CS 687
Jana Kosecka

Advanced topics
Deep g-learning

These slides were created by Dan Klein, Pieter Abbeel and Anca Dragan for C5188 Intro to Al at UC Berkeley.

Deep Q-learning

Previously Q(s,a) function approximation

Learn optimal linear weighting of the features

Analogy with the recursive least squares — update the weights

= Can we use more complicated functions and avoid the feature
selection stage

Deep Q-learning

= Atari game break out

Q(s,a;0) ~ Q" (s,a)

Deep Q-learning

Remember: want to find a Q-function that satisfies the Bellman Equation:
Q*(s,a) =Egng [r + vy max Q*(s’,a’)|s, a}
al

Forward Pass
Loss function: L;(6;) = E; qnp(.) [(yz - Q(s, a5 ai))z]

Iteratively try to make the Q-value
where y; = Es e [T + ymax Q(SI: a'; fi-1)ls,a close to the target value (y,) it
a should have, if Q-function
corresponds to optimal Q* (and

Gradient update (with respect to Q-function parameters 6):
V91[/7,(97,) = Es,a~p(-);s’~8 |:7' +y H}]{&/{XQ(SG al; Hi—l) - Q(S7 a; 91))V97,Q(8a a; 91):|

4

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Q-network Architecture
Last FC layer has 4-d

Q(s,a;0): [Foz Qvaves) | output (if 4 actions),
nc.atiral r?emorg | e | corresponding to Q(s,,
with weights =
a,), Q(s, a,), Q(s, a,),
Q(s.a,)

A single feedforward pass
to compute Q-values for all T —

actions from the current 1
state => efficient! JJJ

Current state s: 84x84x4 stack of last 4 frames
(after RGB->grayscale conversion, downsampling, and cropping)

Experience Replay

Learning from batches of consecutive samples is problematic:
- Samples are correlated => inefficient learning

size) => can lead to bad feedback loops

Address these problems using experience replay

- Continually update a replay memory table of transitions (s, a, r, s,,,) as game
(experience) episodes are played

- Train Q-network on random minibatches of transitions from the replay memory,

instead of consecutive samples

to multiple weight updates
=> greater data efficiency

- Current Q-network parameters determines next training samples (e.g. if maximizing
action is to move left, training samples will be dominated by samples from left-hand

Each transition can also contribute

Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay
Initialize replay memory D to capacity N
Initialize action-value function () with random weights
for episode = 1, M do
Initialise sequence s; = {z; } and preprocessed sequenced ¢; = ¢(s;)
fort =1,T do
With probability € select a random action a;
otherwise select a; = max, Q*(¢(s:),a;0)
Execute action a; in emulator and observe reward r; and image ;. 1
Set 5441 = 8¢, ay, T¢41 and preprocess g1 = P(8¢41)
Store transition (¢, a;, 7y, ¢1+1) in D
Sample random minibatch of transitions (¢;,a;,7;, ¢;+1) from D
Sety; = Tj for terminal ¢,
J rj +ymaxy Q(¢j+1,a;6) for non-terminal ¢; .+,
Perform a gradient descent step on (y; — Q(¢;, a;; 0))2 according to equation 3
end for
end for

Atari Breakout

= \VVideo Deep

https://www.youtube.com/watch?v=V1eYniJ0Rnk

So Far: Foundational Methods

Now: Advanced Applications

S

P
NP VP
A~
MD VP
~\
~ PRP | VB ADV
I o

~ You will see later

'8+ AlphaGo

Después lo veras

Robotic Helicopters

Motivating Example

= How do we execute a task like this?

Autonomous Helicopter Flight

= Key challenges:

= Track helicopter position and orientation during flight

= Decide on control inputs to send to helicopter

Autonomous Helicopter Setup

On-board inertial
measurement unit (IMU)

Position

Send out controls to
helicopter

HMM for Tracking the Helicopter

= State: S = (ZC,:(J,Z,(ﬁ,Q,@b,j?,:I),é, ¢>07¢>

= Measurements: [observation update]
= 3-D coordinates from vision, 3-axis magnetometer, 3-axis gyro, 3-axis accelerometer

= Transitions (dynamics): [time elapse update]
" S =f(sy, ay) +wy f: encodes helicopter dynamics, w: noise

Helicopter MDP

state: s = (z,y,2,¢,0,0,%,7, Z',éaéﬂb)

Actions (control inputs):
= Qin : Main rotor longitudinal cyclic pitch control (affects pitch rate)
= Qi : Main rotor latitudinal cyclic pitch control (affects roll rate)
= Ao : Main rotor collective pitch (affects main rotor thrust)
® Qg : Tail rotor collective pitch (affects tail rotor thrust)

Transitions (dynamics):
" Sy =f(sy a) + Wy
[f encodes helicopter dynamics]
[w is a probabilistic noise model]

Can we solve the MDP yet?

Problem: What’s the Reward?

= Reward for hovering:

R(s) = —ag(z— x*)2
_O‘y(y - y*)2
—a, (2 — 2%)?
—Oéi-iZ
—ay-gf
—042'21'2

RL: Helicopter Flight

[Andrew Ng]

Problem for More General Case: What’s the Reward?

= Rewards for “Flip”?
= Problem: what’s the target trajectory?

= Just write it down by hand?

10

Helicopter Apprenticeship?

[VIDEO: airshow_unaligned.wmv]

Demonstrations

1

Learning a Trajectory
e
- 2000QOe
- 9000000

* HMM-like generative model
— Dynamics model used as HMM transition model
— Demos are observations of hidden trajectory

* Problem: how do we align observations to hidden
trajectory?

Abbeel, Coates, Ng, IJRR 2010

Probabilistic Alignment using a Bayes’ Net

-»-»-».-»‘-»

il b b

= Dynamic Time Warping
(Needleman&Wunsch 1970, Sakoe&Chiba, 1978)

= Extended Kalman filter / smoother

Demo 1

Abbeel, Coates, Ng, IJRR 2010

12

[VIDEO: airshow_unaligned.wmv]

Aligned Demonstrations

Alignment of Samples

15/
10l
g, I"\
g 5
Z 0
-5-
10 20 30 40 50
North (m)

= Result: inferred sequence is much cleaner!

13

Learned Behavior

[Abbeel, Coates, Quigley, Ng, 2010]

Learning a model for MDP

= Before state transtion probabilities and rewards known
= These are usually not given
= \WWe can have a simulator and observed a set of trails

= Estimate T(s,a,s’) as number of times we took actio a in
state a we got to state s’’number of times we too action a in
state s

14

Continuous State MDP

= To obtain a model — learn one
= Given a simulator — execute some random policy
= Record actions and stafesss- legrn a model of dynamics

= For linear model find such A and B to fit best the observed

sequences, Get a determipistig madel
= Stochastic model

t+1

= Or you can use locally weighted linear regression (to learn a

non-linaear model)

Appoximate Value Function

= E.g. linear combination of features (some functions of state)
= Approximate value function as

V(s)=0"g(s)
= Now how to adopt value iteration ?

= |dea — repeatedly fit tHe values of parameters of value
function

15

Fitted Value lteration

3. Repeat {

For each action a € A {
Sample sp,..., s}, ~ Py, (using a model of the MDP).
Set g(a) = £ 5% | R(sD) + 4V (s))
// Hence, q(a) is an estimate of R(s)+~vEyp_,, [V (s)].
¥
Set y® = max, q(a).
// Hence, y® is an estimate of R(s®)+~ max, Egopr g V()]
¥
// In the original value iteration algorithm (over discrete states)
// we updated the value function according to V(s®) := y®.
// In this algorithm, we want V (s®) ~ y@® which we’ll achieve
// using supervised learning (linear regression).

Set 0 := argming 1 >°7", (F)T(/ﬁ(s(i)) _ y(i))2

Fitted Value lteration

= Converge to optimal value function

= |ssues: how to choose the features, how to choose the policy
= You cannot pre-compute the policy for each state

= Only when you are in some state, select the policy

LQR - Continuous state space, action space
special form of reward function

16

For Perspective: Darpa Robotics Challenge (2015)

iRpex, [PHYIRE FalRPLEX

How About Continuous Control, e.g., Locomotion?

Robot models in physics simulator
(MuJoCo, from Emo Todorov)

Input: joint angles and velocities
Output: joint torques

Neural network architecture:

17

Learning Locomotion

lteration O

[Schulman, Moritz, Levine, Jordan, Abbeel, 2015]

Deep RL: Virtual Stuntman

it it . I

-

TR S S———
ol b tomb B4 5 S LK
s

[Peng, Abbeel, Levine, van de Panne, 2018]

Pieter Abbeel -- UC Berkeley | Gradescope | Covariant.Al

18

Quadruped

= Low-level control problem: moving a foot into a new location
- search with successor function ~ moving the motors

= High-level control problem: where should we place the feet?

= Reward function R(x) =w .f(s) [25 features]

[Kolter, Abbeel & Ng, 2008]

Reward Learning + Reinforcement Learning

= Demonstrate path across the “training terrain”

= Learn the reward function
= Receive “testing terrain”---height map.

» Find the optimal policy with respect to the learned reward
function for crossing the testing terrain. [Kolter, Abbeel & Ng, 2008]

19

Without reward learning

20

Grand Challenge 2005: Barstow, CA, to Primm, NV

fon Providence
Mountains St,

ReC, Area
Ludlow %

> - ’ Havasu La(ké)tlu

e Amboy d‘&\:
Pi

150 mile off-road robot race

Torrance)% iy across the Mojave desert

. = Natural and manmade hazards
= No driver, no remote control

= No dynamic passing

Autonomous Vehicles

Autonomous vehicle slides adapted from Sebastian Thrun

21

Grand Challenge 2005 Nova Video

[VIDEO: nova-race-supershort.mp4]

Grand Challenge 2005 — Bad

[VIDEO: grand challenge — bad.wmv]

22

An Autonomous Car

~a adar

6 Computers Ll Control Screen

Actions: Steering Control

Steering
Angle
(with respect
to trajectory)

23

Laser Readings for Flat / Empty Road

Laser Readings for Road with Obstacle

24

Obstacle Detection

Trigger if |Z~Z| > 15cm for nearby 2/, 7

Raw Measurements: 12.6% false positives

Probabilistic Error Model

D>
L
G G G

25

HMMs for Detection

Raw Measurements: 12.6% false positives HMM Inference: 0.02% false positives

Sensors: Camera

26

Vision for a Car

Vision for a Car

[VIDEO: lidar vision for a car]

27

[VIDEO: self-supervised vision]

Self-Supervised Vision

_—1
7

Urban Environments

28

[VIDEO: ROBOTICS — gcar.m4v]

Google Self-Driving Car (2013)

(mostly lidar)

Recent Progress: NN Semantic Scene Segmentation

~ neural net classifies every pixel

PSPNet50

29

Self-Driving Cars -- Stats

Autonomous vehicle safety progress
- -

14

1.2+

1.0+
w w
2 2
E 0.8 E
o — Google/Waymo disengagements per 1000 miles] : o
(=} = Human crash rate per 1000 miles (0.002-0.004) (=}
S Human injuries per 1000 miles (0.00077) S
= — Human fatalities per 1000 miles (0.00001) w
< 0.6 - =
c c
[[
> >
o i}

04+

0.2

0.0

2014 2015 2016 2017

Years

1;8ptonomous vehicle safety progress (log scale)

10°

107} 4
= Google/Waymo disengagements per 1000 miles

10.2 = Human crash rate per 1000 miles (0.002-0.004)

Human injuries per 1000 miles (0.00077) E

== Human fatalities per 1000 miles (0.00001)

103} 4

104} 4

10'5 L L

2014 2015 2016

Years

Pieter Abbeel -- UC Berkeley | Gradescope | Covariant.Al

2017

Events/1000 miles

80

Autonomous vehicle safe

Self-Driving Cars -- Stats

ty progress

70+

[=2]
o
T

w
o
T

S
o

Google/Waymo disengagements per 1000 miles
Cruise/GM disengagements per 1000 miles
Nissan disengagements per 1000 miles
Delphi disengagements per 1000 miles L
Human crash rate per 1000 miles (0.002-0.004)| :
Human injuries per 1000 miles (0.00077)
Human fatalities per 1000 miles (0.00001)

w
o
T

N
o
T

10+

0
2014

2015
Years

2016

Events/1000 miles

2017

1%ytonomous vehicle safety progress (log scale)

10'
10°F
A= Google/Waymo disengagements per 1000 miles
107 H = Cruise/GM disengagements per 1000 miles E
— Nissan disengagements per 1000 miles
— Delphi disengagements per 1000 miles :
= Human crash rate per 1000 miles (0.002-0.004) | :
- Human injuries per 1000 miles (0.00077) i
107
— Human fatalities per 1000 miles (0.00001)
-3
107 | B
-4
107 - E
1 -5 L L
2014 2015 2016

Years

2017

30

SqueezeNext vs
SqueezeNet/AlexNet
* 8% more accurate
» 2.25x better than SqueezeNet
« 7.5x better than AlexNet

[slide credit: Kurt Keutzer]

Accuracy

co
N

Energy-Inference-Accuracy Landscape on the Squeezelator

ImageNet energy-accuracy for different NNs

90

L o
o @

co
N

(o]
o

® SqueezeNext
@ MobileNet
' @ Tiny DarkNet
P SqueezeNetl.0
W SqueezeNetl 1
® AlexNet
* MobileNet

* vl
O

-
o
o

101
Energy (xX1E9)

31

