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Topics

l Object Instance Detection/Recognition
l Object Category Detection/Recognition



This is how a computer represents it



And so is this …



And so are these!

We need to extract some “invariant”, i.e. what is common to all these images (they are 
all images of an office)

L truly invariant (photometric and geometric)  representations do not exist 



Challenges: viewpoint variation

Michelangelo 1475-1564 slide credit: Fei-Fei, Fergus & Torralba 



Challenges: illumination

image credit: J. Koenderink



Challenges: scale

slide credit: Fei-Fei, Fergus & Torralba 



Challenges: deformation

Xu, Beihong 1943

slide credit: Fei-Fei, Fergus & Torralba 



Challenges: occlusion

Magritte, 1957 slide credit: Fei-Fei, Fergus & Torralba 



BUMMER! THIS IS IMPOSSIBLE!

- THM: [Weiss, 1991]: There exists NO generic 
viewpoint invariant!

- THM: [Chen et al., 2003]: There exists NO 
photometric invariant!!

l So, how do we (primates) solve the problem?
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Improved Invariance Handling

Want to find
… in here
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SIFT Features

l Invariances:
- Scaling
- Rotation
- Illumination
- Deformation

l Provides
- Good localization

Distinctive image features from scale-invariant 
keypoints. David G. Lowe, International Journal of 
Computer Vision, 60, 2 (2004), pp. 91-110.

Yes
Yes

Yes

Not really
Yes
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Invariant Local Features

l Image content is transformed into local feature coordinates 
that are invariant to translation, rotation, scale, and other 
imaging parameters

SIFT Features
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Advantages of invariant local features

l Locality: features are local, so robust to occlusion and 
clutter (no prior segmentation)

l Distinctiveness: individual features can be matched to a 
large database of objects

l Quantity: many features can be generated for even small 
objects

l Efficiency: close to real-time performance

l Extensibility: can easily be extended to wide range of 
differing feature types, with each adding robustness



16

Key point localization

l In D. Lowe’s paper image is decomposed to 
octaves (consecutively sub-sampled versions 
of the same image)

l Instead of convolving with large kernels
within an octave kernels are kept the same

l Detect maxima and minima of difference-of-
Gaussian in scale space

l Look for 3x3 neighbourhood in scale 
and space
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Example of keypoint detection

(a) 233x189 image
(b) 832 DOG extrema
(c) 729 above threshold
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Select canonical orientation

l Create histogram of local gradient 
directions computed at selected 
scale

l Assign canonical orientation at 
peak of smoothed histogram

l Each key specifies stable 2D 
coordinates (x, y, scale, 
orientation)

0 2π



CS223b
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SIFT vector formation

l Thresholded image gradients are sampled over 16x16 array of 
locations in scale space

l Create array of orientation histograms
l 8 orientations x 4x4 histogram array = 128 dimensions
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Nearest-neighbor matching to feature 
database

l Hypotheses are generated by approximate nearest neighbor
matching of each feature to vectors in the database 

- SIFT use best-bin-first (Beis & Lowe, 97) 
modification to k-d tree algorithm

- Use heap data structure to identify bins in order by 
their distance from query point

l Result: Can give speedup by factor of 1000 while finding 
nearest neighbor (of interest) 95% of the time
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3D Object Recognition

l Extract outlines with 
background 
subtraction
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3D Object Recognition

l Only 3 keys are needed for 
recognition, so extra keys 
provide robustness

l Affine model is no longer as 
accurate
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Recognition under occlusion
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Test of illumination invariance

l Same image under differing illumination

273 keys verified in final match
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Examples of view interpolation
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Location recognition



Image alignment: Challenges

Small degree of overlap

Occlusion,
clutter

Intensity changes



l Model verification 

l For each set of features matched to object O –
verify whether they are geometrically consistent

l Examine all clusters with at least 3 features

l Perform least-squares affine fit to model.  

l Discard outliers and perform top-down check for 
additional features.

l Evaluate probability that match is correct

Ø

Invariant Local Features



Solution for affine parameters

l Affine transform of [x,y] to [u,v]:

l Rewrite to solve for transform parameters:



2D transformation models

• Similarity
(translation, 
scale, rotation)

• Affine

• Projective
(homography)



Let’s start with affine transformations

• Simple fitting procedure (linear least squares)
• Approximates viewpoint changes for roughly planar objects 

and roughly orthographic cameras
• Can be used to initialize fitting for more complex models
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SOFTWARE for Matlab (at UCLA, Oxford)
www.VLFeat.org
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SIFT demos

Run
sift_compile
sift_demo2



34

SIFT On-A-Slide

1. Enforce invariance to scale: Compute Gaussian difference max, for many 
different scales; non-maximum suppression, find local maxima: keypoint 
candidates

2. Localizable corner: For each maximum fit quadratic function. Compute 
center with sub-pixel accuracy by setting first derivative to zero.

3. Eliminate edges: Compute ratio of eigenvalues, drop keypoints for which 
this ratio is larger than a threshold.

4. Enforce invariance to orientation: Compute orientation, to achieve rotation 
invariance, by finding the strongest second derivative direction in the 
smoothed image (possibly multiple orientations). Rotate patch so that 
orientation points up.

5. Compute feature signature: Compute a "gradient histogram" of the local 
image region in a 4x4 pixel region. Do this for 4x4 regions of that size. 
Orient so that largest gradient points up (possibly multiple solutions). 
Result: feature vector with 128 values (15 fields, 8 gradients).

6. Enforce invariance to illumination change and camera saturation: Normalize 
to unit length to increase invariance to illumination. Then threshold all 
gradients, to become invariant to camera saturation.



35

Nearest-neighbor matching to feature 
database

l Hypotheses are generated by approximate nearest neighbor
matching of each feature to vectors in the database 

- SIFT use best-bin-first (Beis & Lowe, 97) 
modification to k-d tree algorithm

- Use heap data structure to identify bins in order by 
their distance from query point

l Result: Can give speedup by factor of 1000 while finding 
nearest neighbor (of interest) 95% of the time



Adding, Querying and 
Removing Images at full speed

Add Remove

Query



Training and Addition are Separate

Common Approach Our approach



Normalize 
patch

Detect patches
[Mikojaczyk and Schmid ’02]
[Mata, Chum, Urban & Pajdla, ’02] 
[Sivic & Zisserman, ’03]

Compute 
SIFT 

descriptor
[Lowe’99]

Slide credit: Josef Sivic

1. Feature extraction



…

1. Feature extraction



2. Learning the visual vocabulary

…



2. Learning the visual vocabulary

Clustering

…

Slide credit: Josef Sivic



2. Learning the visual vocabulary

Clustering

…

Slide credit: Josef Sivic

Visual vocabulary



K-means clustering

• Want to minimize sum of squared Euclidean 
distances between points xi and their 
nearest cluster centers mk

l Algorithm:
• Randomly initialize K cluster centers
• Iterate until convergence:

- Assign each data point to the nearest center
- Recompute each cluster center as the mean of 

all points assigned to it

å å -=
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From clustering to vector quantization

• Clustering is a common method for learning 
a visual vocabulary or codebook
- Unsupervised learning process
- Each cluster center produced by k-means 

becomes a codevector
- Codebook can be learned on separate training 

set
- Provided the training set is sufficiently 

representative, the codebook will be “universal”

• The codebook is used for quantizing features
- A vector quantizer takes a feature vector and 

maps it to the index of the nearest codevector in 
a codebook



Example visual vocabulary

Fei-Fei et al. 2005



Image patch examples of  visual words

Sivic et al. 2005



Visual vocabularies: Issues

• How to choose vocabulary size?
- Too small: visual words not representative of all 

patches
- Too large: quantization artifacts, overfitting

• Generative or discriminative learning?
• Computational efficiency

- Vocabulary trees 
(Nister & Stewenius, 2006)



Hierarchical k-means

l We have many, many of these features 

l 100000 images ~1000 features per image

l If we can get repeatable, discriminative features, 

l then recognition can scale to very large databases 

l using the vocabulary tree and indexing approach

• Quantize the feature descriptor space + efficient search    

• Flat k-means  , Approximate Nearest Neightbour Methods

• Hierarchical k-means - Nister&Stewenius [CVPR 2006]

• Visual vocabulary trees

Slides from Nister & Stewenius 06



Building Visual Vocabulary Tree

Slides from Nister & Stewenius 06



Building Visual Vocabulary Tree

Slides from Nister & Stewenius 06



Building Visual Vocabulary Tree

Slides from Nister & Stewenius 06



Building Visual Vocabulary Tree

Slides from Nister & Stewenius 06



Building Visual Vocabulary Tree

Slides from Nister & Stewenius 06



Building Visual Vocabulary Tree

Slides from Nister & Stewenius 06



Slides from Nister & Stewenius 06



Slides from Nister & Stewenius 06



Vocabulary Tree

Slides from Nister & Stewenius 06



Vocabulary Tree

Slides from Nister & Stewenius 06



Vocabulary Tree

Slides from Nister & Stewenius 06



Vocabulary Tree

Slides from Nister & Stewenius 06



Vocabulary Trees
• Easy  to add/remove images from the database

• Suitable for incremental approach 

• Suitable for creating single generic vocabulary

l

l Approach 
• Extract descriptors from many/many images

• Acquire enough statistics about the descriptor distribution

• Run k-means hierarchically k- is the branching factor of the tree

l E.g. Branching factor of 10 and 6 levels – million leaves 

Slides from Nister & Stewenius 06



Vocabulary Trees

• Training phase – add images to the database

• Extract descriptors – drop it down the tree

• Each node has an inverted file index

• Index to that image is added to all inverted files

• When we want to query image 

• Pass each descriptor down the tree

• Accumulate scores for each image in the database

l At each level do      dot products total of          dot products

l For        leafs and integer descriptors we need           bytes for 1M leaf

l nodes use 143 MB of memory

k
kL DkL

kL

Slides from Nister & Stewenius 06



Slides from Nister & Stewenius 06



Slides from Nister & Stewenius 06



Slides from Nister & Stewenius 06



Slides from Nister & Stewenius 06



Slides from Nister & Stewenius 06



TF-IDF scoring

• TF-IDF term frequency – inverse document frequency

• Used in the information retrieval and text mining 

• To evaluate how important is a word to document

• Importance depends on how many times the word appears in 
document – offset by number of occurrence of that word in the whole 
document corpus



TF-IDF scoring

• TF-IDF term frequency – inverse document frequency

• Number of occurrences of a word in a document / number of 
occurrences of all words in the document

• Number of documents / number of documents where term appears

• High weight of a word/term is when it has high frequency and low 
term document frequency 

tfi,j =
ni,j�
k nk,j

idfi,j = log
|D|

|{d : ti � d}|
|D|

|d : ti � d|

tfidfi,j = tfi,j � idfi



Size Matters Improves
Retrieval

Improves
Speed

Performance improves with the 
Size of the database

Here the results of particular object instance retrieval, database
Of ~ 40,000 objects, real-time performance

Slides from Nister & Stewenius 06



Implicit shape models
• Combining the edge based GHT style voting with 

appearance codebooks
• Visual codebook is used to index votes for object position

B. Leibe, A. Leonardis, and B. Schiele, Combined Object Categorization and 
Segmentation with an Implicit Shape Model, ECCV Workshop on Statistical 
Learning in Computer Vision 2004

training image annotated with object localization info

visual codeword with
displacement vectors



Implicit shape models

• Visual codebook is used to index votes for object position

test image



Idea Implicit Shape Model 
l Faces rectangular templates – detection windows
l Does not generalize to more complex object with different 

shapes
l How to combine patch based – appearance based 

representations to incorporate notion of shape
l Combined Object Categorization and Segmentation with an 

Implicit Shape Model. Bastian Leibe, Ales Leonardis, and 
Bernt Schiele. In ECCV'04.

73



l Object Category Detection



• Basic idea: slide a window across image and 
evaluate a face model at every location

Face detection



Face detection

Behold a state-of-the-art face detector!
(Courtesy Boris Babenko)



Challenges of face detection

• Sliding window detector must evaluate tens of 
thousands of location/scale combinations

• Faces are rare:  0–10 per image
- For computational efficiency, we should try to spend 

as little time as possible on the non-face windows
- A megapixel image has ~106 pixels and a 

comparable number of candidate face locations
- To avoid having a false positive in every image 

image, our false positive rate has to be less than 10-
6



The Viola/Jones Face Detector

• A seminal approach to real-time object detection 
• Training is slow, but detection is very fast
• Key ideas

- Integral images for fast feature evaluation
- Boosting for feature selection
- Attentional cascade for fast rejection of non-face windows

P. Viola and M. Jones. Rapid object detection using a boosted cascade of 
simple features. CVPR 2001. 

P. Viola and M. Jones. Robust real-time face detection. IJCV 57(2), 2004. 



Viola-Jones Face Detector: Results



Viola-Jones Face Detector: Results



Window-based models
Generating and scoring candidates

Car/non-car Classifier



Window-based object detection: recap

Feature 
extraction

Training examples

Training:
1. Obtain training data
2. Define features
3. Define classifier

Given new image:
1. Slide window
2. Score by classifier

Car/no car 
classifier 



Discriminative classifier construction

106 examples

Nearest neighbor

Shakhnarovich, Viola, Darrell 2003
Berg, Berg, Malik 2005...

Neural networks

LeCun, Bottou, Bengio, Haffner 1998
Rowley, Baluja, Kanade 1998
…

Support Vector Machines Conditional Random Fields

McCallum, Freitag, Pereira 2000; Kumar, 
Hebert 2003
…

Guyon, Vapnik
Heisele, Serre, Poggio, 2001,…

Slide adapted from Antonio Torralba

Boosting

Viola, Jones 2001, Torralba et al. 
2004, Opelt et al. 2006,…



Paul Viola, ICCV tutorial

Viola-Jones Face Detector: Results



Considering all possible 
filter parameters: 
position, scale, and 
type: 

180,000+ possible 
features associated 
with each 24 x 24 
window

Which subset of these features should we 
use to determine if a window has a face?
Use AdaBoost both to select the informative 
features and to form the classifier

Viola-Jones detector: features

Kristen Grauman



Boosting for face detection

l Define weak learners based on rectangle 
features

î
í
ì >

=
otherwise   0

)( if   1
)( tttt

t

pxfp
xh

q

window

value of rectangle feature

parity threshold

• For each round of boosting:
Evaluate each rectangle filter on each example
Select best filter/threshold combination based on weighted 

training error reweight examples



• Define weak learners based on rectangle 
features

• For each round of boosting:
- Evaluate each rectangle filter on each example
- Select best threshold for each filter 
- Select best filter/threshold combination
- Reweight examples

• Computational complexity of learning: 
O(MNK)
- M rounds, N examples, K features

Boosting for face detection



Viola-Jones detector: AdaBoost
• Want to select the single rectangle feature and threshold 

that best separates positive (faces) and negative (non-faces) 
training examples, in terms of weighted error.

Outputs of a possible rectangle feature 
on faces and non-faces.

…

Resulting weak classifier:

For next round, reweight the 
examples according to errors, 
choose another filter/threshold 
combo.

Kristen Grauman



AdaBoost Algorithm
Start with 
uniform weights 
on training 
examples

Evaluate weighted 
error for each feature, 
pick best.

Re-weight the examples:
Incorrectly classified -> more weight
Correctly classified -> less weight

Final classifier is combination of the 
weak ones, weighted according to 
error they had.

{x1,…xn}For T rounds



l Even if the filters are fast to compute, each new 
image has a lot of possible windows to search.

l How to make the detection more efficient?
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Solving other “Face” Tasks 

Facial Feature Localization

Demographic
Analysis

Profile Detection 

Slide credit: Frank Dellaert, Paul Viola, Foryth&Ponce
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Face Localization Features

l Learned features reflect the task

Slide credit: Frank Dellaert, Paul Viola, Forsyth&Ponce
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Face Profile Detection

Slide credit: Frank Dellaert, Paul Viola, Foryth&Ponce
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Face Profile Features 
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Finding Cars (DARPA Urban Challenge)

l Hand-labeled images of generic car rear-ends
l Training time: ~5 hours, offline

1100 images

Credit: Hendrik Dahlkamp
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Generating even more examples

l Generic classifier finds all cars in recorded video.
l Compute offline and store in database

28700 images

Credit: Hendrik Dahlkamp
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Results - Video



Pedestrian Detection: HOG Feature

Slides from Andrew Zisserman



Pedestrian Detection: HOG Feature

Dalal & Triggs, CVPR 2005 Slides from Andrew Zisserman

HOG: Histogram of Gradients



Pedestrian Detection: HOG Feature

Slides from Andrew Zisserman



Pedestrian Detection: HOG Feature

Slides from Andrew Zisserman



Algorithm

Slides from Andrew Zisserman



Model training using SVM

l Given 

l Find 

l To minimize 

xi ∈ R
d, yi ∈ {0,1}{ }

f (x) =wTx+ b

min
w,b

w 2
+C error yi f (xi )( )

i=1

N

∑

error(z) =max(0,1− z)



Result



Learned model

Slides from Deva Ramanan



Meaning of negative weights

wx>-b
(w+-w-)x>-b
w+x-w-x>-b

Slides from Deva Ramanan

Complete model should compete pedestrian/pillar/doorway
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More difficult cases



More sliding window detection:
Discriminative part-based models

Many slides based on P. Felzenszwalb



Challenge: Generic object detection



Discriminative part-based models

P. Felzenszwalb, R. Girshick, D. McAllester, D. Ramanan, Object Detection 
with Discriminatively Trained Part Based Models, PAMI 32(9), 2010

Root 
filter

Part 
filters

Deformation 
weights



Object hypothesis
• Multiscale model: the resolution of part 

filters is twice the resolution of  the root

Score of the filter : inner products between the filter and features



Part-based representation

l Objects are decomposed into parts and spatial 
relations among parts

l E.g. Face model by Fischler and Elschlager ‘73

113



Detection
• Define the score of each root filter location as the score 

given the best part placements:

• Efficient computation: generalized distance transforms
- For each “default” part location, find the best-scoring 

displacement

),...,(max)( 0,...,0
1

npp
ppscorepscore

n

=

( )),,,(),(max),( 22

,
dydxdydxDdyydxxHFyxR iidydxi ×-++×=

Head filter
Head filter responsesDistance transform



Detection



Training

• Training data consists of images with labeled bounding 
boxes

• Need to learn the filters and deformation parameters



Training
• The classifier has the form

• w are model parameters (filters and deformation 
parameters, z are latent hypotheses)

• x is detection window, z are features and filter placements 
• Latent SVM training:

- Initialize w and iterate:
• Fix w and find the best z for each training example (detection)
• Fix z and solve for w (standard SVM training)

• Issue: too many negative examples
- Do “data mining” to find “hard” negatives

),(max)( zxHwxf z ×=



Car model

Component 1

Component 2



Car detections



Person model



Person detections



Cat model



Cat detections



Bottle model



More detections



Background Selective Search

van de Sande et al  ICCV 2011
(ILSVRC 2011)Figure 2: Two examples of our selective search showing the necessity of different scales. On the left we find many objects at different

scales. On the right we necessarily find the objects at different scales as the girl is contained by the tv.

whose power of discovering parts or objects is left unevaluated. In
this work, we use multiple complementary strategies to deal with
as many image conditions as possible. We include the locations
generated using [3] in our evaluation.

2.3 Other Sampling Strategies

Alexe et al. [2] address the problem of the large sampling space
of an exhaustive search by proposing to search for any object, in-
dependent of its class. In their method they train a classifier on the
object windows of those objects which have a well-defined shape
(as opposed to stuff like “grass” and “sand”). Then instead of a full
exhaustive search they randomly sample boxes to which they apply
their classifier. The boxes with the highest “objectness” measure
serve as a set of object hypotheses. This set is then used to greatly
reduce the number of windows evaluated by class-specific object
detectors. We compare our method with their work.

Another strategy is to use visual words of the Bag-of-Words
model to predict the object location. Vedaldi et al. [34] use jumping
windows [5], in which the relation between individual visual words
and the object location is learned to predict the object location in
new images. Maji and Malik [23] combine multiple of these rela-
tions to predict the object location using a Hough-transform, after
which they randomly sample windows close to the Hough maxi-
mum. In contrast to learning, we use the image structure to sample
a set of class-independent object hypotheses.

To summarize, our novelty is as follows. Instead of an exhaus-
tive search [8, 12, 16, 36] we use segmentation as selective search
yielding a small set of class independent object locations. In con-
trast to the segmentation of [4, 9], instead of focusing on the best
segmentation algorithm [3], we use a variety of strategies to deal
with as many image conditions as possible, thereby severely reduc-
ing computational costs while potentially capturing more objects
accurately. Instead of learning an objectness measure on randomly
sampled boxes [2], we use a bottom-up grouping procedure to gen-
erate good object locations.

3 Selective Search

In this section we detail our selective search algorithm for object
recognition and present a variety of diversification strategies to deal
with as many image conditions as possible. A selective search al-
gorithm is subject to the following design considerations:

Capture All Scales. Objects can occur at any scale within the im-
age. Furthermore, some objects have less clear boundaries
then other objects. Therefore, in selective search all object
scales have to be taken into account, as illustrated in Figure
2. This is most naturally achieved by using an hierarchical
algorithm.

Diversification. There is no single optimal strategy to group re-
gions together. As observed earlier in Figure 1, regions may
form an object because of only colour, only texture, or because
parts are enclosed. Furthermore, lighting conditions such as
shading and the colour of the light may influence how regions
form an object. Therefore instead of a single strategy which
works well in most cases, we want to have a diverse set of
strategies to deal with all cases.

Fast to Compute. The goal of selective search is to yield a set of
possible object locations for use in a practical object recogni-
tion framework. The creation of this set should not become a
computational bottleneck, hence our algorithm should be rea-
sonably fast.

3.1 Selective Search by Hierarchical Grouping

We take a hierarchical grouping algorithm to form the basis of our
selective search. Bottom-up grouping is a popular approach to seg-
mentation [6, 13], hence we adapt it for selective search. Because
the process of grouping itself is hierarchical, we can naturally gen-
erate locations at all scales by continuing the grouping process until
the whole image becomes a single region. This satisfies the condi-
tion of capturing all scales.

As regions can yield richer information than pixels, we want to
use region-based features whenever possible. To get a set of small
starting regions which ideally do not span multiple objects, we use

3



State of the art

l Previous approaches 
- Hand Designed Features (SIFT, HOG, GIST …)

- What is next ? Better Features ? More Training data ?  Better 
classifiers ? 

- Main factor compared to humans is better features (Parikh & 
Zitnick’10) – study look at little patches and recognize 

l what the objects are 



• Mid-level cues

Mid-Level Representations

“Tokens” from Vision by D.Marr:

Continuation Parallelism Junctions Corners

• Object parts:

• Difficult to engineer, What about learning them?



Traditional Recognition Approach

Hand-designed
Feature 

Extraction

Trainable
Classifier

Image/Video
Pixels

• Features are not learned

• Trainable classifier is often generic (e.g. 
SVM)

Object
Class



Motivation

l Features are key to recent progress in recognition
l Multitude of hand-designed features currently in use

- SIFT, HOG, LBP, MSER, Color-SIFT………….

l Where next? Better classifiers? Or keep building more features?

Felzenszwalb,  Girshick, 
McAllester and Ramanan, PAMI 2007

Yan & Huang 
(Winner of PASCAL 2010 classification competition)



Existing Methods

Felzenszwalb,  Girshick, 
McAllester and Ramanan, PAMI 2007

l Histogram of Gradient (HOG) 
features extracted at multiple scales

l Series of templates for model 
“parts”

l Springs between them to ensure 
geometric consistency
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What about learning the features? 
•  Learn a feature hierarchy all the way from pixels to 

classifier 

•  Each layer extracts features from the output of 
previous layer 

•  Train all layers jointly 

Layer 1 Layer 2 Layer 3 Simple  
Classifier 

Image/ 
Video 
Pixels 

“Shallow” vs. “deep” architectures 

Hand-designed 
feature extraction 

Trainable 
classifier 

Image/ 
Video 
Pixels 

Object 
Class 

Layer 1 Layer N Simple 
classifier 

Object 
Class 

Image/ 
Video 
Pixels 

Traditional recognition: “Shallow” architecture 

Deep learning: “Deep” architecture 

… 
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What about learning the features? 
•  Learn a feature hierarchy all the way from pixels to 

classifier 

•  Each layer extracts features from the output of 
previous layer 

•  Train all layers jointly 

Layer 1 Layer 2 Layer 3 Simple  
Classifier 

Image/ 
Video 
Pixels 

“Shallow” vs. “deep” architectures 

Hand-designed 
feature extraction 

Trainable 
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Image/ 
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Pixels 

Object 
Class 

Layer 1 Layer N Simple 
classifier 

Object 
Class 

Image/ 
Video 
Pixels 

Traditional recognition: “Shallow” architecture 

Deep learning: “Deep” architecture 

… 
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Convolutional Neural Networks (CNN, Convnet) 
•  Neural network with specialized 

connectivity structure 
•  Stack multiple stages of feature 

extractors 
•  Higher stages compute more 

global, more invariant features 
•  Classification layer at the end 

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, 
Gradient-based learning applied to document recognition, Proceedings of the IEEE 
86(11): 2278–2324, 1998. 

•  Feed-forward feature extraction:  
1.  Convolve input with learned filters 
2.  Non-linearity  
3.  Spatial pooling  
4.  Normalization 

•  Supervised training of convolutional  
filters by back-propagating  
classification error 

Input Image 

Convolution 
(Learned) 

Non-linearity 

Spatial pooling 

Normalization 

Convolutional Neural Networks (CNN, Convnet) 

Feature maps 
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Convolutional Neural Networks (CNN, Convnet) 
•  Neural network with specialized 

connectivity structure 
•  Stack multiple stages of feature 

extractors 
•  Higher stages compute more 

global, more invariant features 
•  Classification layer at the end 

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, 
Gradient-based learning applied to document recognition, Proceedings of the IEEE 
86(11): 2278–2324, 1998. 

•  Feed-forward feature extraction:  
1.  Convolve input with learned filters 
2.  Non-linearity  
3.  Spatial pooling  
4.  Normalization 

•  Supervised training of convolutional  
filters by back-propagating  
classification error 

Input Image 

Convolution 
(Learned) 

Non-linearity 

Spatial pooling 

Normalization 

Convolutional Neural Networks (CNN, Convnet) 

Feature maps 
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Deep Convolutional Neural Networks 
for Image Classification 

Many slides from Rob Fergus (NYU and Facebook)  

1. Convolution 

•  Dependencies are local  
•  Translation invariance 
•  Few parameters (filter weights) 
•  Stride can be greater than 1  

(faster, less memory)  

Input Feature Map 

.

.

.



Example Feature Learning Architectures

Pixels /
Features

Filter with 
Dictionary
(patch/tiled/convoluti
onal)

Spatial/Feature 
(Sum or Max) 

Normalization
between 
feature responses

Features

+ Non-linearity 

Local Contrast 
Normalization 
(Subtractive & 

Divisive)

(Group)

Sparsity

Max 
/ 

SoftmaxNot an
exact
separation



SIFT Descriptor

lImage 
Pixels Apply

Gabor filters

Spatial pool 
(Sum) 

Normalize to unit 
length

Feature 
Vector



Application to ImageNet

[NIPS 2012]

  

Validation classification

  

Validation classification

  

Validation classification

[Deng et al. CVPR 2009] 

• ~14 million labeled images, 20k classes

• Images gathered from Internet

• Human labels via Amazon Turk 



Krizhevsky et al. [NIPS2012]

• 7 hidden layers, 650,000 neurons, 60,000,000 parameters
• Trained on 2 GPUs for a week

• Same model as LeCun’98 but:
- Bigger model  (8 layers)

- More data    (106 vs 103 images)
- GPU implementation (50x speedup over CPU)
- Better regularization (DropOut)

11 

ImageNet Challenge 2012 

  

Validation classification

  

Validation classification

  

Validation classification

[Deng et al. CVPR 2009]  

•  ~14 million labeled images, 20k 
classes 

•  Images gathered from Internet 

•  Human labels via Amazon Turk  

•  Challenge: 1.2 million training images, 
1000 classes 

A. Krizhevsky, I. Sutskever, and G. Hinton, 
ImageNet Classification with Deep Convolutional Neural Networks, NIPS 2012 

ImageNet Challenge 2012 
•  Similar framework to LeCun’98 but: 

•  Bigger model (7 hidden layers, 650,000 units, 60,000,000 params) 
•  More data (106 vs. 103 images) 
•  GPU implementation (50x speedup over CPU) 

•  Trained on two GPUs for a week 
•  Better regularization for training (DropOut) 

A. Krizhevsky, I. Sutskever, and G. Hinton, 
ImageNet Classification with Deep Convolutional Neural Networks, NIPS 2012 



ImageNet Classification 2012

l Krizhevsky et al. -- 16.4% error (top-5)
l Next best (non-convnet) – 26.2% error
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Layer 1 Filters 

Layer 1: Top-9 Patches 
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Layer 1 Filters 

Layer 1: Top-9 Patches 
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Layer 3: Top-9 Patches Layer 3: Top-9 Patches 

Layer 3: Top-9 Patches 



Background, R-CNN

Girshick et al 2013

R-CNN: Region proposals + CNN

10/3/2014 CSE590V 14Au 10

localization feature extraction classification

this paper: selective search deep learning
CNN binary linear SVM

alternatives:
objectness, constrained

parametric min-cuts, 
sliding window …

HOG, SIFT, LBP, 
BoW, DPM …

SVM,
Neural networks, 

Logistic regression …



Results summary

R-CNN: Training

10/3/2014 CSE590V 14Au 11

2. Fine-tune CNN for object detection

small target dataset (PASCAL VOC)

fine-tune CNN

1. Pre-train CNN for image classification

large auxiliary dataset (ImageNet)

train CNN

3. Train linear predictor for object detection

small target dataset (PASCAL VOC)

region proposals
~2000 

warped 
windows/image

CNN features

training labels

per class
SVM



R-CNNs on RGB-D 
for Object Detection and Segmentation

10/3/2014 CSE590V 14Au 32

S. Gupta et al., “Learning Rich Features from RGB-D Images for Object Detection and Segmentation”, ECCV 2014.

Pre-trained on Image-Net using RGB images. 
Fine-tuned on NYUD2 (400 images) and synthetic data.
SVM training on pool5, fc6 and fc7.


