Jana Kosecka

Markov Decision Processes Ch. 17

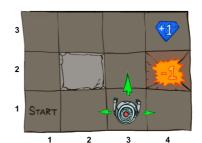
[(most) of These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

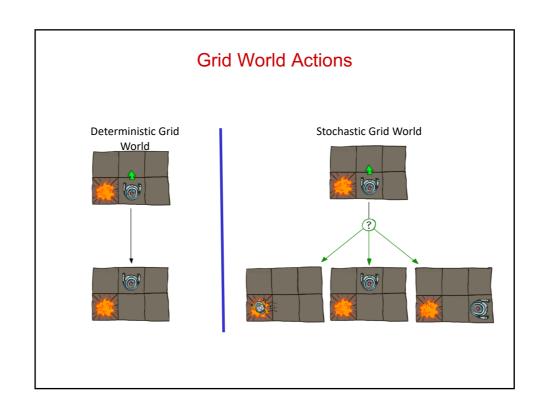
Planning and seach

- Previously, problem solving by search A*
- Idea get a state space, initial stage, goal state come up with a plan
- Everything is off-line
- What if things change ? (e.g. walking blind folded)
- · Need to interleave planning and executing
- Environment is stochastic (driving example)
- Partially observable, there can be many agents
- Model of the world is unknown, plans are hierarchical

Example: Grid World

- A maze-like problem
 - The agent lives in a grid
 - Walls block the agent's path
- Noisy movement: actions do not always go as planned
 - 80% of the time, the action North takes the agent North (if there is no wall there)
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put
- The agent receives rewards each time step
 - Small "living" reward each step (can be negative)
 - Big rewards come at the end (good or bad)
- Goal: maximize sum of rewards

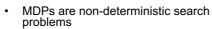




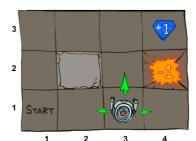
Markov Decision Processes

- An MDP is defined by:
 - A set of states s ∈ S
 - A set of actions $a \in A$
 - A transition function T(s, a, s')
 - Probability that a from s leads to s', i.e., P(s'| s,
 - a)Also called the model or the dynamics
- A reward function R(s, a, s')

 Sometimes just R(s) or R(s')
 - A start state
 - Maybe a terminal state



- One way to solve them is with expectimax search
- We'll have a new tool soon



[Demo – gridworld manual intro (L8D1)]

What is Markov about MDPs?

- "Markov" generally means that given the present state, the future and the past are independent
- For Markov decision processes, "Markov" means action outcomes depend only on the current state

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t, S_{t-1} = s_{t-1}, A_{t-1}, \dots S_0 = s_0)$$
=

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t)$$

This is just like search, where the successor function could only depend on the current state (not the history)

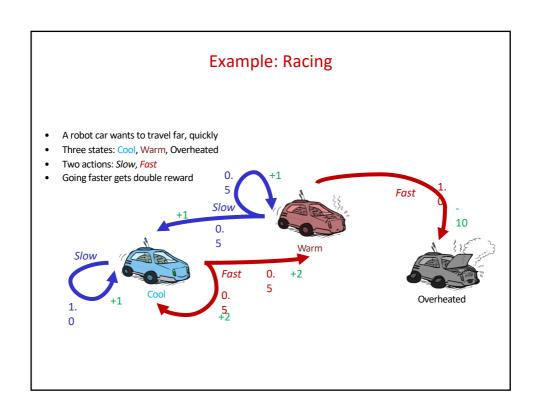
Andrey Markov (1856-1922)

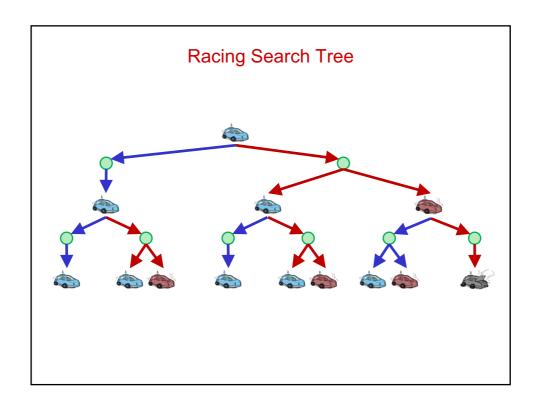
Policies

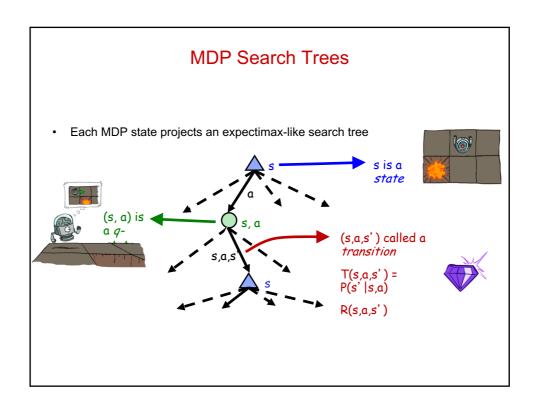
- In deterministic single-agent search problems, we wanted an optimal plan, or sequence of actions, from start to a goal
- For MDPs, we want an optimal policy π*:
 - A policy π gives an action for each state
 - An optimal policy is one that maximizes expected utility if followed
 - An explicit policy defines a reflex agent
- · Expectimax didn't compute entire policies
 - It computed the action for a single state only

Optimal policy when R(s, a, s') = -0.03 for all non-terminals s

R(s) = - 0.03 R(s) = - 0.03 R(s) = - 0.03 R(s) = - 0.03







Utilities of Sequences

- What preferences should an agent have over reward sequences?
- · More or less?

[1, 2, 2] or [2, 3, 4]

Now or later?

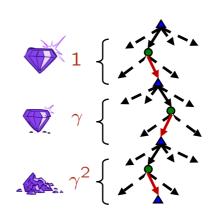
[0, 0, 1] or [1, 0, 0]

Discounting

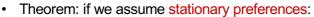
- It's reasonable to maximize the sum of rewards
- It's also reasonable to prefer rewards now to rewards later
- One solution: values of rewards decay exponentially

Discounting

- · How to discount?
 - Each time we descend a level, we multiply in the discount once
- · Why discount?
 - Sooner rewards probably do have higher utility than later rewards
 - Also helps our algorithms converge
- Example: discount of 0.5
 - U([1,2,3]) = 1*1 + 0.5*2 + 0.25*3
 - U([1,2,3]) < U([3,2,1])



Stationary Preferences



$$[a_1, a_2, \ldots] \succ [b_1, b_2, \ldots]$$
 \updownarrow
 $[r, a_1, a_2, \ldots] \succ [r, b_1, b_2, \ldots]$

- · Then: there are only two ways to define utilities
 - Additive utility: $U([r_0, r_1, r_2, ...]) = r_0 + r_1 + r_2 + ...$
 - Discounted utilit $U([r_0,r_1,r_2,\ldots])=r_0+\gamma r_1+\gamma^2 r_2\cdots$

Quiz: Discounting

- Given: 10 1 1 a b c d e
 - Actions: East, West, and Exit (only available in exit states a, e)
 - Transitions: deterministic
- Quiz 1: For γ = 1, what is the optimal policy? 10 1
- Quiz 2: For γ = 0.1, what is the optimal policy? 10
- Quiz 3: For which γ are West and East equally good when in state d?

Infinite Utilities?!

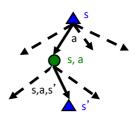
- Problem: What if the game lasts forever? Do we get infinite rewards?
- Solutions:
 - Finite horizon: (similar to depth-limited search
 - Terminate episodes after a fixed T steps (e.g. life)
 - $\ \ \, \stackrel{\cdot}{\text{ Gives nonstationary policies }} (\pi \text{ depends on time I})$

•
$$\operatorname{Di}_{U([r_0, \dots r_\infty])} = \sum_{t=0}^{\infty} \gamma^t r_t \le R_{\max}/(1-\gamma)$$

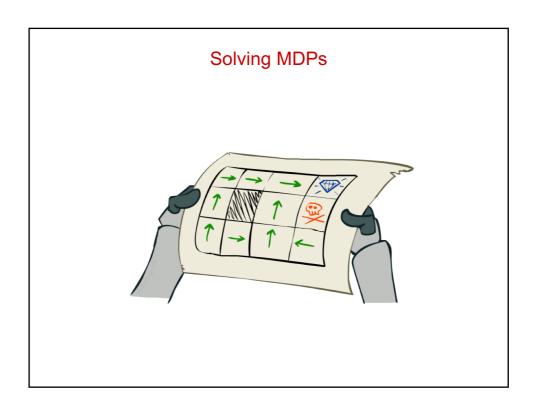
- Smaller γ means smaller "horizon" shorter term focus
- Absorbing state: guarantee that for every policy, a terminal state will eventually be reached (like "overheated" for racing)

Recap: Defining MDPs

- · Markov decision processes:
 - Set of states S
 - Start state s₀
 - Set of actions A
 - Transitions P(s'|s,a) (or T(s,a,s'))
 - Rewards R(s,a,s') (and discount γ)

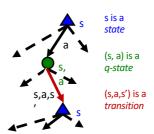


- MDP quantities so far:
 - Policy = Choice of action for each state
 - Utility = sum of (discounted) rewards

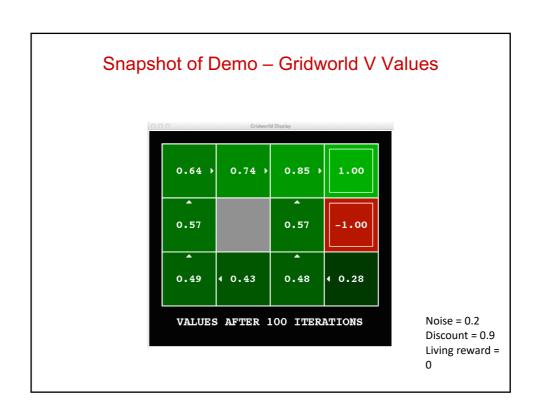


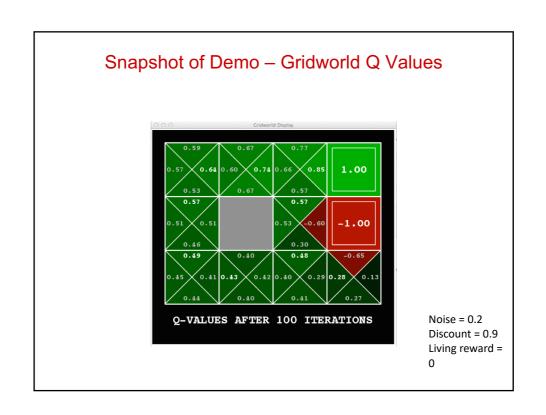
Optimal Quantities

- The value (utility) of a state s:
 - V*(s) = expected utility starting in s and acting optimally
- The value (utility) of a q-state (s,a):
 - Q*(s,a) = expected utility starting out having taken action a from state s and (thereafter) acting optimally
- The optimal policy: $\pi^*(s) = \text{optimal action from state s}$



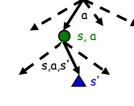
[Demo – gridworld values (L8D4)]





Values of States

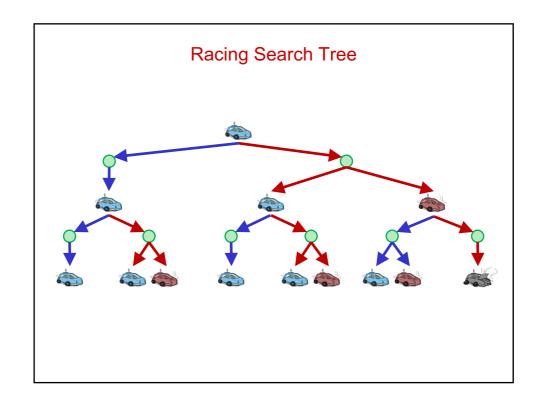
- Fundamental operation: compute the (expectimax) value of a state
 - Expected utility under optimal action
 - Average sum of (discounted) rewards
- · Recursive definition of value:

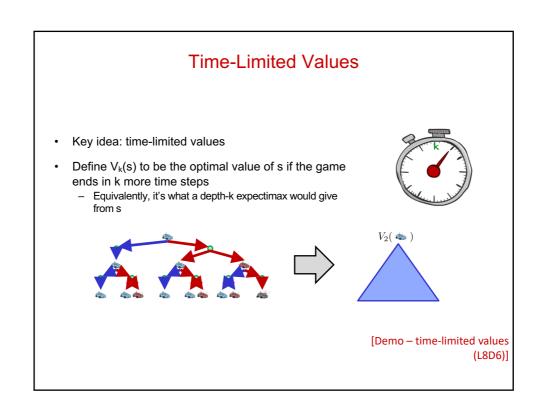


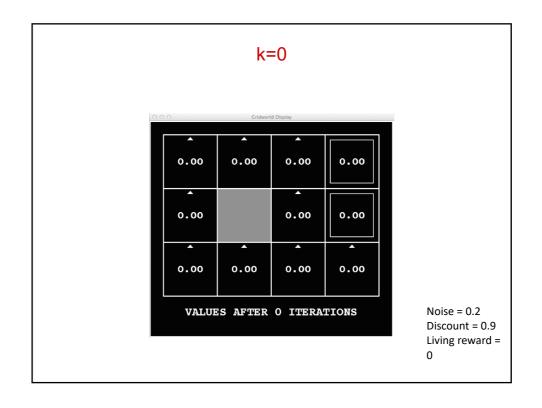
$$V^*(s) = \max_{a} Q^*(s, a)$$

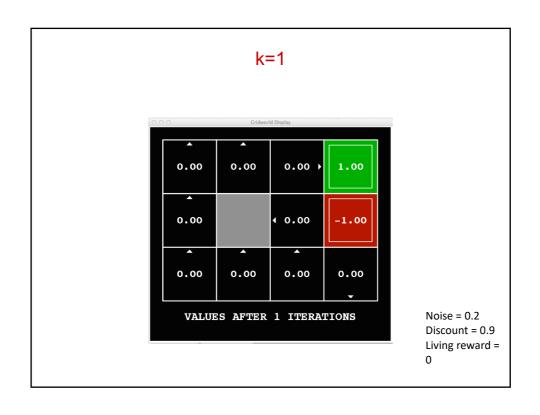
$$Q^*(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$$

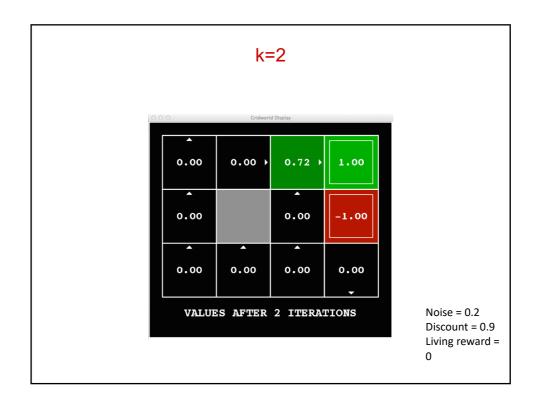
$$V^*(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$$

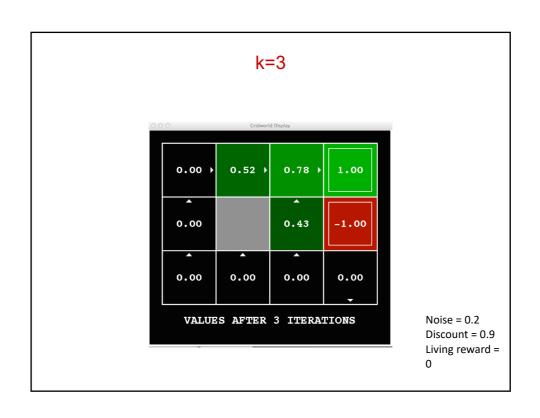


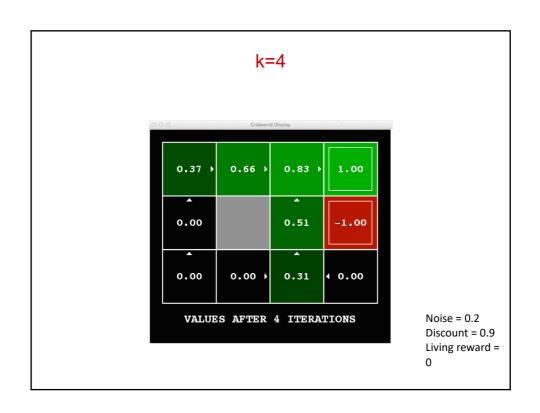


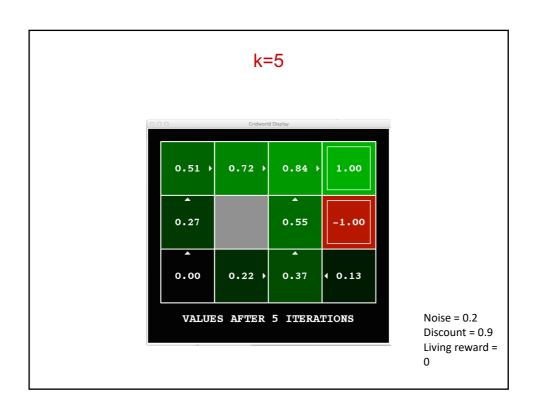


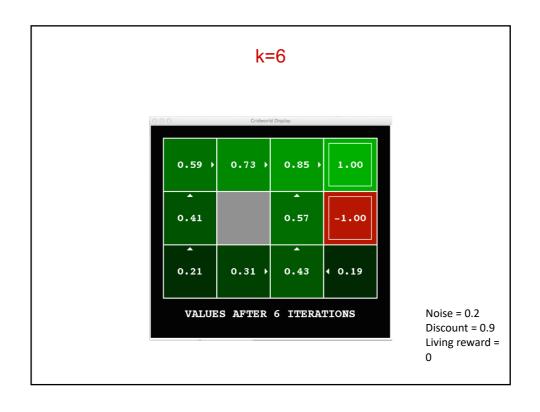


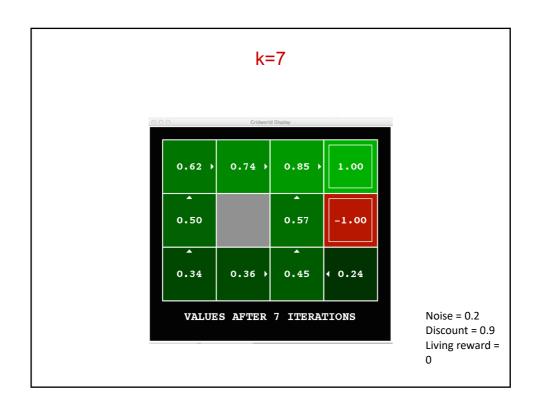


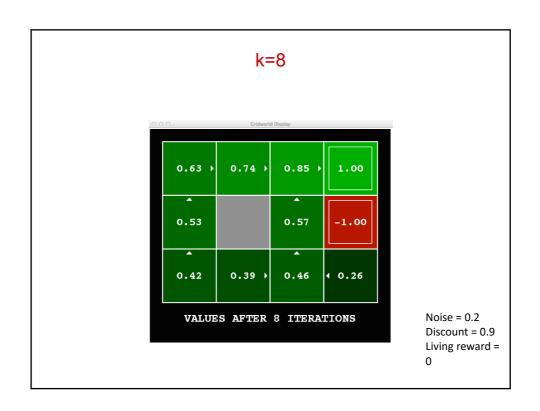


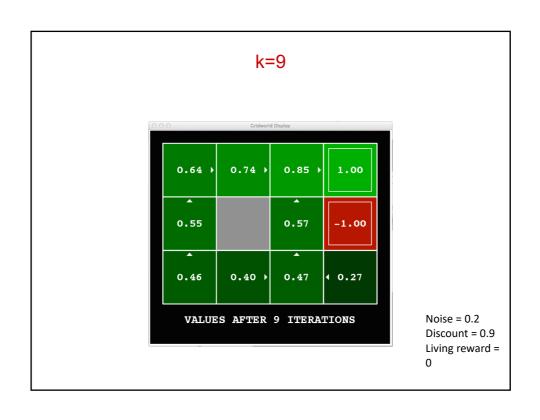


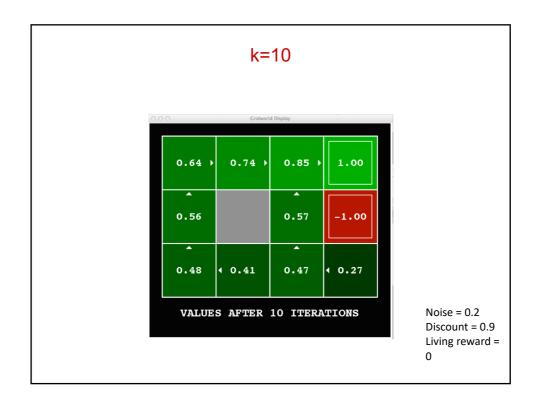


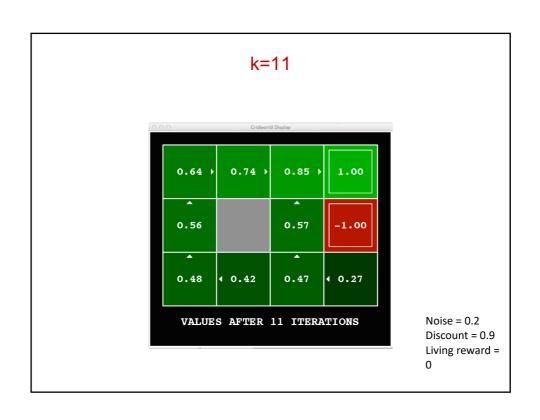


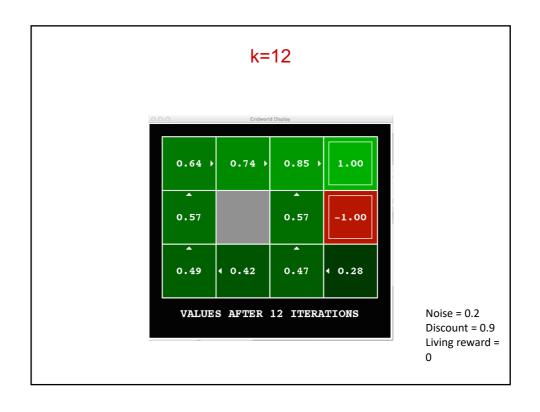


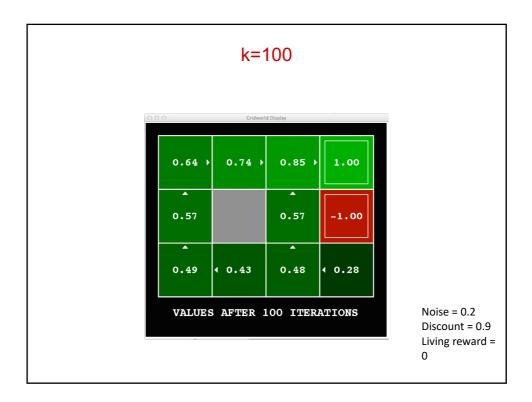










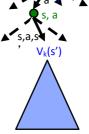


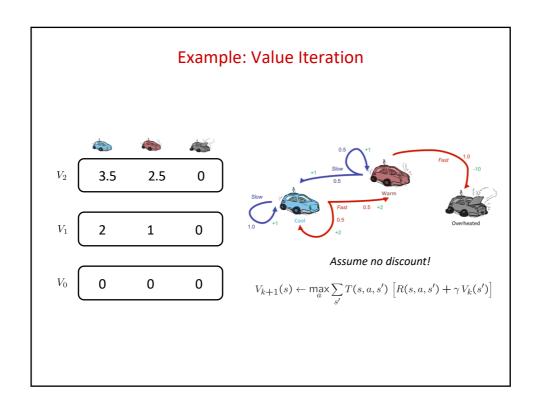
Value Iteration

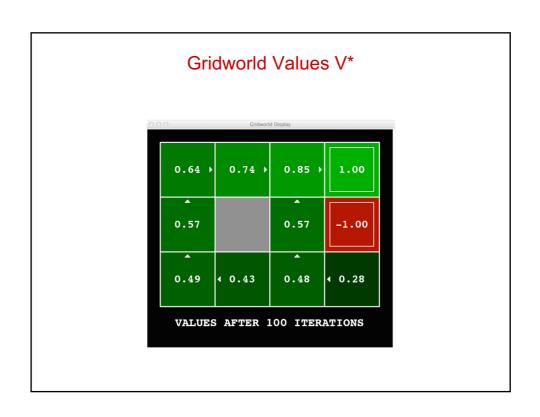
- Start with $V_0(s) = 0$: no time steps left means an expected reward sum of zero
- Given vector of $V_k(s)$ values, do one ply of expectimax from each state:

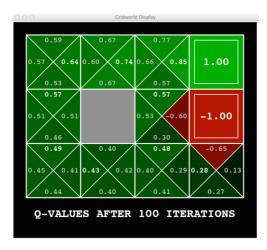
$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- Repeat until convergence
- Complexity of each iteration: O(S²A)
- Theorem: will converge to unique optimal values
 - Basic idea: approximations get refined towards optimal values
 Policy may converge long before values do





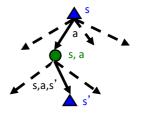




The Bellman Equations

 Definition of "optimal utility" via expectimax recurrence gives a simple one-step lookahead relationship amongst optimal utility values

$$\begin{split} V^*(s) &= \max_{a} Q^*(s, a) \\ Q^*(s, a) &= \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right] \\ V^*(s) &= \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right] \end{split}$$



 These are the Bellman equations, and they characterize optimal values in a way we'll use over and over

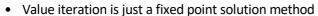
Value Iteration

• Bellman equations characterize the optimal values:

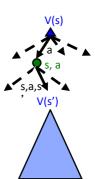
$$V^*(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$$

• Value iteration computes them:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

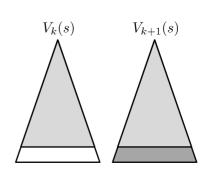


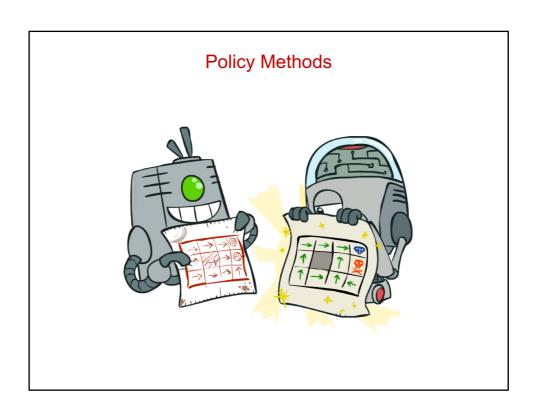
- ... though the V_k vectors are also interpretable as time-limited values



Convergence*

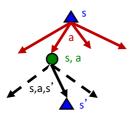
- How do we know the V_k vectors are going to converge?
- \bullet Case 1: If the tree has maximum depth M, then V_{M} holds the actual untruncated values
- Case 2: If the discount is less than 1
 - Sketch: For any state V_k and V_{k+1} can be viewed as depth k+1 expectimax results in nearly identical search trees
 - $-\$ The difference is that on the bottom layer, V_{k+1} has actual rewards while V_k has zeros
 - That last layer is at best all R_{MAX}
 - It is at worst R_{MIN}
 - But everything is discounted by $\boldsymbol{\gamma}^k$ that far out
 - So V_k and V_{k+1} are at most γ^k max |R| different
 - So as k increases, the values converge



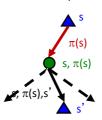


Fixed Policies

Do the optimal action



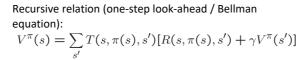
Do what $\boldsymbol{\pi}$ says to do

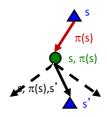


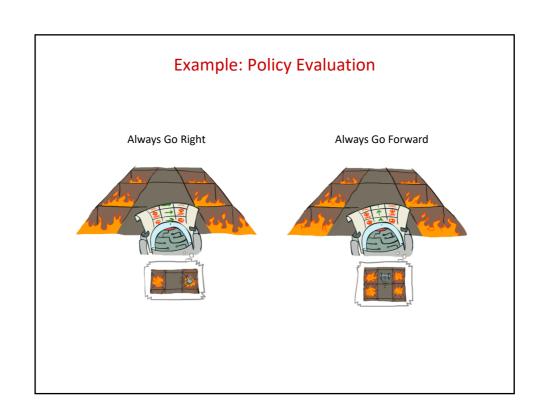
- Expectimax trees max over all actions to compute the optimal values
- If we fixed some policy $\pi(\textbf{s}),$ then the tree would be simpler only one action per state
 - $-\ \dots$ though the tree's value would depend on which policy we fixed

Utilities for a Fixed Policy

- Another basic operation: compute the utility of a state s under a fixed (generally non-optimal) policy
- Define the utility of a state s, under a fixed policy π : $V^{\pi}(s)$ = expected total discounted rewards starting in s and following π

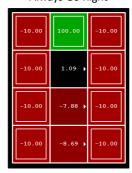






Example: Policy Evaluation

Always Go Right



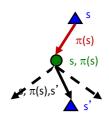
Always Go Forward

Policy Evaluation

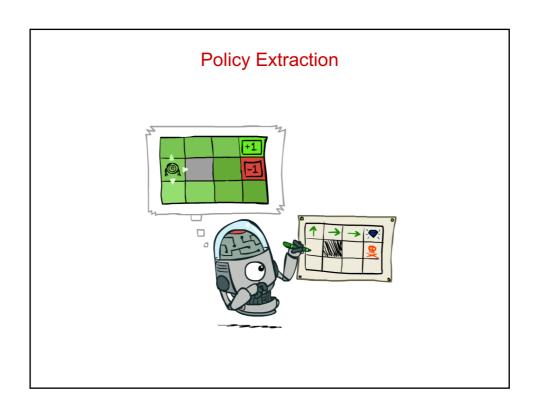
- How do we calculate the V's for a fixed policy π ?
- Idea 1: Turn recursive Bellman equations into updates (like value iteration)

$$V_0^{\pi}(s) = 0$$

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$
 (s), $\pi(s)$,

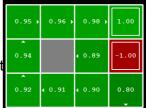


- Efficiency: O(S²) per iteration
- Idea 2: Without the maxes, the Bellman equations are just a linear system
 Solve with Matlab (or your favorite linear system solver)



Computing Actions from Values

- Let's imagine we have the optimal values V*(s)
- How should we act?
 - It's not obvious!
- We need to do a mini-expectimax (one st



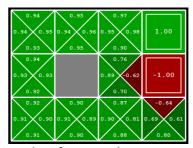
$$\pi^*(s) = \arg\max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$

 This is called policy extraction, since it gets the policy implied by the values

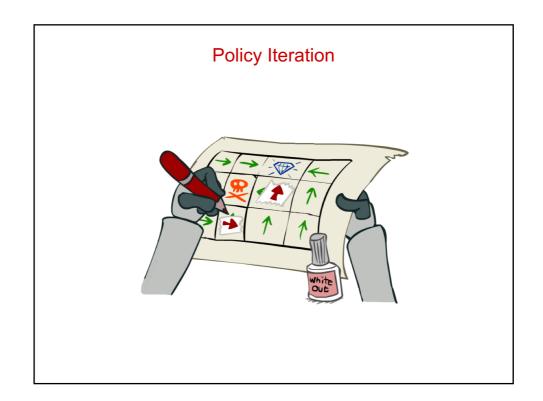
Computing Actions from Q-Values

- Let's imagine we have the optimal q-values:
- How should we act?
 - Completely trivial to decide!

$$\pi^*(s) = \arg\max_a Q^*(s, a)$$



 Important lesson: actions are easier to select from q-values than values!



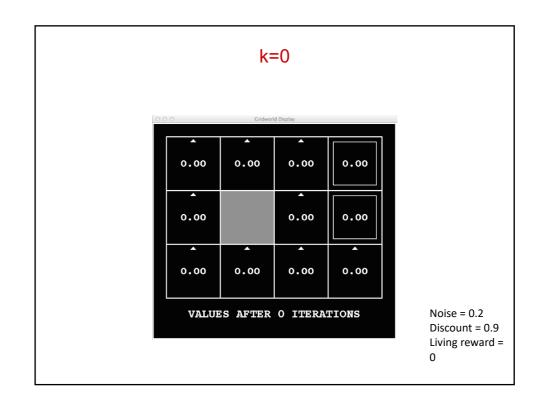
Problems with Value Iteration

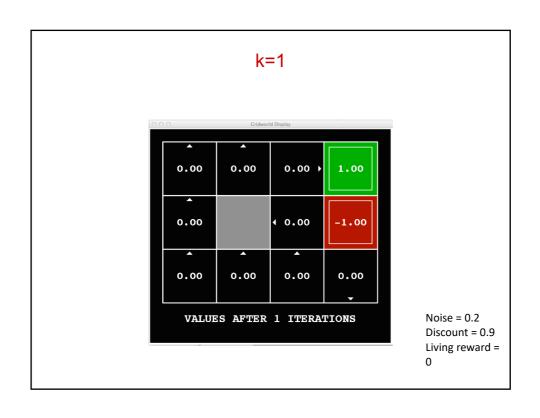
• Value iteration repeats the Bellman updates:

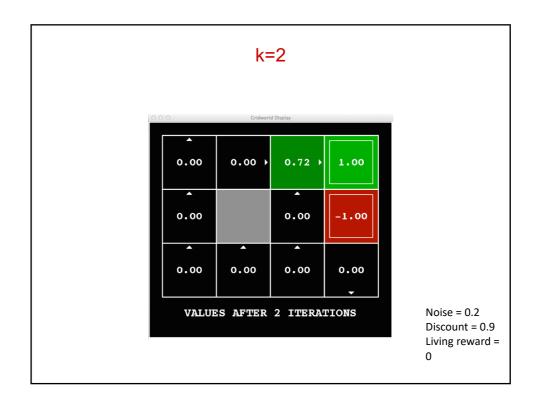
$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

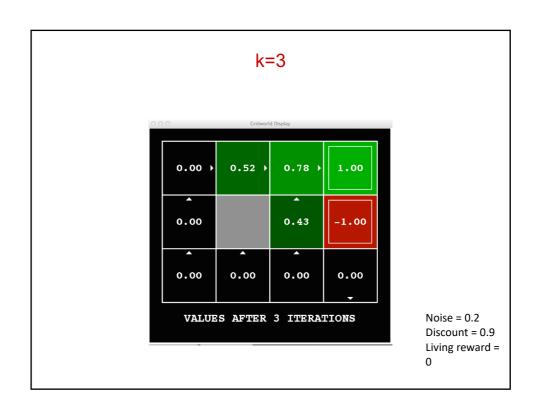
- a s, a
- Problem 2: The "max" at each state rarely changes
- Problem 3: The policy often converges long before the values

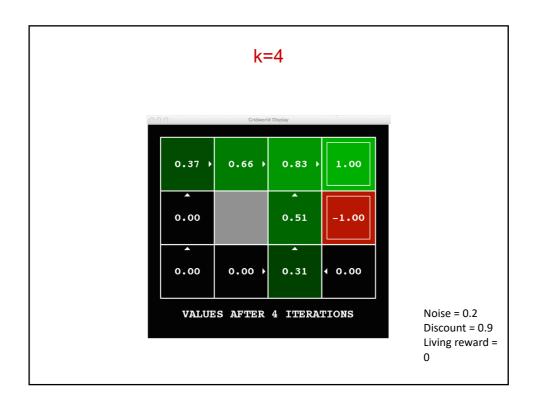
[Demo: value iteration (L9D2)]

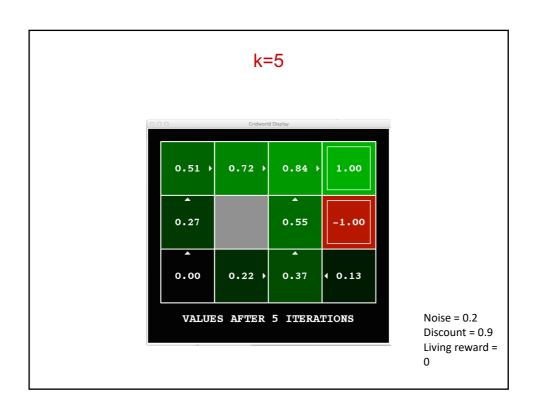


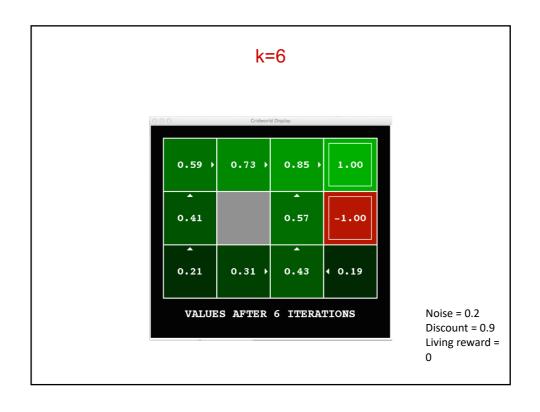




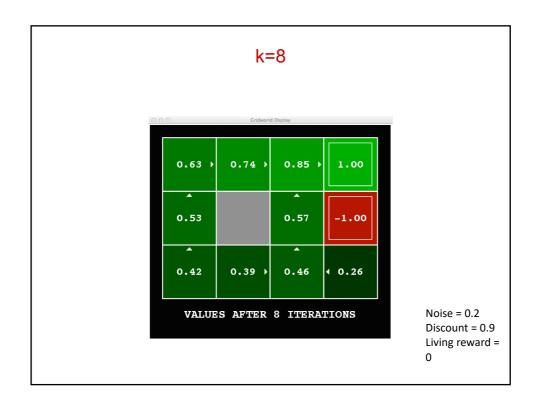


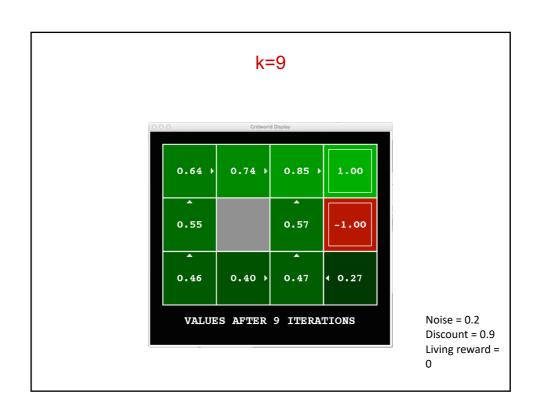


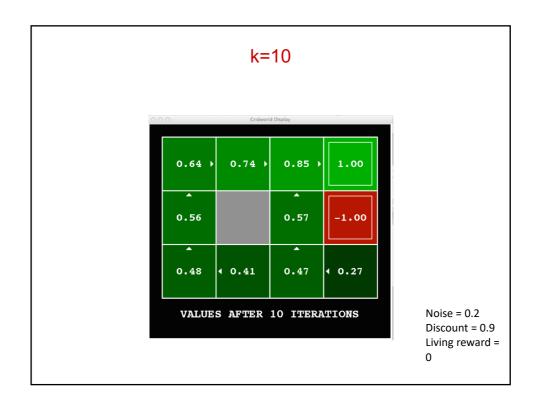


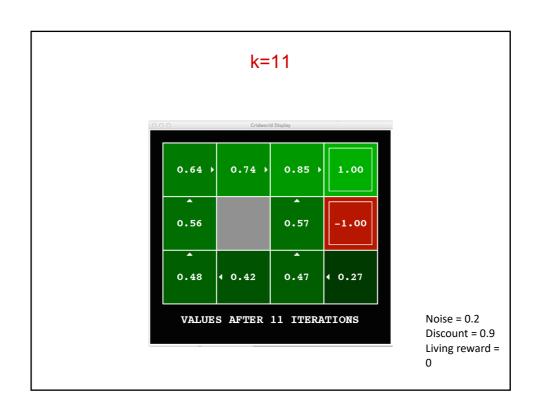


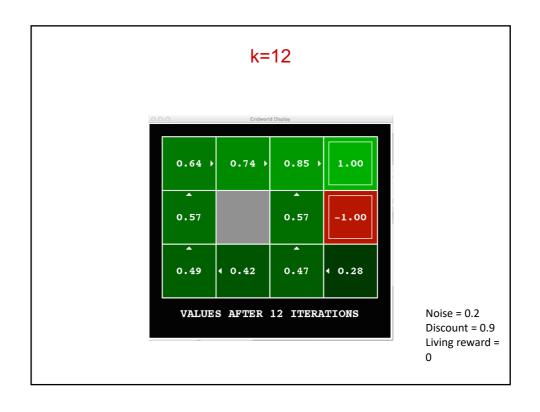


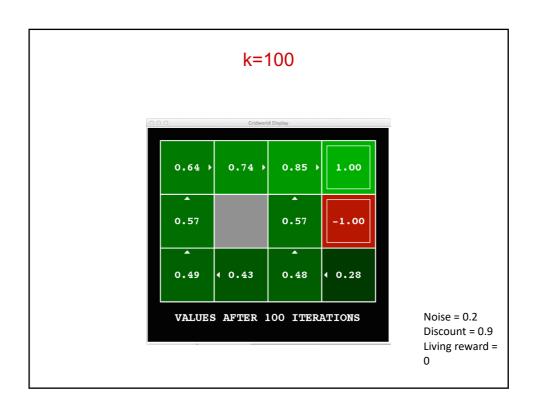












Policy Iteration

- · Alternative approach for optimal values:
 - Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal utilities!) until convergence
 - Step 2: Policy improvement: update policy using one-step lookahead with resulting converged (but not optimal!) utilities as future values
 - Repeat steps until policy converges
- This is policy iteration
 - It's still optimal!
 - Can converge (much) faster under some conditions

Policy Iteration

- Evaluation: For fixed current policy π , find values with policy evaluation:
 - Iterate until values converge:

$$V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s'} T(s, \pi_i(s), s') \left[R(s, \pi_i(s), s') + \gamma V_k^{\pi_i}(s') \right]$$

- Improvement: For fixed values, get a better policy using policy extraction
 - One-step look-ahead:

$$\pi_{i+1}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_i}(s') \right]$$

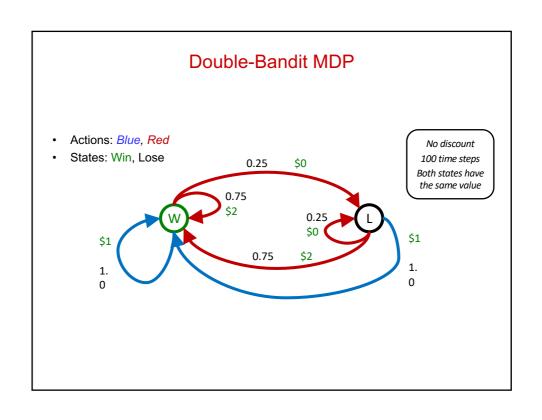
Comparison

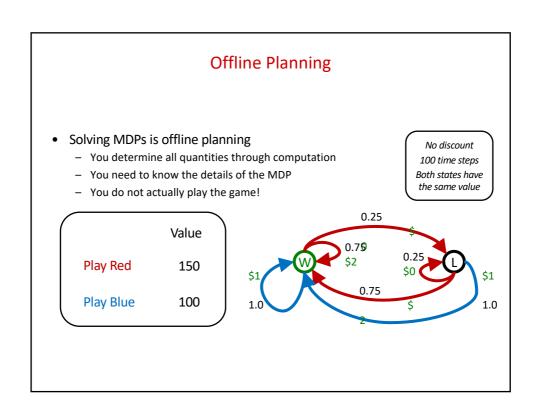
- Both value iteration and policy iteration compute the same thing (all optimal values)
- In value iteration:
 - Every iteration updates both the values and (implicitly) the policy
 - We don't track the policy, but taking the max over actions implicitly recomputes it
- · In policy iteration:
 - We do several passes that update utilities with fixed policy (each pass is fast because we consider only one action, not all of them)
 - After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
 - The new policy will be better (or we're done)
- · Both are dynamic programs for solving MDPs

Summary: MDP Algorithms

- So you want to....
 - Compute optimal values: use value iteration or policy iteration
 - Compute values for a particular policy: use policy evaluation
 - Turn your values into a policy: use policy extraction (one-step lookahead)
- · These all look the same!
 - They basically are they are all variations of Bellman updates
 - They all use one-step lookahead expectimax fragments
 - They differ only in whether we plug in a fixed policy or max over actions

Double Bandits



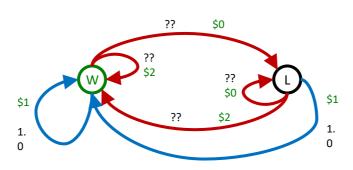


Let's Play!

\$2 \$2 \$0 \$2 \$2 \$2 \$2 \$0 \$0 \$0

Online Planning

• Rules changed! Red's win chance is different.

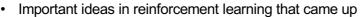


Let's Play!

\$0 \$0 \$0 \$2 \$0 \$2 \$0 \$0 \$0 \$0

What Just Happened?

- · That wasn't planning, it was learning!
 - Specifically, reinforcement learning
 - There was an MDP, but you couldn't solve it with just comput
 - You needed to actually act to figure it out



- Exploration: you have to try unknown actions to get information
- Exploitation: eventually, you have to use what you know
- Regret: even if you learn intelligently, you make mistakes
- Sampling: because of chance, you have to try things repeatedly
- Difficulty: learning can be much harder than solving a known MDP

