
Basic Linear Algebra
Linear algebra deals with matrixes: two-dimensional arrays of values. Here’s a matrix:[

1 5 7
9 3 11

]
Often matrices are used to describe in a simpler way a series of linear equations. In the example

above the matrix might be thought of as the following two linear expressions:

1x+5y+7z
9x+3y+11z

A 1×n matrix is called a column vector: 4
9
7


Matrices can be added if they have exactly the same dimensions. In this case, you just add the

respective values in each position:[
1 5 7
9 3 11

]
+
[

100 200 300
400 500 600

]
=
[

101 205 307
409 503 611

]
Matrices can also be multiplied, but this means something different than you’d expect. When

you multiply the matrices A×B = C, an element at position 〈x,y〉 in C is equal to multiplying each
element in row x of A times the corresponding element in column y of B, then adding up the sum.
This means that the number of columns of A must be equal to the number of rows in B, and C’s
rows are the number of rows in A, and its columns are the number of columns in B.

[
a b c
d e f

]m p
n q
o r

=
[

am+bn+ co ap+bq+ cr
dm+ en+ f o d p+ eq+ f r

]
Matrix multiplication is associative. That is, (AB)C = A(BC). It’s also distributive over addi-

tion: A(B+C) = AB+AC. But unlike normal multiplication, matrix multiplication is not commu-
tative. The following is not true: AB = BA. However, addition is commutative: A+B = B+A.

What can you use matrix multiplication for? Consider the following multiplication:

[
1 5 7
9 3 11

]4
9
7

=
[

1×4+5×9+7×7
9×4+3×9+11×7

]
=
[

98
140

]
If you look carefully, basically the two items in the final column vector are the results of

f1(x,y,z) = 1x + 5y + 7z and f2(x,y,z) = 9x + 3y + 11z if you pass 4, 9, and 7 in as x, y, and z
respectively. When you multiply a matrix against a column vector, think of the matrix’s rows as

1



linear functions and the column vector as the values of the variables you’ll assign to the linear
functions. The result is the output of the functions.

Since multiple matrices can be multiplied, consider two matrices M and N and a column vector
Z. If you write NZ this produces the results of using Z’s variables in the functions in the rows
of N. You can then pass the results as variables for M’s functions: M(NZ). But since matrix
multiplication is associative, this is the same thing as (MN)Z. Let MN equal the matrix O, so
now we have OZ. What is O? We have composed the various functions in M against the various
functions in N to produce the new functions in O. OZ is the equivalent of multiplying Z by N and
then taking that and multiplying it against M.

Addition has similar notions: if you add two matrices M and N, this essentially “adds” their
respective sets of functions.

Rotation Matrices
You can use matrices to rotate a vector by a certain amount. Let your initial vector be the column
vector C. If your rotation matrix is called R(θ) (it rotates vectors by the angle θ , then the resulting
vector is computed as R(θ)C.

A two-dimensional R(θ) is defined as:

R(θ) =
[

cosθ −sinθ

sinθ cosθ

]
To rotate the vector 〈x,y〉 by θ , resulting in the new vector 〈x′,y′〉 of the same length l, you

have: [
cosθ −sinθ

sinθ cosθ

][
x
y

]
=
[

x′

y′

]
Here’s a picture:

θ
φ

x’, y’

x, y
l

The rotation matrix’s equations are thus:

x′ = xcosθ − ysinθ

y′ = xsinθ + ycosθ

2



Proof Let’s prove these equations to make sure the matrix is right. We have the following
trigonometric identities:

cos(α +β ) = cosα cosβ − sinα sinβ

sin(α +β ) = cosα sinβ + sinα cosβ

And also we know l =
√

x2 + y2 =
√

x′2 + y′2 (they’re the same length). From the picture
above it should be clear that

x′ = l cos(θ +φ)

From our identity, we get

x′ = l cosθ cosφ − l sinθ sinφ

Since cosφ = x
l (see the picture), then φ = cos−1 x

l . Likewise φ = sin−1 y
l by the same argu-

ment. So we have:

x′ = l cosθ cos(cos−1 x
l
)− l sinθ sin(sin−1 y

l
)

= l(cosθ)
x
l
− l(sinθ)

y
l

= xcosθ − ysinθ

Similarly,

y′ = xsinθ + ycosθ

Reverse Rotation To rotate a vector by −θ (to “rotate it back”), this is of course[
cos−θ −sin−θ

sin−θ cos−θ

]
...but since cos−α = cosα and sin−α =−sinα , we can simplify this to[

cosθ sinθ

−sinθ cosθ

]
Notice that this is just the original matrix where we’ve swapped the rows for the columns. This

is called transposing a matrix. The transpose of a matrix M is MT . Thus R(−θ) = R(θ)T .

Translating a Vector
Translating a vector is much easier than rotating it: just add it to another vector representing the
amount you want to translate each element by. For example, if you want to add 〈4x,4y〉 to 〈x,y〉
resulting in 〈x′,y′〉= 〈x+4x,y+4y〉, you simply do:

3



[
x
y

]
+
[
4x
4y

]
=
[

x+4x
y+4y

]
=
[

x′

y′

]

Rotating and Translating in 3D
3D vectors look like this: x

y
z


There are three ways you can rotate a vector in 3D: along the X axis, the Y axis, and the Z axis.

The matrices are:

Rx(θ) =

1 0 0
0 cosθ −sinθ

0 sinθ cosθ


Ry(θ) =

 cosθ 0 sinθ

0 1 0
−sinθ 0 cosθ


Rz(θ) =

cosθ −sinθ 0
sinθ cosθ 0

0 0 1


Translating a vector is still just addition:x

y
z

+

4x
4y
4z

=

x+4x
y+4y
z+4z

=

x′

y′

z′



4



Reference Frames

yI

xI
Inertial Reference Frame

A Body Reference Frame
Relative to the Inertial
Reference Frame

yB

xB

A reference frame is a set of axes which define where the 〈0,0〉, 〈1,0〉, and 〈0,1〉 points are in
some cartesian space. An inertial reference frame is a global reference frame which never changes.
A body reference frame is a reference frame which may be rotated and translated etc. relative to
the inertial reference frame, and which can change its relative rotation and translation over time.
Body reference frames are a convenient way to think of parts of a robot body: as a robot arm (say)
rotates and translates, the arm’s body reference frame moves with it.

If a vector is described in the coordinate system of one reference frame, and you want to know
how it’s described in the coordinate system of another reference frame, rotate and translate the
vector just the second reference frame is rotated and translated relative to the first. Such rotation
and translation can be done, as you might imagine, via rotation and translation.

Forward Kinematics for a 2D Arm with Two Degrees of Freedom
Forward kinematics for a robot arm involves figuring out a function that takes as it’s inputs the
angles of each joint and computes the position of the end point Pi:

f (θ1,θ2) =
[

x
y

]

5



θ1

θ2

l2
l1

P1

P2

P0

yB2

xB2

yI

xI

yB
1

xB
1

Here’s a diagram os a two-link robot arm. On the left we define the arm lengths l1 and l2,
and the joint angles θ1 and θ2. On the right we have defined three reference frames. The inertial
(“global”) reference frame is marked with the axes xI and yI . The body reference frame for arm 1
has axes XB1 and YB1, and is rotated from the inertial reference frame by θ1. The body reference
frame for arm 2, marked with XB2 and YB2, is translated l1 units down arm1 to point P1 in body
reference frame 1 and is then rotated θ2.

To figure out where the point P2 is in the intertial refence frame, first we’re going to figure out
where it is in frame 2, which is easy:

P2,B2 =
[

l2
0

]
Next we need to figure out where it is in frame 1. This entails both a rotation, because frame

2 is rotated with respect to frame one by an angle of θ2, and also a translation, since the origin of
frame 2 is translated with respect to the origin of frame 1 by a distance of l1. Therefore,

P2,B1 =
[

l1
0

]
+R(θ2)P2,B2 =

[
l1
0

]
+R(θ2)

[
l2
0

]
Finally, we need to express P2,B1 in the inertial frame. This is just a rotation by an angle of θ1;

there is no translation because the origin of frame 1 and the intertial frame coincide. Therefore,

P2,I = R(θ1)P2,B1 = R(θ1)
([

l1
0

]
+R(θ2)

[
l2
0

])
If you work out all of the matrix-vector multiplications, which is a little tedious but not hard, you
end up with

P2,I =
[

l1 cos(θ1)+ l2 (cos(θ1)cos(θ2)− sin(θ1)sin(θ2))
l1 sin(θ1)+ l2 (sin(θ1)cos(θ2)+ cos(θ1)sin(θ2))

]
=
[

l1 cos(θ1)+ l2 cos(θ1 +θ2)
l1 sin(θ1)+ l2 sin(θ1 +θ2)

]
and we’re done. This is a general algorithm, in the sense that if you define enough reference

frames and put them in the right spots, you can correctly derive the forward kinematics for any
robot arm. You don’t need any other tricks; simply placing reference frames at each of the joints
and working your way from the top of the arm to the bottom will do the job.

6



1 Inverse Kinematics for a 2D Arm with Two Degrees of Free-
dom

Inverse kinematics for a robot arm entails finding a function that takes as its input P2,I and computes
θ1 and θ2. In other words, here we are specifying where we want the end of the arm to be and
figuring out which joint angles we need to get it there.

The inverse kinematics problem is much more difficult than the forward kinematics problem.
There is no general way to come up with the inverse kinematics function for a robot arm in sym-
bolic form. Instead, numerical algorithms are usually used. Our example arm is simple enough,
though, that we can solve the inverse kinematics problem for it. To do that, we’re going to use
a trigonometric equation called the Law of Cosine. The Law of Cosine is a generalization of the
Pythagorean Theorem, which states that for any right triangle,

c2 = a2 +b2

where c is the hypotenuse. The Law of Cosines works for any triangle, not just right ones, and it
states:

c2 = a2 +b2−2abcos(θ)

where now, c doesn’t have to by the hypotenuse; it’s just the side opposite from the corner who’s
angle is θ .

β

P2

P0

yI

xI

φ

θ2

Now look at the diagram above. We have defined two new angles: β , which is the angle
between the x axis of the inertial frame and the line from the origin to point P2, and φ , which is
the angle between the first arm and point P2. We need to find expressions for θ1 and θ2 given point
P2. We can immediately use the Law of Cosine to figure out θ2 because arm 1, arm 2, and the line
from the origin to P2 form a triangle. In this case, our c is the length of the line from the origin
to P2, which we know is

√
x2 +b2; our a and b are l1 and l2, respectively; and our θ is 180−θ2.

Therefore, after a little simple algebra, we come up with the equation

θ2 = 180− cos−1
(

x2 + y2− l2
1 − l2

2
2l1l2

)

7



This equation looks simple, but it has a slight complication — what does it mean to take an inverse
cosine? If you plot a cosine you will notice that it’s symmetric across the y-axis. There are
therefore two angles that lead to the same cosine value: θ and −θ . Usually cos−1 picks the
positive one, but it doesn’t have to — we could just as easily pick the negative one. What does
this mean? Well, picture the reflection of the arm across the line from the origin to P2 — the arm’s
elbow could be either above or below the line. I other words, there are two values of θ1 and θ2
that could lead to the same P2. In the diagram we’ve shown theta2 as less than 180, but we could
choose it to be greater than 180. Therefore, really, the equation should read:

θ2 = 180± cos−1
(

x2 + y2− l2
1 − l2

2
2l1l2

)
The problem is now half solved. We still need to come up with an equation for θ1. We can use

the Law of Cosines again, this time to find the angle φ . This time, our c is l2, our a and b are l1
and

√
x2 + y2, and our θ is just φ . The Law of Cosines yields:

φ = cos−1

(
x2 + y2 + l2

1 − l2
2

2l1
√

x2 + y2

)
We now notice by looking at the diagram that θ1 = β + φ . Actually, if you look hard enough

you can convince yourself that θ1 could also be β − φ ; if we choose to pick a value of θ2 that’s
greater than 180, then we also have to pick θ1 = β + φ . If we choose θ2 less than 180 then
θ1 = β −φ . Therefore, we have three equations allow us to start with P2 and calculate θ1 and θ2,
which is what we wanted, so the problem is solved. Actually, we get a choice of two values for θ1
and θ2, which is even better.

2 Forward kinematics for a differential–drive mobile robot
The forward kinematics equations for a robot arm allow us to specify the position of each of the
actuators (in this case, the actuators are the motors that drive each of the arm joints, and their
positions are the joint angles θ1 and θ2) and calculate the position of the end of the arm in the
inertial reference frame. Notice that for a robot arm, the past positions of the joints don’t make
any difference — we can always calculate the current position of the end of the arm from the
current joint angles. In contrast, the actuators for a differential drive mobile robot are the wheels.
Ideally, we would like to come up with forward kinematics equations for the mobile robot that are
analogous to those for a robot arm. In other words, we would like to calculate the position of the
robot in the inertial frame just by using the position of the wheels — but that isn’t possible. For
a mobile robot, the past position of the actuators (called the time history) are important because
there are many trajectories that could end up with the same wheel positions, and unlike a robot arm
each of those trajectories moves the mobile robot to a different place.

If we can’t come up with forward kinematics equations that are similar to those for a robot arm,
what can we do? One possibility is to derive some equations that tell us what the current velocities
of the mobile robot are in the inertial reference frame given the velocities of the wheels. If we

8



could do that, and if we knew where the robot started, then in theory we could always calculate
the robot’s current position by integrating it’s velocity. That’s what old ship navigators did — they
knew their velocity and they knew the time, and they could then estimate their position by using
dead reckoning.

ICC

vl vr

ω

l
R

yB

xB

ICC

vl vr

ω

l
R

yB

xB
(Both wheels moving forward,
right wheel faster)

(left wheel moving backwards,
right wheel forward and faster)

To start we have to derive an equation that relates the robot’s wheel velocities to the chassis
velocity in a body — fixed frame. Since our mobile robot operates in a plane (the floor), is has
three potential degrees of freedom — x (forward), y (sideways), and θ (rotation). We can easily
determine an equation for the y velocity — it must be zero:

vy,B = 0

In order to calculate the forward and rotational velocities, first imagine what the robot will do
if you cause the wheels to spin at constant, random velocities. There are two possibilities: if the
velocities happen to be exactly the same, the robot will travel in a straight line. Otherwise, it will
travel in a circle. If the wheel velocities are close to each other, the circle will be large; if they
are very different from each other, the circle will be small. We’ll call the center of the circle the
ICC (Instantaneous Center of Curvature). Also, we will call the rotational velocity of the robot
(the rate of speed, in radians per second, that it takes for the robot to complete one full rotation
around the circle) ω . Recall that the circumference of a circle of radius r is 2πr; the length of the
partial circumference of the pie–shaped part of the circle defined by an angle of φ radians is φr.
Therefore, the rate of speed of a point that is traveling along the circumference of a circle with
radius r and sweeping out ω radians per second is ωr units per second. If the robot is traveling
along a circle whose center is the ICC, then, the inner wheel vl has a velocity of ω(R− l/2) and
the outer wheel vr has a velocity of ω(R+ l/2).

By subtracting these two expressions we can come up with an expression for ω in terms of vr

9



and vl:

vr− vl = ω(R+ l/2)−ω(R− l/2)
= ωl

or
ω = (vr− vl)/l

By adding them we can come up for an expression for R in terms of vr and vl:

vr + vl = ω(R+ l/2)+ω(R− l/2)
= 2ωR

(1)

and by substituting in our expression for ω and solving for R we get

R =
(

l
2

)(
vr + vl

vr− vl

)
Now we know what the forward velocity of the chassis is: it’s just ωR, since the chassis is

traveling along a circle of radius R with a rotational velocity of ω . And since we can now calculate
both R and ω from the wheel velocities, we can write an expression for the velocity of the chassis
in the body fixed frame: vx,B

vy,B
ω

=

1
2(vl + vr)

0
1
l (vr− vl)



vl

vr

YI

XI

yB

xB

ω

10



The only thing left to do is to write the translational velocities vx and vy in terms of the inertial
frame, which means simply multiplying them by a rotation matrix:[

vx,I
vy,I

]
= R(θ)

[1
2(vl + vr)

0

]
=
[1

2 cosθ(vr + vl)
1
2 sinθ(vr + vl)

]
where θ is the angle between the inertial frame and the body–fixed frame.

Are we done? Think really hard for a minute about how you would code up these equations. Is
there anything you don’t know?

Answer: yes. You don’t know θ — in fact, θ is one of the quantities we started out with the
goal of computing. We have an expression for ω , and ω and θ are related:

θ̇ = ω

but we don’t yet have a way to calculate θ itself. What now?
The only way to calculate θ is to integrate ω over the entire time the robot is moving. There are

many algorithms for doing this, but the simplest one (called a backward Euler integration scheme)
goes back to what you learned in basic calculus. Remember than geometrically, the integral of f (t)
is just a way of calculating the area under the curve defined by f (t). Here, our curve is defined
by ω , and we need to calculate the area under it. When you learned about the theory behind
integration, you learned that you can divide the curve up into small slices, assume the curve was
constant over the slices, and use the formula for the area of a rectangle to calculate the area of the
slice. Then to approximate the area under the entire curve you just added the areas of each of the
slices. That’s what we are going to do here. Suppose you divide the curve formed by ω into slices
of length δ . Then we can approximately calculate θ by the following equation:

θn ≈ θn−1 +δn−1ωn−1

where θ0 is the angle that the robot started out at with respect to the inertial reference frame, and
θn is the angle it’s at after a time slice of length δn. Note also that as long as you can measure the
elapsed time between iterations, the time slices for each iteration doesn’t have to be exactly the
same length.

Now that you can calculate θ , then you can calculate vx,I and vy,I . And you can do one more
thing: you can use our approximate integration algorithm to calculate xI and yI . Here’s the com-
plete algorithm:

θn ≈ θn−1 +δn−1(vr,n−1− vl,n−1)/l

xI,n ≈ xI,n−1 +
δn−1

2
cosθn−1(vr,n−1 + vl,n−1)

yI,n ≈ yI,n−1 +
δn−1

2
sinθn−1(vr,n−1 + vl,n−1)

where xI,0 and yI,0 are the x and y starting positions of the robot in the inertial frame and vr,n and vl,n
are the wheel velocities at the beginning of time slice δn. Now as long as you have a reasonably fast
processor, so that δ is small, and a reasonably good clock, so that you can measure δn accurately,
you can calculate your robot’s position.

11


