
1

CS 687
Jana Kosecka

Inference in Bayesian Networks 
Chapter 14, Russell and Norvig

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.  All CS188 materials are available at http://ai.berkeley.edu.]

Bayes’ Net Representation

§ A directed, acyclic graph, one node per random variable
§ A conditional probability table (CPT) for each node

§ A collection of distributions over X, one for each combination 
of parents� values

§ Bayes� nets implicitly encode joint distributions
§ As a product of local conditional distributions

§ To see what probability a BN gives to a full assignment, 
multiply all the relevant conditionals together:
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Example: Alarm Network

Burglary Earthqk

Alarm

John 
calls

Mary 
calls

B P(B)

+b 0.001

-b 0.999

E P(E)

+e 0.002

-e 0.998

B E A P(A|B,E)

+b +e +a 0.95

+b +e -a 0.05

+b -e +a 0.94

+b -e -a 0.06

-b +e +a 0.29

-b +e -a 0.71

-b -e +a 0.001

-b -e -a 0.999

A J P(J|A)

+a +j 0.9

+a -j 0.1

-a +j 0.05

-a -j 0.95

A M P(M|A)

+a +m 0.7

+a -m 0.3

-a +m 0.01

-a -m 0.99

Example: Alarm Network
B P(B)

+b 0.001

-b 0.999

E P(E)

+e 0.002

-e 0.998

B E A P(A|B,E)

+b +e +a 0.95
+b +e -a 0.05
+b -e +a 0.94
+b -e -a 0.06
-b +e +a 0.29
-b +e -a 0.71
-b -e +a 0.001
-b -e -a 0.999

A J P(J|A)

+a +j 0.9
+a -j 0.1
-a +j 0.05
-a -j 0.95

A M P(M|A)

+a +m 0.7
+a -m 0.3
-a +m 0.01
-a -m 0.99

B E

A

MJ
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Example: Alarm Network
B P(B)

+b 0.001

-b 0.999

E P(E)
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A J P(J|A)

+a +j 0.9
+a -j 0.1
-a +j 0.05
-a -j 0.95

A M P(M|A)

+a +m 0.7
+a -m 0.3
-a +m 0.01
-a -m 0.99

B E

A

MJ

Bayes’ Nets

§ Representation

§ Conditional Independences

§ Probabilistic Inference

§ Enumeration (exact, exponential 
complexity)

§ Variable elimination (exact, worst-case 
exponential complexity, often better)

§ Inference is NP-complete

§ Sampling (approximate)

§ Learning Bayes’ Nets from Data
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§ Examples:
§ Posterior probability

§ Most likely explanation:

Inference

§ Inference: calculating some 
useful quantity from a joint 
probability distribution

Inference by Enumeration
§ General case:

§ Evidence variables: 
§ Query* variable:
§ Hidden variables: All variables

* Works fine with 
multiple query 
variables, too

§ We want:

§ Step 1: Select the 
entries consistent 
with the evidence

§ Step 2: Sum out H to get joint 
of Query and evidence

§ Step 3: Normalize

⇥ 1

Z
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Inference by Enumeration in Bayes’ Net
§ Given unlimited time, inference in BNs is easy

§ Reminder of inference by enumeration by example:
B E

A

MJ

P (B |+ j,+m) /B P (B,+j,+m)

=
X

e,a

P (B, e, a,+j,+m)

=
X

e,a

P (B)P (e)P (a|B, e)P (+j|a)P (+m|a)

=P (B)P (+e)P (+a|B,+e)P (+j|+ a)P (+m|+ a) + P (B)P (+e)P (�a|B,+e)P (+j|� a)P (+m|� a)

P (B)P (�e)P (+a|B,�e)P (+j|+ a)P (+m|+ a) + P (B)P (�e)P (�a|B,�e)P (+j|� a)P (+m|� a)

Inference by Enumeration?
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Inference by Enumeration vs. Variable Elimination
§ Why is inference by enumeration so slow?

§ You join up the whole joint distribution before 
you sum out the hidden variables

§ Idea: interleave joining and marginalizing!
§ Called �Variable Elimination�
§ Still NP-hard, but usually much faster than 

inference by enumeration

§ First we’ll need some new notation: factors

Evaluation Tree
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Factor Zoo I

§ Joint distribution: P(X,Y)
§ Entries P(x,y) for all x, y
§ Sums to 1

§ Selected joint: P(x,Y)
§ A slice of the joint distribution
§ Entries P(x,y) for fixed x, all y
§ Sums to P(x)

§ Number of capitals = 
dimensionality of the table

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

T W P

cold sun 0.2

cold rain 0.3

Factor Zoo II

§ Single conditional: P(Y | x)
§ Entries P(y | x) for fixed x, all y
§ Sums to 1

§ Family of conditionals: 
P(Y | X)
§ Multiple conditionals
§ Entries P(y | x) for all x, y
§ Sums to |X|

T W P

hot sun 0.8

hot rain 0.2

cold sun 0.4

cold rain 0.6

T W P

cold sun 0.4

cold rain 0.6
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Factor Zoo III

§ Specified family: P( y | X )

§ Entries P(y | x) for fixed y,

but for all x

§ Sums to … who knows!

T W P

hot rain 0.2

cold rain 0.6

Factor Zoo Summary

§ In general, when we write P(Y1 … YN | X1 … XM)

§ It is a �factor,� a multi-dimensional array

§ Its values are P(y1 … yN | x1 … xM)

§ Any assigned (=lower-case) X or Y is a dimension missing (selected) from the array
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Example: Traffic Domain

§ Random Variables
§ R: Raining
§ T: Traffic
§ L: Late for class! T

L

R
+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

P (L) = ?

=
X

r,t

P (r, t, L)

=
X

r,t

P (r)P (t|r)P (L|t)

Inference by Enumeration: Procedural Outline

§ Track objects called factors
§ Initial factors are local CPTs (one per node)

§ Any known values are selected
§ E.g. if we know                  , the initial factors are

§ Procedure: Join all factors, eliminate all hidden variables, normalize

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

+t +l 0.3
-t +l 0.1

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9
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Operation 1: Join Factors

§ First basic operation: joining factors
§ Combining factors:

§ Just like a database join
§ Get all factors over the joining variable
§ Build a new factor over the union of the variables 

involved

§ Example: Join on R

§ Computation for each entry: pointwise products

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+r +t 0.08
+r -t 0.02
-r +t 0.09
-r -t 0.81T

R

R,T

Example: Multiple Joins

T

R Join R

L

R, T

L

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

+r +t 0.08
+r -t 0.02
-r +t 0.09
-r -t 0.81

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

R, T, L

+r +t +l 0.024
+r +t -l 0.056
+r -t +l 0.002
+r -t -l 0.018
-r +t +l 0.027
-r +t -l 0.063
-r -t +l 0.081
-r -t -l 0.729

Join T
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Operation 2: Eliminate

§ Second basic operation: marginalization

§ Take a factor and sum out a variable
§ Shrinks a factor to a smaller one

§ A projection operation

§ Example:

+r +t 0.08
+r -t 0.02
-r +t 0.09
-r -t 0.81

+t 0.17
-t 0.83

Multiple Elimination

Sum
out R

Sum
out T

T, L LR, T, L
+r +t +l 0.024
+r +t -l 0.056
+r -t +l 0.002
+r -t -l 0.018
-r +t +l 0.027
-r +t -l 0.063
-r -t +l 0.081
-r -t -l 0.729

+t +l 0.051
+t -l 0.119
-t +l 0.083
-t -l 0.747

+l 0.134
-l 0.886
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Thus Far: Multiple Join, Multiple Eliminate (= Inference by Enumeration)

Marginalizing Early (= Variable Elimination)
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Traffic Domain

§ Inference by EnumerationT

L

R P (L) = ?

§ Variable Elimination

=
X

t

P (L|t)
X

r

P (r)P (t|r)

Join on rJoin on r

Join on t

Join on t

Eliminate r

Eliminate t

Eliminate r

=
X

t

X

r

P (L|t)P (r)P (t|r)

Eliminate t

Marginalizing Early! (aka VE)
Sum out R

T

L

+r +t 0.08
+r -t 0.02
-r +t 0.09
-r -t 0.81

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

+t 0.17
-t 0.83

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

T

R

L

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

Join R

R, T

L

T, L L

+t +l 0.051
+t -l 0.119
-t +l 0.083
-t -l 0.747

+l 0.134
-l 0.866

Join T Sum out T
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Evidence

§ If evidence, start with factors that select that evidence
§ No evidence uses these initial factors:

§ Computing                        , the initial factors become:

§ We eliminate all vars other than query + evidence

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

+r 0.1 +r +t 0.8
+r -t 0.2

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

Evidence II

§ Result will be a selected joint of query and evidence
§ E.g. for P(L | +r), we would end up with:

§ To get our answer, just normalize this!

§ That’s it!

+l 0.26
-l 0.74

+r +l 0.026
+r -l 0.074

Normalize
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General Variable Elimination

§ Query:

§ Start with initial factors:
§ Local CPTs (but instantiated by evidence)

§ While there are still hidden variables 
(not Q or evidence):
§ Pick a hidden variable H
§ Join all factors mentioning H
§ Eliminate (sum out) H

§ Join all remaining factors and normalize

Example

Choose A
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Example

Choose E

Finish with B

Normalize

Same Example in Equations

marginal obtained from joint by summing out

use Bayes’ net joint distribution expression

use x*(y+z) = xy + xz

joining on a, and then summing out gives f1

use x*(y+z)  = xy + xz

joining on e, and then summing out gives f2

All we are doing is exploiting uwy + uwz + uxy + uxz + vwy + vwz + vxy +vxz = (u+v)(w+x)(y+z) to improve computational efficiency!
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Another Variable Elimination Example

Computational complexity critically 
depends on the largest factor being 
generated in this process.  Size of factor 
= number of entries in table.  In 
example above (assuming binary) all 
factors generated are of size 2 --- as 
they all only have one variable (Z, Z, 
and X3 respectively). 

Variable Elimination Ordering

§ For the query P(Xn|y1,…,yn) work through the following two different orderings 
as done in previous slide: Z, X1, …, Xn-1 and X1, …, Xn-1, Z.  What is the size of the 
maximum factor generated for each of the orderings?

§ Answer: 2n+1 versus 22 (assuming binary)

§ In general: the ordering can greatly affect efficiency.  

…

…
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VE: Computational and Space Complexity

§ The computational and space complexity of variable elimination is 
determined by the largest factor

§ The elimination ordering can greatly affect the size of the largest factor.  
§ E.g., previous slide’s example 2n vs. 2

§ Does there always exist an ordering that only results in small factors?
§ No!

Polytrees

§ A polytree is a directed graph with no undirected cycles

§ For poly-trees you can always find an ordering that is efficient 
§ Try it!!

§ Cut-set conditioning for Bayes’ net inference
§ Choose set of variables such that if removed only a polytree remains
§ Exercise: Think about how the specifics would work out!
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Bayes’ Nets

§ Representation

§ Conditional Independences

§ Probabilistic Inference

§ Enumeration (exact, exponential 
complexity)

§ Variable elimination (exact, worst-case 
exponential complexity, often better)

§ Inference is NP-complete

§ Sampling (approximate)

§ Learning Bayes’ Nets from Data

Bayes’ Net Representation

§ A directed, acyclic graph, one node per random variable
§ A conditional probability table (CPT) for each node

§ A collection of distributions over X, one for each combination 
of parents� values

§ Bayes� nets implicitly encode joint distributions
§ As a product of local conditional distributions

§ To see what probability a BN gives to a full assignment, 
multiply all the relevant conditionals together:
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Variable Elimination

§ Interleave joining and marginalizing

§ dk entries computed for a factor over k 
variables with domain sizes d

§ Ordering of elimination of hidden variables 
can affect size of factors generated

§ Worst case: running time exponential in the 
size of the Bayes’ net

…

…

Approximate Inference: Sampling
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Sampling

§ Sampling is a lot like repeated simulation

§ Predicting the weather, basketball games, …

§ Basic idea

§ Draw N samples from a sampling distribution S

§ Compute an approximate posterior probability

§ Show this converges to the true probability P

§ Why sample?

§ Learning: get samples from a distribution 

you don’t know

§ Inference: getting a sample is faster than 

computing the right answer (e.g. with 

variable elimination)

Sampling

§ Sampling from given distribution

§ Step 1: Get sample u from uniform 
distribution over [0, 1)
§ E.g. random() in python

§ Step 2: Convert this sample u into an 
outcome for the given distribution by 
having each target outcome 
associated with a sub-interval of [0,1) 
with sub-interval size equal to 
probability of the outcome

§ Example

§ If random() returns u = 0.83, 
then our sample is C = blue

§ E.g, after sampling 8 times:

C P(C)
red 0.6

green 0.1
blue 0.3
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Sampling in Bayes’ Nets

§ Prior Sampling

§ Rejection Sampling

§ Likelihood Weighting

§ Gibbs Sampling

Prior Sampling

Cloudy

Sprinkler Rain

WetGrass

Cloudy

Sprinkler Rain

WetGrass

+c 0.5
-c 0.5

+c +s 0.1
-s 0.9

-c +s 0.5
-s 0.5

+c +r 0.8
-r 0.2

-c +r 0.2
-r 0.8

+s +r +w 0.99
-w 0.01

-r +w 0.90
-w 0.10

-s +r +w 0.90
-w 0.10

-r +w 0.01
-w 0.99

Samples:

+c, -s, +r, +w
-c, +s, -r, +w
…
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Prior Sampling

§ For i = 1, 2, …, n

§ Sample xi from P(Xi | Parents(Xi))

§ Return (x1, x2, …, xn)

Prior Sampling

§ This process generates samples with probability:

…i.e. the BN’s joint probability

§ Let the number of samples of an event be

§ Then

§ I.e., the sampling procedure is consistent
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Example

§ We’ll get a bunch of samples from the BN:
+c, -s, +r, +w

+c, +s, +r, +w
-c, +s, +r,  -w
+c, -s, +r, +w

-c,  -s,  -r, +w

§ If we want to know P(W)
§ We have counts <+w:4, -w:1>

§ Normalize to get P(W) = <+w:0.8, -w:0.2>
§ This will get closer to the true distribution with more samples

§ Can estimate anything else, too
§ What about P(C | +w)?   P(C | +r, +w)?  P(C | -r, -w)?
§ Fast: can use fewer samples if less time (what’s the drawback?)

S R

W

C

+c, -s, +r, +w
+c, +s, +r, +w
-c, +s, +r,  -w
+c, -s, +r, +w
-c,  -s,  -r, +w

Rejection Sampling

§ Let’s say we want P(C)
§ No point keeping all samples around

§ Just tally counts of C as we go

§ Let’s say we want P(C | +s)
§ Same thing: tally C outcomes, but 

ignore (reject) samples which don�t 
have S=+s

§ This is called rejection sampling

§ It is also consistent for conditional 
probabilities (i.e., correct in the limit)

S R

W

C
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Rejection Sampling
§ Input: evidence instantiation
§ For i = 1, 2, …, n

§ Sample xi from P(Xi | Parents(Xi))

§ If xi not consistent with evidence
§ Reject: return – no sample is generated in this cycle

§ Return (x1, x2, …, xn)

§ Idea: fix evidence variables and sample the 
rest
§ Problem: sample distribution not consistent!
§ Solution: weight by probability of evidence 

given parents

Likelihood Weighting

§ Problem with rejection sampling:
§ If evidence is unlikely, rejects lots of samples
§ Evidence not exploited as you sample
§ Consider P( Shape | blue )

Shape ColorShape Color

pyramid,  green
pyramid,  red
sphere,     blue
cube,         red
sphere,      green

pyramid,  blue
pyramid,  blue
sphere,     blue
cube,         blue
sphere,      blue
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Likelihood Weighting

+c 0.5
-c 0.5

+c +s 0.1
-s 0.9

-c +s 0.5
-s 0.5

+c +r 0.8
-r 0.2

-c +r 0.2
-r 0.8

+s +r +w 0.99
-w 0.01

-r +w 0.90
-w 0.10

-s +r +w 0.90
-w 0.10

-r +w 0.01
-w 0.99

Samples:

+c, +s, +r, +w
…

Cloudy

Sprinkler Rain

WetGrass

Cloudy

Sprinkler Rain

WetGrass

Likelihood Weighting
§ Input: evidence instantiation
§ w = 1.0
§ for i = 1, 2, …, n

§ if Xi is an evidence variable
§ Xi = observation xi for Xi

§ Set w = w * P(xi | Parents(Xi))
§ else

§ Sample xi from P(Xi | Parents(Xi))

§ return (x1, x2, …, xn), w
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Likelihood Weighting

§ Sampling distribution if z sampled and e fixed evidence

§ Now, samples have weights

§ Together, weighted sampling distribution is consistent

Cloudy

R

C

S

W

Likelihood Weighting
§ Likelihood weighting is good

§ We have taken evidence into account as we 
generate the sample

§ E.g. here, W’s value will get picked based on the 
evidence values of S, R

§ More of our samples will reflect the state of the 
world suggested by the evidence

§ Likelihood weighting doesn’t solve all our 
problems
§ Evidence influences the choice of downstream 

variables, but not upstream ones (C isn’t more 
likely to get a value matching the evidence)

§ We would like to consider evidence when we 
sample every variable (leads to Gibbs sampling)

S R

W

C
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Gibbs Sampling

§ Procedure: keep track of a full instantiation x1, x2, …, xn.   Start with an 
arbitrary instantiation consistent with the evidence.  Sample one variable 
at a time, conditioned on all the rest, but keep evidence fixed.  Keep 
repeating this for a long time.

§ Property: in the limit of repeating this infinitely many times the resulting 
samples come from the correct distribution (i.e. conditioned on evidence).

§ Rationale: both upstream and downstream variables condition on 
evidence.

§ In contrast: likelihood weighting only conditions on upstream evidence, 
and hence weights obtained in likelihood weighting can sometimes be 
very small.  Sum of weights over all samples is indicative of how many 
“effective” samples were obtained, so we want high weight.

§ Step 2: Initialize other variables 
§ Randomly

Gibbs Sampling Example: P( S | +r)

§ Step 1: Fix evidence
§ R = +r

§ Steps 3: Repeat
§ Choose a non-evidence variable X
§ Resample X from P( X | all other variables)

S +r

W

C

S +r

W

C

S +r
W

C
S +r

W

C
S +r

W

C
S +r

W

C
S +r

W

C
S +r

W

C
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Gibbs Sampling

§ How is this better than sampling from the full joint?
§ In a Bayes’ Net, sampling a variable given all the other variables (e.g. 

P(R|S,C,W)) is usually much easier than sampling from the full joint 
distribution
§ Only requires a join on the variable to be sampled (in this case, a join on R)
§ The resulting factor only depends on the variable’s parents, its children, and its children’s 

parents (this is often referred to as its Markov blanket)

Efficient Resampling of One Variable

§ Sample from P(S | +c, +r, -w)

§ Many things cancel out – only CPTs with S remain!
§ More generally: only CPTs that have resampled variable need to be considered, and 

joined together

S +r

W

C
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Bayes’ Net Sampling Summary
§ Prior Sampling  P( Q )

§ Likelihood Weighting  P( Q | e)

§ Rejection Sampling  P( Q | e )

§ Gibbs Sampling  P( Q | e )

Further Reading on Gibbs Sampling*

§ Gibbs sampling produces sample from the query distribution P( Q | e ) 

in limit of re-sampling infinitely often

§ Gibbs sampling is a special case of more general methods called 
Markov chain Monte Carlo (MCMC) methods 

§ Metropolis-Hastings is one of the more famous MCMC methods (in fact, Gibbs 
sampling is a special case of Metropolis-Hastings) 

§ You may read about Monte Carlo methods – they’re just sampling


