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CS 687
Jana Kosecka

Advanced topics
Policy gradients, Actor Critic, NLP, 
Perception

Some slides are adopted from Serena You CS 231 Stanford  and S. Levine Deep RL course, UC  Berkeley, Pieter

Abbeel UC Berkeley

Previously
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                    :
neural network 
with weights

Q-network Architecture

43

Current state st: 84x84x4 stack of last 4 frames 
(after RGB->grayscale conversion, downsampling, and cropping)

16 8x8 conv, stride 4

32 4x4 conv, stride 2

FC-256

FC-4 (Q-values)

[Mnih et al. NIPS Workshop 2013; Nature 2015]

• Q – learning and deep Q learning 
§ Atari games example

Playing Atari with Deep Reinforcement 
Learning
Volodymyr Mnih, Koray Kavukcuoglu, David 
Silver, Alex Graves, Ioannis Antonoglou, Daan 
Wierstra, Martin Riedmille

https://arxiv.org/search/cs?searchtype=author&query=Mnih%2C+V
https://arxiv.org/search/cs?searchtype=author&query=Kavukcuoglu%2C+K
https://arxiv.org/search/cs?searchtype=author&query=Silver%2C+D
https://arxiv.org/search/cs?searchtype=author&query=Graves%2C+A
https://arxiv.org/search/cs?searchtype=author&query=Antonoglou%2C+I
https://arxiv.org/search/cs?searchtype=author&query=Wierstra%2C+D
https://arxiv.org/search/cs?searchtype=author&query=Riedmiller%2C+M
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Deep Q-learning

3
Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 23, 2017

Remember: want to find a Q-function that satisfies the Bellman Equation: 

41

Loss function:

where
Iteratively try to make the Q-value 
close to the target value (yi) it 
should have, if Q-function 
corresponds to optimal Q* (and 
optimal policy Ḗ*)

Solving for the optimal policy: Q-learning 

Forward Pass

Backward Pass
Gradient update (with respect to Q-function parameters θ):

Experience Replay
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Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 23, 201753

Putting it together: Deep Q-Learning with Experience Replay

[Mnih et al. NIPS Workshop 2013; Nature 2015]
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Learn policies 

5

ot at

1. run away
2. ignore
3. pet

Terminology & notation

Supervised learning paradigm  training data ot at

Learn the policy

Does is work ?  

1. run away
2. ignore
3. pet

Terminology & notation

Supervised Learning

§ Bojarski ‘16 NVIDIA End to End Learning for Self-Driving Cars

6

Why did that work?

Bojarski et al. ‘16, NVIDIA
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Dagger 

• How to handle distribution shift
• Gather more training data using initial policy
•

7

Can we make it work more often?

DAgger: Dataset Aggregation

Ross et al. ‘11

Problems

§ Non-markovian
§ Multi-model behavior 
§ Output mixtures of Guassians
§ Implicit density models 
§ Latent variable models (how to use noise effectively)
§ Auto-regressive discretization

8
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How to use the history
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Case studies

• Trail following as classification 

A Machine Learning Approach to Visual Perception of Forest Trails 
for Mobile Robots, A. Guisti et al

• Video

10

https://youtu.be/umRdt3zGgpU
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Case studies

Learning transferable policies for monocular reactive control of 
MAV, Daftry, Bagnell, Hebert 

11

Problems

§ Non-markovian
§ Multi-model behavior 
§ Output mixtures of Guassians
§ Implicit density models 
§ Auto-regressive discretization

12
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Case studies

Vision-based multi-task manipulation for inexpensive robots using 
end-to-end demonstrate, Rouhollah Rahmatizadeh, Pooya Abolghasemi, Ladislau
Bölöni, and Sergey Levine.

• Video

13

14

https://youtu.be/AqQFzoVsJfA
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Issues with supervised learning

§ Human needs to provide training data 
§ Need a lot of data, some important training data is hard to obtain
§ Topics : interaction and active learning

§ Humans can learn without this level of supervision 
§ From their own experience, feedback through rewards, 

improving  

§ Back to -> Reinforcement learning 16
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Perception for Personal Robotics

§ Object detection
§ Semantic Segmentation
§ Pose estimation
§ Visual navigation

17

SKydio

WaymoAmazon Picking Challenge

IGQ REG GQ-Adv-Phys GQ-Adv GQ-S GQ

Success Rate (%) 60±13 52±14 68±13 74±12 72±12 80±11

Precision (%) N/A N/A 68 87 92 100

Robust Grasp Rate (%) N/A N/A 100 30 48 58

Planning Time (sec) 1.8 3.4 0.7 0.7 0.8 0.8

TABLE IV: Performance of grasp planning methods on our grasping bench-
mark with the test dataset of 10 household objects with 95% confidence
intervals for the success rate. Each method was tested for 50 trials, and
details on the methods used for comparison can be found in Section VI-C.
GQ performs best in terms of success rate and precision, with 100% precision
(zero false positives among 29 positive classifications). Performance decreases
with smaller training datasets, but the GQ-CNN methods outperform the
image-based grasp quality metrics (IGQ) and point cloud registration (REG).

Generalization Objects Order Fulfillment

Fig. 7: (Left) The test set of 40 household objects used for evaluating the
generalization performance of the Dex-Net 2.0 grasp planner. The dataset
contains rigid, articulated, and deformable objects. (Right) The experimental
setup for order fulfillment with the ABB YuMi. The goal is to grasp and
transport three target objects to a shipping container (box on right).

(CEM) [33], which iteratively samples a set of candidate
grasps and re-fits the candidate grasp distribution to the grasps
with the highest predicted robustness, in order to find better
maxima of the robust grasping policy. More details can be
found in the supplemental file. The CEM-augmented Dex-Net
2.0 grasp planner achieved 94% success and 99% precision
(68 successes out of 69 grasps classified as robust), and it
took an average of 2.5s to plan grasps.

H. Application: Order Fulfillment
To demonstrate the modularity of the Dex-Net 2.0 grasp

planner, we used it in an order fulfillment application with
the ABB YuMi. The goal was to grasp and transport a set
of three target objects to a shipping box in the presence of
three distractor objects when starting with the objects in a pile
on a planar worksurface, illustrated in Fig. 7. Since the Dex-
Net 2.0 grasp planner assumes singulated objects, the YuMi
first separated the objects using a policy learned from human
demonstrations mapping binary images to push locations [31].
When the robot detected an object with sufficient clearance
from the pile, it identified the object based on color and used
GQ-L-Adv to plan a robust grasp. The robot then transported
the object to either the shipping box or a reject box, depending
on whether or not the object was a distractor. The system
successfully placed the correct objects in the box on 4 out of
5 attempts and was successful in grasping on 93% of 27 total
attempts.

I. Failure Modes
Fig. 8 displays some common failures of the GQ-CNN

grasp planner. One failure mode occured when the RGB-D

RGB-D Sensor Noise Misclassified Collisions

+ + +

Execution

Planned
Grasp

Fig. 8: Four examples of failed grasps planned using the GQ-CNN from Dex-
Net 2.0. The most common failure modes were related to: (left) missing sensor
data for an important part of the object geometry, such as thin parts of the
object surface, and (right) collisions with the object that are misclassified as
robust.

sensor failed to measure thin parts of the object geometry,
making these regions seem accessible. A second type of failure
occured due to collisions with the object. It appears that the
network was not able to fully distinguish collision-free grasps
in narrow parts of the object geometry. This suggests that
performance could be improved with more accurate depth
sensing and using analytic methods to prune grasps in collsion.

VII. DISCUSSION AND FUTURE WORK

We developed a Grasp Quality Convolutional Neural Net-
work (GQ-CNN) architecture that predicts grasp robustness
from a point cloud and trained it on Dex-Net 2.0, a dataset
containing 6.7 million point clouds, parallel-jaw grasps, and
robust grasp metrics. In over 1,000 physical evaluations, we
found that the Dex-Net 2.0 grasp planner is as reliable and
3⇥ faster a method based on point cloud registration, and had
99% precision on a test set of 40 novel objects.

In future work, our goal is to approach 100% success on
known objects by using active learning to adaptively acquire
grasps using a policy initialized with a GQ-CNN. Additionally,
we plan to exend the method to grasp objects in clutter [16, 33]
by using simulated piles of rigid objects from Dex-Net and
by augmenting the grasping policy with an option to push and
separate objects when no robust grasp is available. We also
intend to extend the method to use point clouds from multiple
viewpoints and in grasping tasks with sequential structure,
such as regrasping for assembly. Furthermore, we plan to
release a subset of our code, dataset, and the trained GQ-CNN
weights to facilitate further research and comparisons.
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[NIPS 2012]
  

Validation classification

  

Validation classification

  

Validation classification

[Deng et al. CVPR 2009] 

• ~14 million labeled images, 20k classes 

Wait! Hold on…

COCO Common Objects in Context

330K Objects of 80 object categories, people, keypoints

2015

§ Computational power, availability of data and 
models 

§ Challenges and opportunities of robot perception 

§ Visual detection and classification of object 
instances

§ Navigation strategies for finding objects



11

Multi-object detection 52fps

Fast Single Shot Detection and Pose Estimation P. Poirson, Philip Ammirato, Cheng-Yang 
Fu  W.  Liu,  J Kosecka, A.  Berg
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(a) Input image with GT boxes (b) 8⇥ 8 feature map (c) 4⇥ 4 feature map

loc : �(cx, cy, w, h)
conf : (c1, c2, · · · , cp)

Fig. 1: SSD framework. (a) SSD only needs an input image and ground truth boxes for
each object during training. In a convolutional fashion, we evaluate a small set (e.g. 4)
of default boxes of different aspect ratios at each location in several feature maps with
different scales (e.g. 8 ⇥ 8 and 4 ⇥ 4 in (b) and (c)). For each default box, we predict
both the shape offsets and the confidences for all object categories ((c1, c2, · · · , cp)).
At training time, we first match these default boxes to the ground truth boxes. For
example, we have matched two default boxes with the cat and one with the dog, which
are treated as positives and the rest as negatives. The model loss is a weighted sum
between localization loss (e.g. Smooth L1) and confidence loss (e.g. Softmax).

instances in those boxes, followed by a non-maximum suppression step to produce the
final detections. The early network layers are based on a standard architecture used for
high quality image classification (truncated before any classification layers), which we
will call the base network1. We then add auxiliary structure to the network to produce
detections with the following key features:

Multi-scale feature maps for detection We add convolutional feature layers to the end
of the truncated base network. These layers decrease in size progressively and allow
predictions of detections at multiple scales. The convolutional model for predicting
detections is different for each feature layer (cf Overfeat[4] and YOLO[5] that operate
on a single scale feature map).

Convolutional predictors for detection Each added feature layer (or optionally an ex-
isting feature layer from the base network) can produce a fixed set of detection predic-
tions using a set of convolutional filters. These are indicated on top of the SSD network
architecture in Fig. 2. For a feature layer of size m ⇥ n with p channels, the basic el-
ement for predicting parameters of a potential detection is a 3 ⇥ 3 ⇥ p small kernel
that produces either a score for a category, or a shape offset relative to the default box
coordinates. At each of the m⇥ n locations where the kernel is applied, it produces an
output value. The bounding box offset output values are measured relative to a default
box position relative to each feature map location (cf the architecture of YOLO[5] that
uses an intermediate fully connected layer instead of a convolutional filter for this step).

1 In our reported experiments we use the VGG-16 network as a base, but other networks also
produce good results.

• SSD object detector single pass 
• confidences for 80 categories
• and their bounding boxes
• Overall mAP ~ 50%

7

Fig. 5: (a) Number of annotated instances per category for MS COCO and PASCAL VOC. (b,c) Number of annotated
categories and annotated instances, respectively, per image for MS COCO, ImageNet Detection, PASCAL VOC and
SUN (average number of categories and instances are shown in parentheses). (d) Number of categories vs. the
number of instances per category for a number of popular object recognition datasets. (e) The distribution of
instance sizes for the MS COCO, ImageNet Detection, PASCAL VOC and SUN datasets.

We took care to minimize the chance of near-duplicate
images existing across splits by explicitly removing near
duplicates (detected with [43]) and grouping images by
photographer and date taken.

Following established protocol, annotations for train
and validation data will be released, but not for test.
We are currently finalizing the evaluation server for
automatic evaluation on the test set. A full discussion
of evaluation metrics will be added once the evaluation

server is complete.

Note that we have limited the 2014 release to a subset
of 80 categories. We did not collect segmentations for the
following 11 categories: hat, shoe, eyeglasses (too many
instances), mirror, window, door, street sign (ambiguous
and difficult to label), plate, desk (due to confusion with
bowl and dining table, respectively) and blender, hair
brush (too few instances). We may add segmentations for
some of these categories in the cumulative 2015 release.

COCO dataset diversity
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GMU Kitchen Dataset 
10 densely sampled and registered RGB-D videos of 

kitchen scene

Fig. 3. Examples of blending object instances from the BigBird dataset into scenes from the NYU Depth V2 dataset. The blended objects are marked with
a red bounding box. Best viewed in color.

Proposal Network (RPN) which is a fully convolutional net-
work that outputs object proposals and also an objectness
score for each proposal reflecting the probability of having an
object inside the region. The second detection network module
resizes the feature maps, corresponding to each object proposal
to a fixed size, classifies it to an object category and refines
the location and the height and width of the bounding box
associated with each proposal. The advantage of Faster R-
CNN is the modularity of the model; one module that finds
object proposals and the second module which classifies each
of the proposals. The downside of Faster R-CNN is that it uses
the same feature map to find objects of different sizes which
causes problems for small objects. SSD tackles this problem
by creating feature maps of different resolutions. Each cell
of the coarser feature maps captures larger area of the image
for detecting large objects whereas the finer feature maps are
detecting smaller objects. These multiple feature maps allow
higher accuracy for a given input resolution, providing SSD’s
speed advantage for similar accuracy. Both detectors have
difficulties for objects with small size in pixels, making input
resolution an important factor.

IV. EXPERIMENTS

In order to evaluate the object detectors trained on com-
posited images, we have conducted three sets of experiments
on two publicly available datasets, the GMU-Kitchen Scenes
[5] and the Washington RGB-D Scenes v2 dataset [11]. In the
first experiment, training images are generated by choosing
different compositing strategies to determine the effect of po-
sitioning, scaling, and blending on the performance. The object
detectors are trained on composited images and evaluated on

Fig. 4. Comparison between masks from BigBird (top row), and masks after
refinement with Graph-cut (bottom row).

real scenes. In the second set of experiments we examine the
effect of varying proportion of synthetic/composited images
and real training images. Finally we use synthetic data for
both training and testing in order to show the reduction of
over-fitting to superimposition artifacts during training when
the proposed approach of data generation is employed.

A. Datasets and Backgrounds
For our experiments, we utilized the following datasets:

a) GMU Kitchen Scenes dataset [5]: The GMU-
Kitchens dataset includes 9 RGB-D videos of kitchen scenes
with 11 object instances from the BigBird dataset. We also
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Semantic Segmentation
§ Definition: Assigning a label to each pixel.

§ Labels can be object categories such as closet, 
fridge, chair or can be structural categories 
such as wall and structure.

Wall

Chair

Towel

Cabinet

Kitchen Counter

Fridge

Structure

Box

Microwave

Prop

Semantic Segmentation

2
5

Depth Estimation
§ Definition: Estimate the depth values for 

each pixel.

§ Ground truth depth maps are typically 
provided by RGB-D sensors such as Kinect.

Ground truth Depth Map 
from Kinect

2
6
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3D Pose Estimation

§ Definition: Estimating rotation and 
translation for each object

27

Recognition, Detection, and Segmentation

Recognition Motorbike

Detection

Semantic 
Segmentation

Probability of class                 

Probability of class 

Task Output Example

given image

regressing bounding boxes 
and

probability of class      given

bounding box      and the
image   :

for pixel            of Image 

2
8
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3D Bounding Box Estimation

§ Goal: Given a detection bounding box, estimate the 3D 
bounding box for the object which is defined by orientation, 
translation, and physical dimensions. 

Image Estimated 3D Box
29

3D bounding boxSemantic Segmentation 
and Depth Estimation

Recovering Translation T

§ 2D detection boxes are the 
projection of the 3D boxes.

§ Each side of 2D box is 
touched by one of the 3D 
corners.

§ Each correspondence 
between 3D corner and 2D 
box results in one 
constraint.

§ Four constraints in total.
§ Example constraint: 

30
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Pose estimation as classification: decrease of 
accuracy because of discretization

…

Probs Discretized 
Orientation

Continuous
Orientation

MultiBin Module 
with 4 Bins

• The range of angle is divided into multiple 
bins and for each bin.

• Adjacent bins have overlapping coverage to 
handle angles near the boundaries.

• To compute the output, most confident bin is 
chosen and the residual orientation of that 
bin is applied to the central angle of the bin. 31

Pose estimation using MultiBin: uses coarse 
discretization for finding the range of the angle 
and estimate continuous residual orientation for 
the bin to produce continuous output

…

Probs

Continuous
Orientation

MultiBin Architecture

Shared Convolution Features

FC

L2 Norm

FC FC

FCFCFC

Confidences Dimensionscos, sin of orientation 
offset

M
ul

tiB
in

 M
od

ul
e

32
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Experiments
§ KITTI Dataset: includes images from driving 

scenarios in urban environments.

• Pascal-3D dataset: contains images from 12 categories with the object 
orientation.

34

Qualitative Results on KITTI

2D Detection Boxes Estimated 3D Boxes35
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Qualitative Results on Pascal Dataset

CAD models are rendered at the viewpoint estimated by MultiBin module.
36

Goal
§ Given an RGB image, estimate the depth and 

semantic segmentation 

§ The estimated depths are smoother and no 
missing depth values.

Semantic Depth

RGB Image

37
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CNNs for Semantic Segmentation
§ The resolution of the feature maps decreases because 

of pooling layers.

§ The resolution loss of the feature maps needs to be 
recovered.

Noh et al, “Learning deconvolution network for semantic segmentation”, ICCV 2015

Long et al, “Fully Convolutional Networks For Semantic Segmentation”, CVPR 2014

Skip Connections

38

Architecture

39
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Qualitative Results

Ground Truth Semantic 
SegmentationImage Estimated Semantic 

Segmentation
Ground Truth Depth 
Map Estimated Depth Map

40

What is NLP?

§ Fundamental goal: analyze and process human language, broadly, robustly, accurately…
§ End systems that we want to build:

§ Ambitious: speech recognition, machine translation, information extraction, dialog interfaces, question 
answering…

§ Modest: spelling correction, text categorization…
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Problem: Ambiguities

§ Headlines:
§ Enraged Cow Injures Farmer With Ax
§ Hospitals Are Sued by 7 Foot Doctors
§ Ban on Nude Dancing on Governor’s Desk
§ Iraqi Head Seeks Arms
§ Local HS Dropouts Cut in Half
§ Juvenile Court to Try Shooting Defendant
§ Stolen Painting Found by Tree
§ Kids Make Nutritious Snacks

§ Why are these funny?

Parsing as Search
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Grammar: PCFGs

§ Natural language grammars are very ambiguous!

§ PCFGs are a formal probabilistic model of trees
§ Each “rule” has a conditional probability (like an HMM)

§ Tree’s probability is the product of all rules used

§ Parsing: Given a sentence, find the best tree – search!

ROOT ® S 375/420

S ® NP VP . 320/392

NP ® PRP 127/539

VP ® VBD ADJP 32/401

…..

Syntactic Analysis

Hurricane Emily howled toward Mexico 's Caribbean coast on Sunday packing 135 mph winds and torrential rain and 
causing panic in Cancun, where frightened tourists squeezed into musty shelters.

[Demo: Berkeley NLP Group Parser http://tomato.banatao.berkeley.edu:8080/parser/parser.html]
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Dialog Systems

ELIZA

§ A “psychotherapist” agent (Weizenbaum, 
~1964)

§ Led to a long line of chatterbots

§ How does it work:
§ Trivial NLP: string match and substitution
§ Trivial knowledge: tiny script / response 

database
§ Example:  matching “I remember __” results in 

“Do you often think of __”?

§ Can fool some people some of the time?

[Demo: http://nlp-addiction.com/eliza]
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Watson

What’s in Watson?

§ A question-answering system (IBM, 2011)

§ Designed for the game of Jeopardy

§ How does it work:
§ Sophisticated NLP: deep analysis of questions, noisy matching of questions 

to potential answers

§ Lots of data: onboard storage contains a huge collection of documents 

(e.g. Wikipedia, etc.), exploits redundancy

§ Lots of computation: 90+ servers

§ Can beat all of the people all of the time?
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Machine Translation

Machine Translation

§ Translate text from one language to another
§ Recombines fragments of example translations
§ Challenges:

§ What fragments?  [learning to translate]
§ How to make efficient?  [fast translation search]
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The Problem with Dictionary Lookups

52

Data-Driven Machine Translation
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Learning to Translate

An HMM Translation Model

56
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Levels of Transfer


