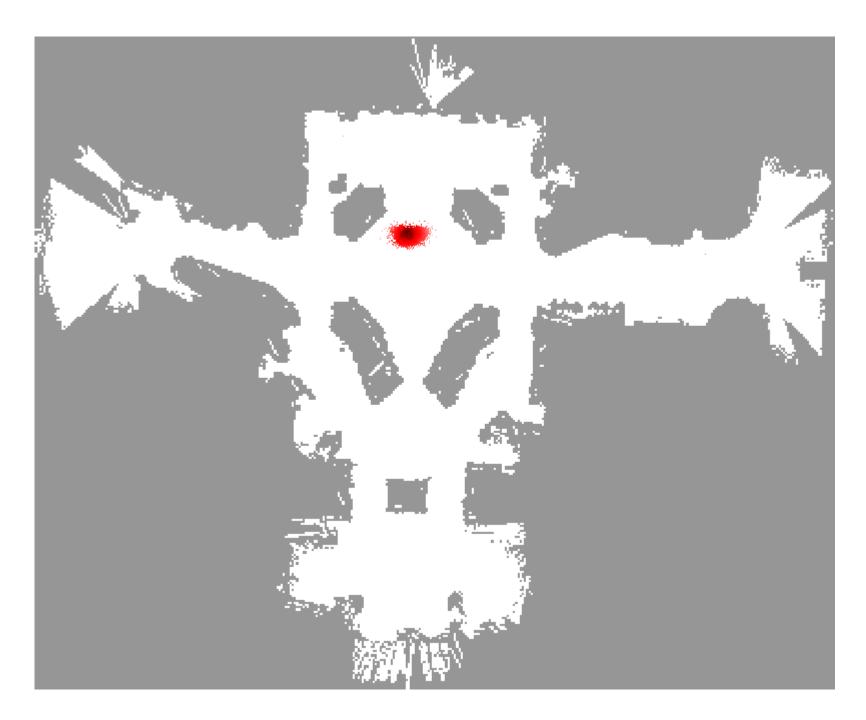


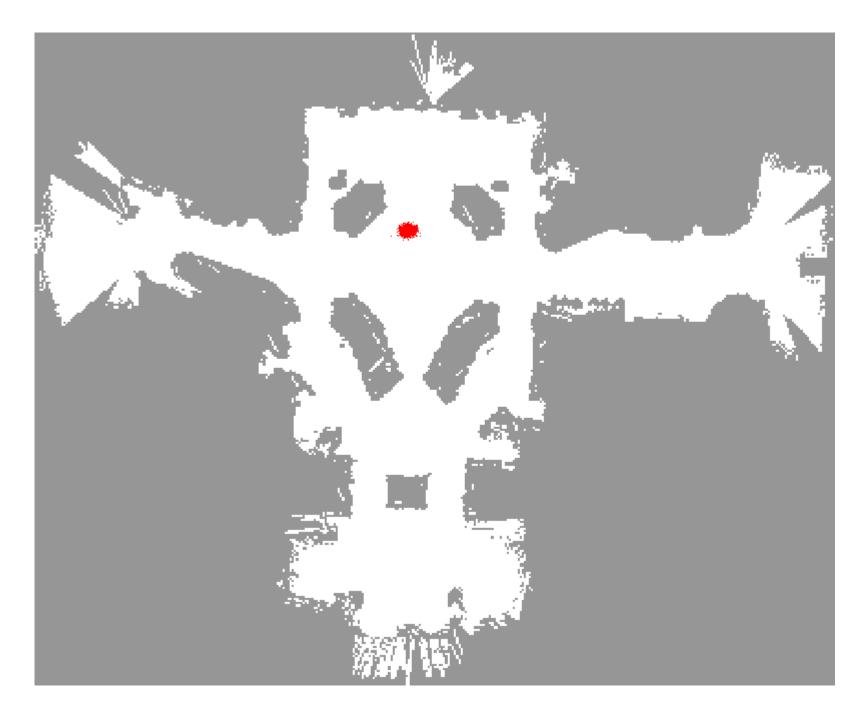


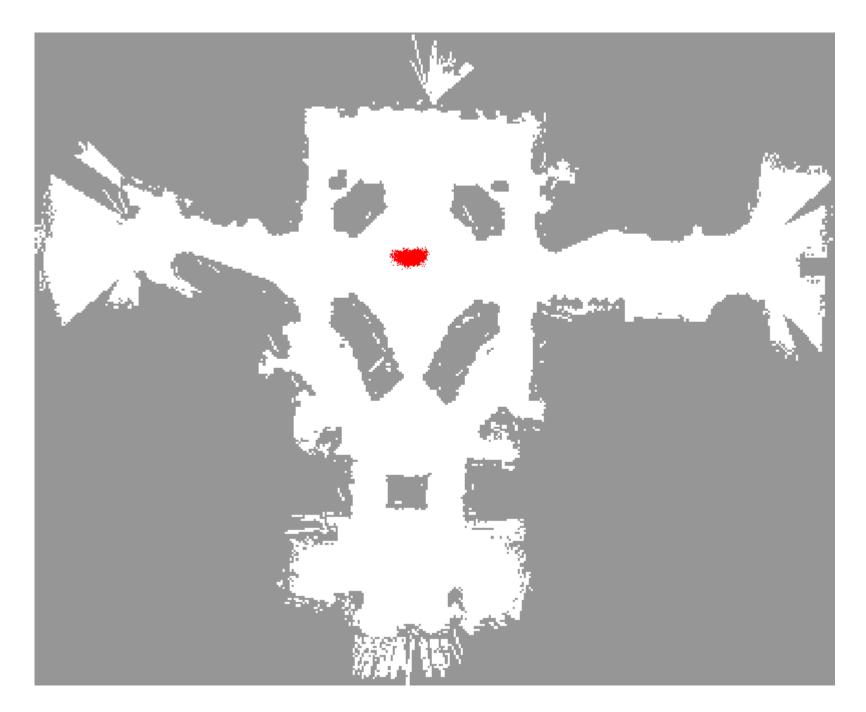


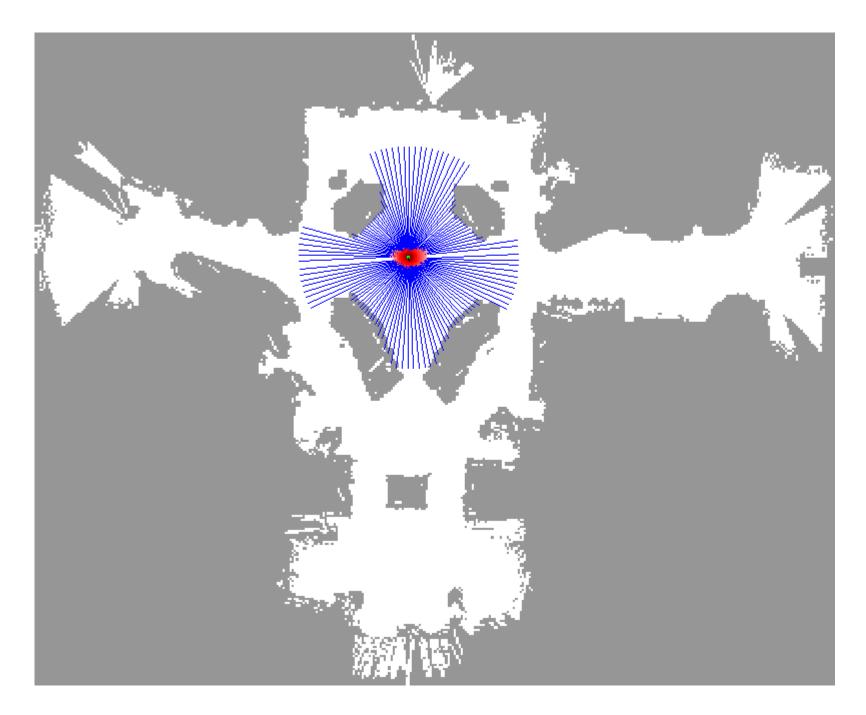


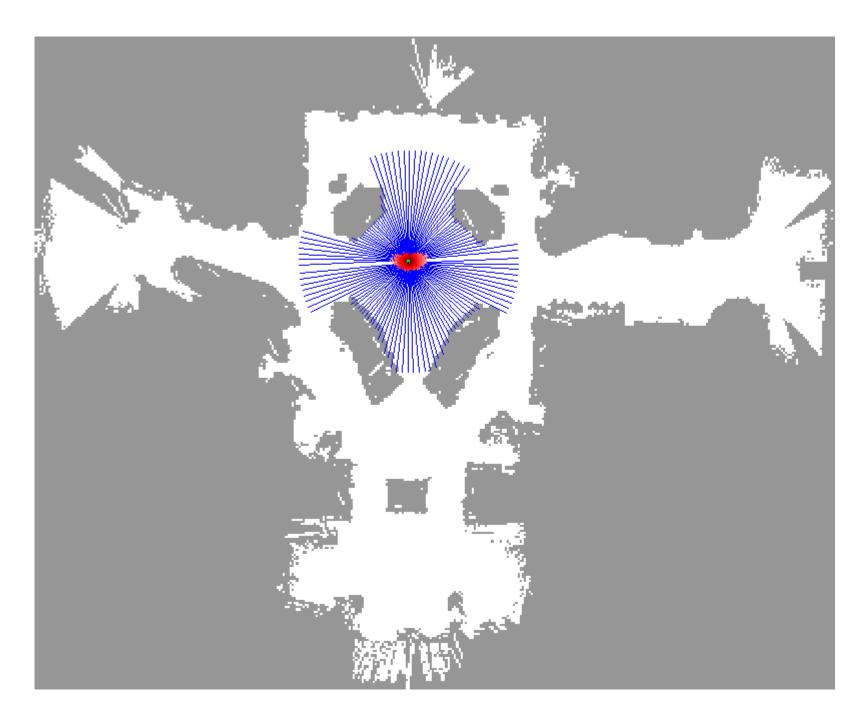




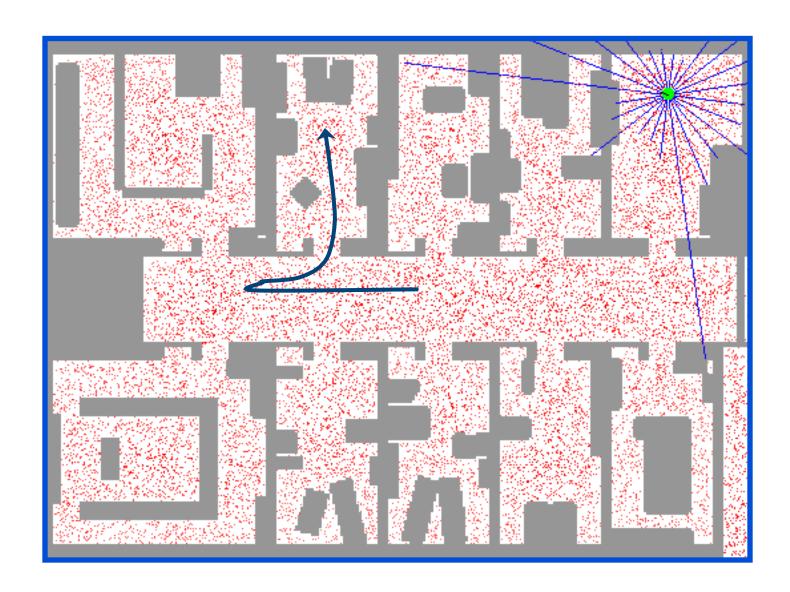




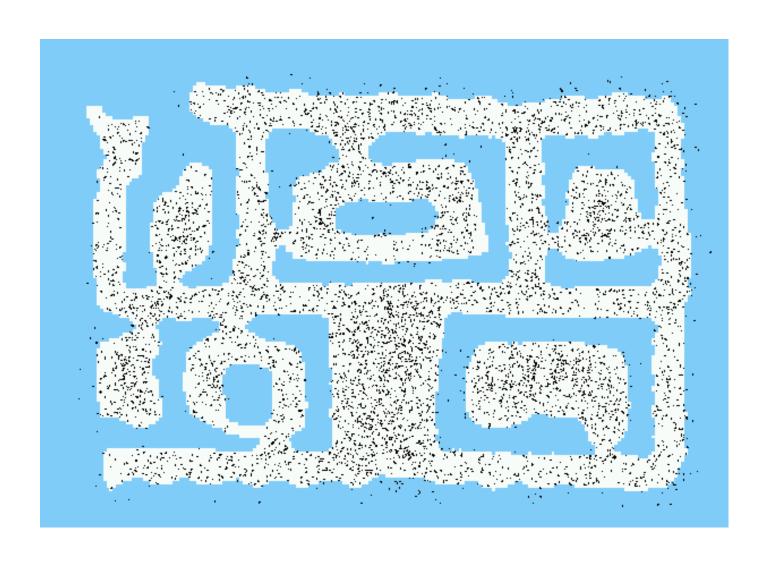




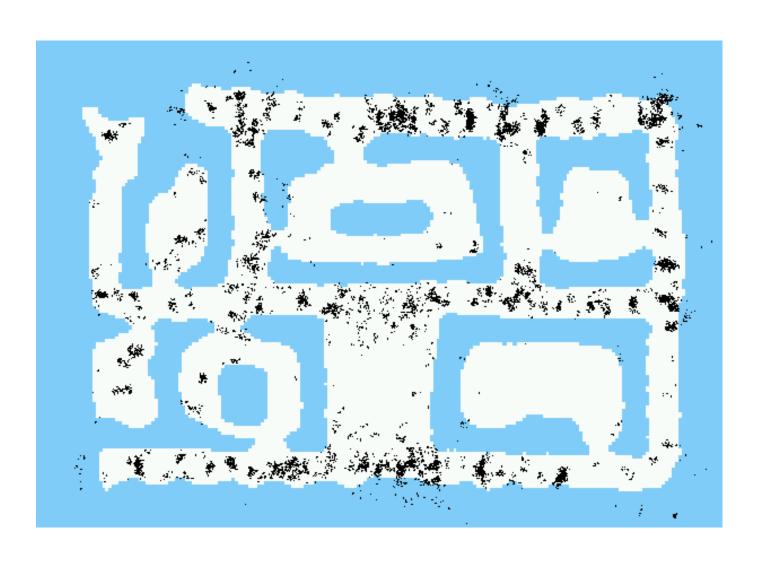
Sample-based Localization (sonar)



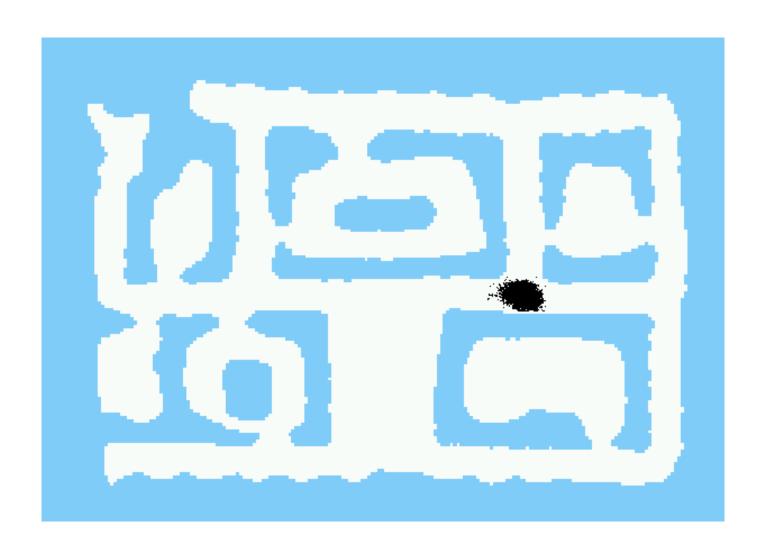
Initial Distribution



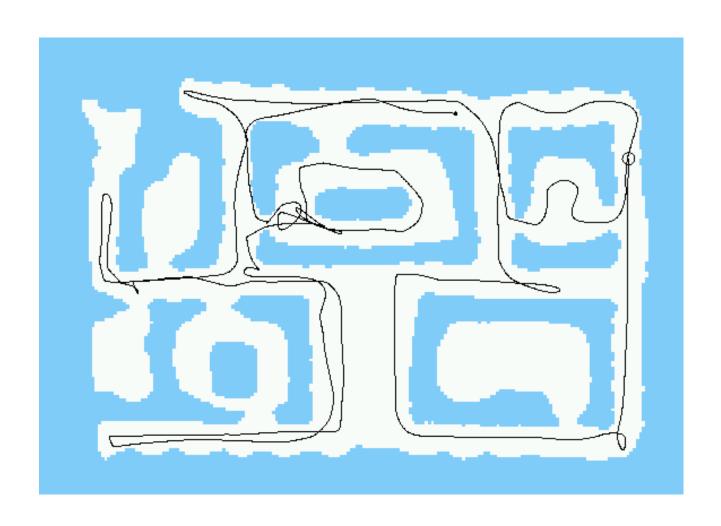
After Incorporating Ten Ultrasound Scans



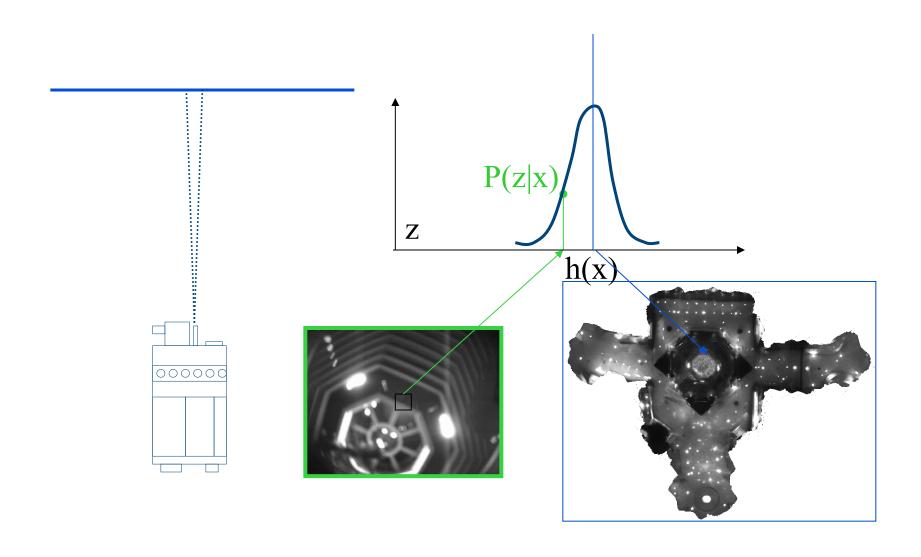
After Incorporating 65 Ultrasound Scans



Estimated Path

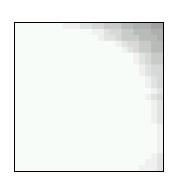


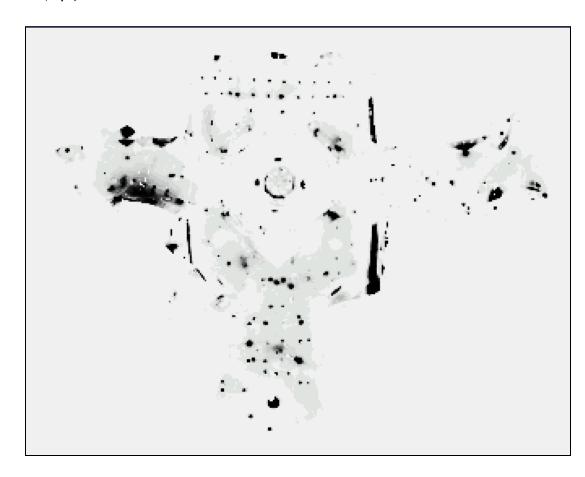
Vision-based Localization



Under a Light

Measurement z:

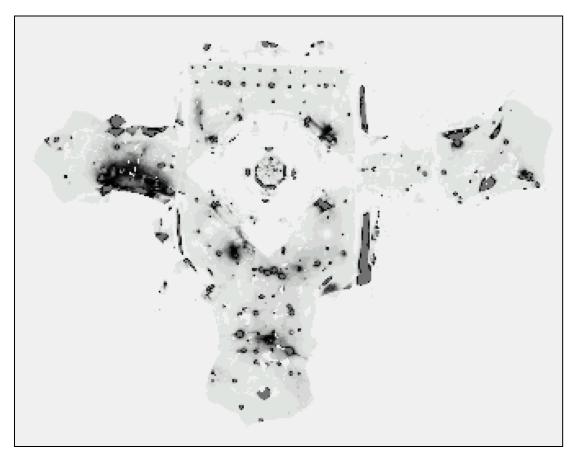




Next to a Light

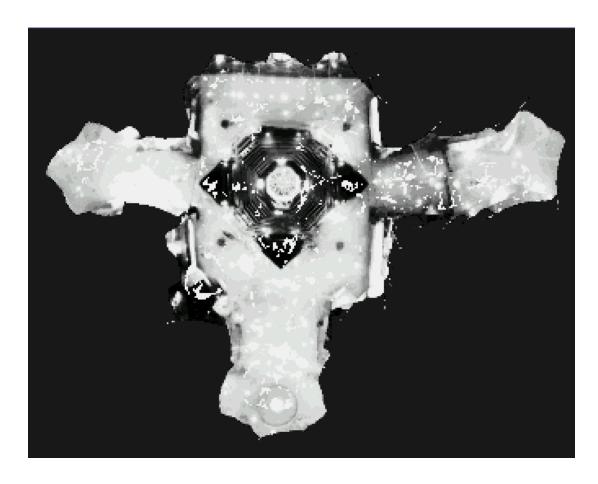
Measurement z:

P(z|x):

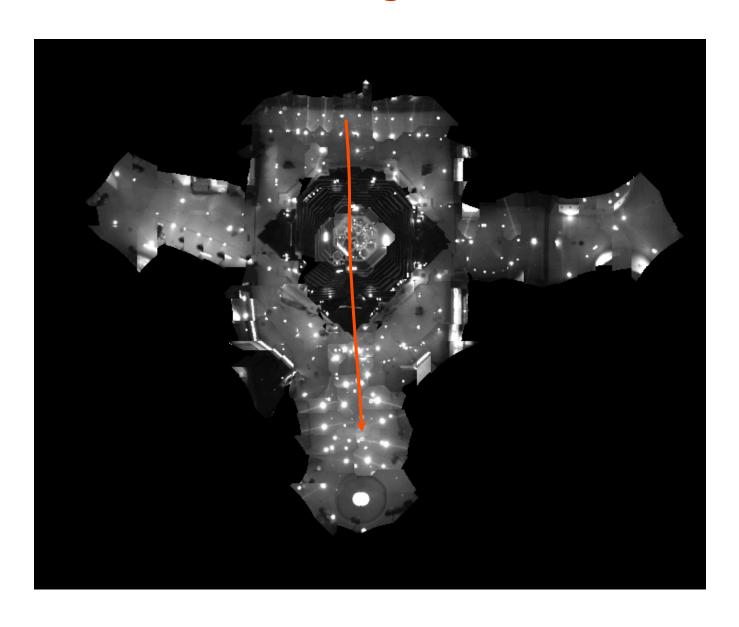


Elsewhere

Measurement z:



Global Localization Using Vision



Limitations

- The approach described so far is able to
 - track the pose of a mobile robot and to
 - globally localize the robot.
- How can we deal with localization errors (i.e., the kidnapped robot problem)?

Approaches

- Randomly insert samples (the robot can be teleported at any point in time).
- Insert random samples proportional to the average likelihood of the particles (the robot has been teleported with higher probability when the likelihood of its observations drops).

Summary – Particle Filters

- Particle filters are an implementation of recursive Bayesian filtering
- They represent the posterior by a set of weighted samples
- They can model non-Gaussian distributions
- Proposal to draw new samples
- Weight to account for the differences between the proposal and the target
- Monte Carlo filter, Survival of the fittest, Condensation, Bootstrap filter

Summary - PF Localization

- In the context of localization, the particles are propagated according to the motion model.
- They are then weighted according to the likelihood of the observations.
- In a re-sampling step, new particles are drawn with a probability proportional to the likelihood of the observation.