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Probability Recap

Conditional probability P(zly) = Plz,y)
P(y)
Product rule P(z,y) = P(z|y)P(y)
Chain rule P(X1,X5,...Xn) = P(X1)P(X3|X1)P(X3|X1,X2)...
= H P(XZ|X17XL—1)
i=1

X, Y independent if and only if:  Vz,y : P(z,y) = P(z)P(y)

X and Y are conditionally independent given Z if and only if:

Vi, y, 2 P(z,y|z) = P(z|2) P(y|2) XU1Y|Z




Bayes’ Nets

= A Bayes’ netisan
efficient encoding
of a probabilistic
model of a domain

= Questions we can ask:
» Inference: given a fixed BN, what is P(X | e)?
= Representation: given a BN graph, what kinds of distributions can it encode?

* Modeling: what BN is most appropriate for a given domain?

Bayes’ Net Semantics

= A directed, acyclic graph, one node per random variable
= A conditional probability table (CPT) for each node

= A collection of distributions over X, one for each combination
’
of parents values

P(Xlay...an)
* Bayes netsimplicitly encode joint distributions
= As a product of local conditional distributions
= To see what probability a BN gives to a full assignment,

multiply all the relevant conditionals together:

n
P(z1,22,...7n) = || P(zi|lparents(X;))
=1
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Example: Alarm Network

P(+b,—e,4+a,—j,+m) =

E P(E)

+e | 0.002

-e | 0.998

A M | P(M|A)
+a | +m 0.7
+a -m 0.3
-a +m 0.01
-a -m 0.99

B | E P(A|B,E)
+b | +e | +a 0.95
+b | +e | -a 0.05
+b | -e | +a 0.94
+b | -e | -a 0.06
-b | +e | +a 0.29
b | +e | -a 0.71
-b | -e | +a 0.001
b | -e| -a 0.999

P(B)

+b

0.001

0.999

PUIA)

+a

]

0.9

+a

0.1

]

0.05

0.95

Example: Alarm Network

P("_ba —e€, +a, _ja +m) -
P(+b)P(—e)P(+a| + b, —e)P(—j| + a)P(+m| +a) =
0.001 x 0.998 x 0.94 x 0.1 x 0.7

E P(E)
+e | 0.002

-e | 0.998

A | M |PM]|A)
+a | +m 0.7
+a [ -m 0.3
-a +m 0.01
-a -m 0.99

B | E| A | PAIBE)
+b | +e | +a 0.95
+b | +e | -a 0.05
+b | -e | +a 0.94
+tb | -e | -a 0.06
-b | +e | +a 0.29
b | +te | -a 0.71
-b | -e | +a 0.001
b | -e| -a 0.999




Size of a Bayes' Net

= How big is a joint distribution over N = Both give you the power to calculate

Boolean variables?
2N P(Xl,XQ’...Xn)
BNs: Huge space savings!

= How bigis an N-node net if nodes
have up to k parents?

O(N * 2k+1)

Also easier to elicit local CPTs

Also faster to answer queries (coming)

Bayes’ Nets

JRepresentation
= Conditional Independences
= Probabilistic Inference

= Learning Bayes’ Nets from Data




Conditional Independence

X and Y are independent if

Vo, y P(z,y) = P(z)P(y) —— = X1Y

X and Y are conditionally independent given Z

Va,y,z P(z,ylz) = P(z|z2)P(ylz) = == X 1LY|[Z

(Conditional) independence is a property of a distribution

Example: Alarm AL Fire|Smoke

Bayes Nets: Assumptions

= Assumptions we are required to make to define the
Bayes net when given the graph:

P(x;|xy - xi-1) = P(x;|parents(X;))

= Beyond above “chain rule > Bayes net” conditional
independence assumptions

= Often additional conditional independences

= They can be read off the graph

= |mportant for modeling: understand assumptions made
when choosing a Bayes net graph




Example

OnOn0n0

= Conditional independence assumptions directly from simplifications in chain rule:

= Additional implied conditional independence assumptions?

Independence in a BN

= |Important question about a BN:

= Are two nodes independent given certain evidence?

= |f yes, can prove using algebra (tedious in general)
® |f no, can prove with a counter example

= Example:

= Question: are X and Z necessarily independent?
= Answer: no. Example: low pressure causes rain, which causes traffic.
= X can influence Z, Z can influence X (via Y)
= Addendum: they could be independent: how?




D-separation: Outline

= Study independence properties for triples
= Analyze complex cases in terms of member triples

= D-separation: a condition / algorithm for answering such
queries

Causal Chains

* This configuration is a “causal chain” » Guaranteed X independent of Z? No!

= One example set of CPTs for which X is not
LA=a I~ independent of Z is sufficient to show this
} ////// ._.! independence is not guaranteed.

= Example:

a M’§>=’= ') * Low pressure causes rain causes traffic,
< = 77 high pressure causes no rain causes no
traffic
X: Low pressure Y: Rain Z: Traffic
* In numbers:
P(x,y,z) = P(z)P(y|lz) P(zly) Py o) =2 Py o) =1,

P(+2 | 4y)=1,P(2 | -y)=




* This configuration is a “causal chain”

y IR Eg
DR T e 1

Z: Traffic

\
%

i

N

X: Low pressure Y: Rain

P(z,y,z) = P(x)P(y|z) P(z|y)

Causal Chains

= Guaranteed X independent of Z given Y?

P(z,y,2)
P(zlz,y) = — =
P(z,y)
_ P(@)P(ylz) P(zly)
P(x)P(yl|z)
= P(z|y)
Yes!
= Evidence along the chain “blocks” the
influence

. . . . “ ”
= This configuration isa “common cause

Y: Project ' Project
Due!
due

«

%.
(D

X: Forums  [—

busy —

Z: Lab full

i
e

P(z,y,z) = P(y)P(x|y)P(z|y)

Common Cause

= Guaranteed X independent of Z? No!

= One example set of CPTs for which X is not
independent of Z is sufficient to show this
independence is not guaranteed.

= Example:

= Project due causes both forums busy
and lab full

= |n numbers:

P(+x | +y)
P(+z | +y)

1, P(-x
1, P(-z




. . . . ““ ”
= This conflguratlon ISa common cause

Project
Due!

@

@
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P(z,y,z) = P(y)P(z|y)P(z|y)

Y: Project '
due

H1

0

X: Forums

busy Z: Lab full

Common Cause

= Guaranteed X and Z independent given Y?

P(z,y,2)
P(z,y)

_ P)P(zly)P(zly)
P(y)P(x|y)

P(z|z,y) =

= P(z|y)

Yes!

= Observing the cause blocks influence
between effects.

= |ast configuration: two causes of one
effect (v-structures)

X: Raining Y: Ballgame

“ o

*n/f

&

3

anl

N

Z: Traffic

Common Effect

= Are XandY independent?

= Yes: the ballgame and the rain cause traffic, but
they are not correlated

= Still need to prove they must be (try it!)

= Are X and Y independent given Z?

= No: seeing traffic puts the rain and the ballgame in
competition as explanation.

= This is backwards from the other cases

= QObserving an effect activates influence between

possible causes.




The General Case

The General Case

= General question: in a given BN, are two variables independent
(given evidence)?

= Solution: analyze the graph

= Any complex example can be broken
into repetitions of the three canonical cases
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Reachability

= Recipe: shade evidence nodes, look
for paths in the resulting graph

= Attempt 1: if two nodes are connected e e
by an undirected path not blocked by
a shaded node, they are conditionally

independent Q G
Lo~
= Almost works, but not quite . -
DN =\
= Where does it break? [V\// i = 77—7{ *\j

/] /1] T
= Answer: the v-structure at T doesn’t count oy /
as a link in a path unless “active” [

Active / Inactive Paths

= Question: Are X and Y conditionally independent given  Active Triples Inactive Triples
evidence variables {Z}?
" Yes, if Xand Y “d-separated” by Z m m
= Consider all (undirected) paths from X to Y
= No active paths = independence! C C
= A pathis active if each triple is active:
= Causal chain A— B — C where B is unobserved (either direction)
= Common cause A <— B — C where B is unobserved
= Common effect (aka v-structure)
A — B < C where B or one of its descendents is observed

= All it takes to block a path is a single inactive segment
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D-Separation

= Query: X, 1L Xj‘{X]{I17"’7an} ?

= Check all (undirected!) paths between X; and X

» |f one or more active, then independence not guaranteed

* Otherwise (i.e. if all paths are inactive), ;L%
then independence is guaranteed

Xi AL X5 H{ Xy s X } @‘ | @
f\/ @

Example

R1 B Yes e e

RALB|T
R B|T’ (1)

12



Example

LUT|T Yes ?

LIB Yes
L1 B|T
L1 B|T
LI B|T,R Yes

@

Example

= Variables:

= R: Raining e

= T: Traffic
= D: Roof drips

= S:I'm sad G Q

= Questions:

T1D
T1 D|R Yes
T D|R, S
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Structure Implications

= Given a Bayes net structure, can run d-
separation algorithm to build a complete list of
conditional independences that are necessarily
true of the form

X X { Xk, Xk, }

= This list determines the set of probability
distributions that can be represented

Computing All Independences

MPUTE ALL THE
C\"KDEP\;N DENCES/

14



Topology Limits Distributions

(X LY, X1 ZY 1 Z

(X1 2|Y}
XUZ|V,XUY|ZY1Z|X}

= Given some graph topology
G, only certain joint

distributions can be @

encoded ® @

= The graph structure
guarantees certain
(conditional) independences

= (There might be more
independence)

= Adding arcs increases the

{}
set of distributions, but has
several costs &) &)

= Full conditioning can encode
any distribution

PE PP

Bayes Nets Representation Summary

= Bayes nets compactly encode joint distributions

= Guaranteed independencies of distributions can be
deduced from BN graph structure

= D-separation gives precise conditional independence
guarantees from graph alone

= A Bayes net’ s joint distribution may have further
(conditional) independence that is not detectable until
you inspect its specific distribution
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Bayes’ Nets

JRepresentation
JConditionaI Independences

= Probabilistic Inference
= Enumeration (exact, exponential complexity)
= Variable elimination (exact, worst-case
exponential complexity, often better)
= Probabilistic inference is NP-complete
= Sampling (approximate)

= Learning Bayes’ Nets from Data
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