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CS 687
Jana Kosecka

Temporal models
Chapter 15, Russell and Norvig

[Some slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.  All CS188 materials are available at http://ai.berkeley.edu.]

Probability Recap

§ Conditional probability

§ Product rule

§ Chain rule 

§ X, Y independent if and only if:

§ X and Y are conditionally independent given Z if and only if:
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Reasoning over Time or Space

§ Often, we want to reason about a sequence of observations
§ Speech recognition
§ Robot localization
§ User attention
§ Medical monitoring

§ Need to introduce time (or space) into our models

Markov Models

§ Value of X at a given time is called the state

§ Parameters: called transition probabilities or dynamics, specify how the state 
evolves over time (also, initial state probabilities)

§ Stationarity assumption: transition probabilities the same at all times
§ Same as MDP transition model, but no choice of action

X2X1 X3 X4
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Conditional Independence

§ Basic conditional independence:
§ Past and future independent given the present
§ Each time step only depends on the previous
§ This is called the (first order) Markov property

§ Note that the chain is just a (growable) BN
§ We can always use generic BN reasoning on it if we 

truncate the chain at a fixed length

Example Markov Chain: Weather

§ States: X = {rain, sun}

rain sun

0.9

0.7

0.3

0.1

Two new ways of representing the same CPT

sun

rain

sun

rain

0.1
0.9

0.7

0.3

Xt-1 Xt P(Xt|Xt-1)
sun sun 0.9
sun rain 0.1
rain sun 0.3
rain rain 0.7

§ Initial distribution: 1.0 sun

§ CPT P(Xt | Xt-1):
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Example Markov Chain: Weather

§ Initial distribution: 1.0 sun

§ What is the probability distribution after one step?

rain sun

0.9

0.7

0.3

0.1

Mini-Forward Algorithm

§ Question: What’s P(X) on some day t?

Forward simulation

X2X1 X3 X4

P (xt) =
X

xt�1

P (xt�1, xt)

=
X

xt�1

P (xt | xt�1)P (xt�1)
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Example Run of Mini-Forward Algorithm

§ From initial observation of sun

§ From initial observation of rain

§ From yet another initial distribution P(X1):

P(X1) P(X2) P(X3) P(X¥)P(X4)

P(X1) P(X2) P(X3) P(X¥)P(X4)

P(X1) P(X¥)
…

[Demo: L13D1,2,3]

§ Stationary distribution:
§ The distribution we end up with is called 

the stationary distribution   of the 
chain

§ It satisfies

Stationary Distributions

§ For most chains:
§ Influence of the initial distribution 

gets less and less over time.
§ The distribution we end up in is 

independent of the initial distribution
P1(X) = P1+1(X) =

X

x

P (X|x)P1(x)

P1



6

Example: Stationary Distributions

§ Question: What’s P(X) at time t = infinity?

X2X1 X3 X4

Xt-1 Xt P(Xt|Xt-1)
sun sun 0.9
sun rain 0.1
rain sun 0.3
rain rain 0.7

P1(sun) = P (sun|sun)P1(sun) + P (sun|rain)P1(rain)

P1(rain) = P (rain|sun)P1(sun) + P (rain|rain)P1(rain)

P1(sun) = 0.9P1(sun) + 0.3P1(rain)

P1(rain) = 0.1P1(sun) + 0.7P1(rain)

P1(sun) = 3P1(rain)

P1(rain) = 1/3P1(sun)

P1(sun) + P1(rain) = 1

P1(sun) = 3/4

P1(rain) = 1/4Also:

Application of Stationary Distribution: Web Link Analysis

§ PageRank over a web graph
§ Each web page is a state
§ Initial distribution: uniform over pages
§ Transitions:

§ With prob. c, uniform jump to a
random page (dotted lines, not all shown)

§ With prob. 1-c, follow a random
outlink (solid lines)

§ Stationary distribution
§ Will spend more time on highly reachable pages
§ E.g. many ways to get to the Acrobat Reader download page
§ Somewhat robust to link spam
§ Google 1.0 returned the set of pages containing all your 

keywords in decreasing rank, now all search engines use link 
analysis along with many other factors (rank actually getting 
less important over time)
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K= [

0.1    0.5    0.6

0.6    0.2    0.3

0.3    0.3    0.1

]

X1

X3 X2

0.6

0.1

0.3

0.2

0.5

0.3

0.3

0.6

0.1

A simple Markov Chain

Slide adopted from P. Sarkar, CMU, F. Dellaert Georgia Tech

Stationary Distribution

q0

q1 = K q0

q2 = K q1 = K2 q0

q3 = K q2 = K2 q1 = K3 q0

q10 = K q9 = … K10 q0

[1 0 0] [0 1 0] [0 0 1]

Slide adopted from P. Sarkar, CMU, F. Dellaert Georgia Tech
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Eigen-analysis
K =

0.1000    0.5000    0.6000

0.6000    0.2000    0.3000

0.3000    0.3000    0.1000

E =

0.6396    0.7071   -0.2673

0.6396   -0.7071    0.8018

0.4264    0.0000   -0.5345

D =

1.0000         0         0

0   -0.4000         0

0         0   -0.2000

KE = ED

Eigenvalue v1 always 1

Stationary = e1/sum(e1)
i.e. Kp = p

Slide adopted from P. Sarkar, CMU, F. Dellaert Georgia Tech

The Web as a Markov Chain

www.yahoo.com

Where do we end up if we click hyperlinks randomly ?
Answer: stationary distribution !

Graph: web pages are nodes, links related to transition 
probabilities

Slide adopted from P. Sarkar, CMU, F. Dellaert Georgia Tech
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Google Pagerank

www.yahoo.com

Pagerank == First Eigenvector of the Web Graph !

Computation assumes a 15% �random restart� probability

Sergey Brin and Lawrence Page , The anatomy of a large-scale 
hypertextual {Web} search engine, Computer Networks and ISDN 
Systems, 1998  

Slide adopted from P. Sarkar, CMU, F. Dellaert Georgia Tech

PageRank

Page, Lawrence and Brin, Sergey and Motwani, Rajeev and Winograd, 
Terry The PageRank Citation Ranking: Bringing Order to the Web. 
Technical Report. Stanford InfoLab, 1999.
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19

Pagerank Example

• Web graph:                          if i is connected to j and 0 otherwise

• An webpage is important if other important pages point to it.

• Intuitively 

• PR works out to be the stationary distribution of the Markov 
chain corresponding to the web:  PR = PR ( P),  where for 
example 

PR(k) = PR(i)
degout (i)i→k
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Hidden Markov Models

§ Markov chains not so useful for most agents
§ Need observations to update your beliefs

§ Hidden Markov models (HMMs)
§ Underlying Markov chain over states X
§ You observe outputs (effects) at each time step

X5X2

E1

X1 X3 X4

E2 E3 E4 E5

Example: Weather HMM

Rt-1 Rt P(Rt|Rt-1)

+r +r 0.7

+r -r 0.3

-r +r 0.3

-r -r 0.7

Umbrellat-1

Rt Ut P(Ut|Rt)

+r +u 0.9

+r -u 0.1

-r +u 0.2

-r -u 0.8

Umbrellat Umbrellat+1

Raint-1 Raint Raint+1

§ An HMM is defined by:
§ Initial distribution:
§ Transitions:
§ Emissions:

P (Xt | Xt�1)
P (Et | Xt)

P (Xt | Xt�1)

P (Et | Xt)
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Example: Ghostbusters HMM

§ P(X1) = uniform

§ P(X|X�) = usually move clockwise, but 

sometimes move in a random direction or 

stay in place

§ P(Rij|X) = same sensor model as before:

red means close, green means far away.

1/9 1/9

1/9 1/9

1/9

1/9

1/9 1/9 1/9

P(X1)

P(X|X�=<1,2>)

1/6 1/6

0 1/6

1/2

0

0 0 0

X5

X2

Ri,j

X1 X3 X4

Ri,j Ri,j Ri,j

[Demo: Ghostbusters – Circular Dynamics – HMM (L14D2)]

Conditional Independence

§ HMMs have two important independence properties:
§ Markov hidden process: future depends on past via the present

§ Current observation independent of all else given current state

§ Quiz: does this mean that evidence variables are guaranteed to be independent?
§ [No, they tend to correlated by the hidden state]

X5X2

E1

X1 X3 X4

E2 E3 E4 E5
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Real HMM Examples

§ Speech recognition HMMs:
§ Observations are acoustic signals (continuous valued)
§ States are specific positions in specific words (so, tens of thousands)

§ Machine translation HMMs:
§ Observations are words (tens of thousands)
§ States are translation options

§ Robot tracking:
§ Observations are range readings (continuous)
§ States are positions on a map (continuous)

Filtering / Monitoring

§ Filtering, or monitoring, is the task of tracking the distribution 
Bt(X) = Pt(Xt | e1, …, et) (the belief state) over time

§ We start with B1(X) in an initial setting, usually uniform

§ As time passes, or we get observations, we update B(X)

§ The Kalman filter was invented in the 60’s and first 
implemented as a method of trajectory estimation for the 
Apollo program
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Example: Robot Localization

t=0
Sensor model: can read in which directions there is a wall, 

never more than 1 mistake
Motion model: may not execute action with small prob.

10Prob

Example from 
Michael Pfeiffer

Example: Robot Localization

t=1
Lighter grey: was possible to get the reading, but less likely b/c 

required 1 mistake

10Prob
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Example: Robot Localization

t=2

10Prob

Example: Robot Localization

t=3

10Prob
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Example: Robot Localization

t=4

10Prob

Example: Robot Localization

t=5

10Prob
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Inference: Base Cases

E1

X1

X2X1

Passage of Time

§ Assume we have current belief P(X | evidence to date)

§ Then, after one time step passes:

§ Basic idea: beliefs get “pushed” through the transitions
§ With the “B” notation, we have to be careful about what time step t the belief is about, and what 

evidence it includes

X2X1

=
X

xt

P (Xt+1, xt|e1:t)

=
X

xt

P (Xt+1|xt, e1:t)P (xt|e1:t)

=
X

xt

P (Xt+1|xt)P (xt|e1:t)

§ Or compactly:

B0(Xt+1) =
X

xt

P (X 0|xt)B(xt)

P (Xt+1|e1:t)
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Observation
§ Assume we have current belief P(X | previous evidence):

§ Then, after evidence comes in:

§ Or, compactly:

E1

X1

B0(Xt+1) = P (Xt+1|e1:t)

P (Xt+1|e1:t+1) = P (Xt+1, et+1|e1:t)/P (et+1|e1:t)
/Xt+1 P (Xt+1, et+1|e1:t)

= P (et+1|Xt+1)P (Xt+1|e1:t)

= P (et+1|e1:t, Xt+1)P (Xt+1|e1:t)

B(Xt+1) /Xt+1 P (et+1|Xt+1)B
0(Xt+1)

§ Basic idea: beliefs “reweighted” 
by likelihood of evidence

§ Unlike passage of time, we have 
to renormalize

Example: Weather HMM

Rt Rt+1 P(Rt+1|Rt)

+r +r 0.7

+r -r 0.3

-r +r 0.3

-r -r 0.7

Rt Ut P(Ut|Rt)

+r +u 0.9

+r -u 0.1

-r +u 0.2

-r -u 0.8
Umbrella1 Umbrella2

Rain0 Rain1 Rain2

B(+r) = 0.5
B(-r)  = 0.5

B’(+r) = 0.5
B’(-r)  = 0.5

B(+r) = 0.818
B(-r)  = 0.182

B’(+r) = 0.627
B’(-r)  = 0.373

B(+r) = 0.883
B(-r)  = 0.117
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The Forward Algorithm
§ We are given evidence at each time and want to know

§ We can derive the following updates
We can normalize as we go if we 
want to have P(x|e) at each time 

step, or just once at the end…

Online Belief Updates

§ Every time step, we start with current P(X | evidence)
§ We update for time:

§ We update for evidence:

§ The forward algorithm does both at once (and doesn’t normalize)

X2X1

X2

E2
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Recap: Reasoning Over Time

§ Markov models

§ Hidden Markov models

X2X1 X3 X4 rain sun
0.7

0.7

0.3

0.3

X5X2

E1

X1 X3 X4

E2 E3 E4 E5

X E P
rain umbrella 0.9
rain no umbrella 0.1
sun umbrella 0.2
sun no umbrella 0.8

Inference: Base Cases

E1

X1

X2X1
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Inference: Base Cases

X2X1

Passage of Time

§ Assume we have current belief P(X | evidence to date)

§ Then, after one time step passes:

§ Basic idea: beliefs get “pushed” through the transitions
§ With the “B” notation, we have to be careful about what time step t the belief is about, and what 

evidence it includes

X2X1

=
X

xt

P (Xt+1, xt|e1:t)

=
X

xt

P (Xt+1|xt, e1:t)P (xt|e1:t)

=
X

xt

P (Xt+1|xt)P (xt|e1:t)

§ Or compactly:

B0(Xt+1) =
X

xt

P (X 0|xt)B(xt)

P (Xt+1|e1:t)
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Inference: Base Cases

E1

X1

Observation
§ Assume we have current belief P(X | previous evidence):

§ Then, after evidence comes in:

§ Or, compactly:

E1

X1

B0(Xt+1) = P (Xt+1|e1:t)

P (Xt+1|e1:t+1) = P (Xt+1, et+1|e1:t)/P (et+1|e1:t)
/Xt+1 P (Xt+1, et+1|e1:t)

= P (et+1|Xt+1)P (Xt+1|e1:t)

= P (et+1|e1:t, Xt+1)P (Xt+1|e1:t)

B(Xt+1) /Xt+1 P (et+1|Xt+1)B
0(Xt+1)

§ Basic idea: beliefs “reweighted” 
by likelihood of evidence

§ Unlike passage of time, we have 
to renormalize
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Filtering
Elapse time: compute P( Xt | e1:t-1 )

Observe: compute P( Xt | e1:t )

X2

E1

X1

E2

<0.5, 0.5>
Belief: <P(rain), P(sun)>

<0.82, 0.18>

<0.63, 0.37>

<0.88, 0.12>

Prior on X1

Observe

Elapse time

Observe

Inference Tasks
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Filtering

Filtering Example
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Smoothing

Smoothing
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State Trellis
§ State trellis: graph of states and transitions over time

§ Each arc represents some transition
§ Each arc has weight
§ Each path is a sequence of states
§ The product of weights on a path is that sequence’s probability along with the evidence
§ Forward algorithm computes sums of paths, Viterbi computes best paths

sun

rain

sun

rain

sun

rain

sun

rain

HMMs: Most Likely Explanation

§ HMMs defined by
§ States X
§ Observations E
§ Initial distribution:
§ Transitions:
§ Emissions:

§ New query: most likely explanation:

§ New method: the Viterbi algorithm

X5X2

E1

X1 X3 X4

E2 E3 E4 E5
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Forward / Viterbi Algorithms

sun

rain

sun

rain

sun

rain

sun

rain

Forward Algorithm (Sum) Viterbi Algorithm (Max)

Hidden Markov Models
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Kalman Filters

Updating 
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Simple 1-D example

General Kalman update
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2D Tracking - filtering

2D Tracking smoothing
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Where it breaks

§ Nonlinear dynamics 
§ Extended Kalman Filter
§ Violation of smoothness

Summary
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Particle Filtering

Particle Filtering

0.0 0.1

0.0 0.0

0.0

0.2

0.0 0.2 0.5

§ Filtering: approximate solution

§ Sometimes |X| is too big to use exact inference
§ |X| may be too big to even store B(X)
§ E.g. X is continuous

§ Solution: approximate inference
§ Track samples of X, not all values
§ Samples are called particles
§ Time per step is linear in the number of samples
§ But: number needed may be large
§ In memory: list of particles, not states

§ This is how robot localization works in practice

§ Particle is just new name for sample



33

Representation: Particles

§ Our representation of P(X) is now a list of N particles (samples)
§ Generally, N << |X|
§ Storing map from X to counts would defeat the point

§ P(x) approximated by number of particles with value x
§ So, many x may have P(x) = 0! 
§ More particles, more accuracy

§ For now, all particles have a weight of 1

Particles:
(3,3)
(2,3)
(3,3)   
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)

Particle Filtering: Elapse Time

§ Each particle is moved by sampling its next 
position from the transition model

§ This is like prior sampling – samples’ frequencies 
reflect the transition probabilities

§ Here, most samples move clockwise, but some move in 
another direction or stay in place

§ This captures the passage of time
§ If enough samples, close to exact values before and 

after (consistent)

Particles:
(3,3)
(2,3)
(3,3)   
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)

Particles:
(3,2)
(2,3)
(3,2)   
(3,1)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(2,2)
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§ Slightly trickier:

§ Don’t sample observation, fix it

§ Similar to likelihood weighting, downweight

samples based on the evidence

§ As before, the probabilities don’t sum to one, 

since all have been downweighted (in fact they 

now sum to (N times) an approximation of P(e))

Particle Filtering: Observe

Particles:

(3,2)  w=.9

(2,3)  w=.2

(3,2)  w=.9

(3,1)  w=.4

(3,3)  w=.4

(3,2)  w=.9

(1,3)  w=.1

(2,3)  w=.2

(3,2)  w=.9

(2,2)  w=.4

Particles:

(3,2)

(2,3)

(3,2)   

(3,1)

(3,3)

(3,2)

(1,3)

(2,3)

(3,2)

(2,2)

Particle Filtering: Resample

§ Rather than tracking weighted samples, we 
resample

§ N times, we choose from our weighted sample 
distribution (i.e. draw with replacement)

§ This is equivalent to renormalizing the 
distribution

§ Now the update is complete for this time step, 
continue with the next one

Particles:
(3,2)  w=.9
(2,3)  w=.2
(3,2)  w=.9
(3,1)  w=.4
(3,3)  w=.4
(3,2)  w=.9
(1,3)  w=.1
(2,3)  w=.2
(3,2)  w=.9
(2,2)  w=.4

(New) Particles:
(3,2)
(2,2)
(3,2)   
(2,3)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(3,2)
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Recap: Particle Filtering
§ Particles: track samples of states rather than an explicit distribution

Particles:
(3,3)
(2,3)
(3,3)   
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)

Elapse Weight Resample

Particles:
(3,2)
(2,3)
(3,2)   
(3,1)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(2,2)

Particles:
(3,2)  w=.9
(2,3)  w=.2
(3,2)  w=.9
(3,1)  w=.4
(3,3)  w=.4
(3,2)  w=.9
(1,3)  w=.1
(2,3)  w=.2
(3,2)  w=.9
(2,2)  w=.4

(New) Particles:
(3,2)
(2,2)
(3,2)   
(2,3)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(3,2)

[Demos: ghostbusters particle filtering (L15D3,4,5)]

Robot Localization

§ In robot localization:
§ We know the map, but not the robot’s position
§ Observations may be vectors of range finder readings
§ State space and readings are typically continuous (works 

basically like a very fine grid) and so we cannot store B(X)
§ Particle filtering is a main technique
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Particle Filter Localization (Sonar)

[Video: global-sonar-uw-annotated.avi]

Particle Filter Localization (Laser)

[Video: global-floor.gif]
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Speech Recognition

Speech Recognition in an Hour

§ Speech input is an acoustic waveform

Figure: Simon Arnfield, http://www.psyc.leeds.ac.uk/research/cogn/speech/tutorial/

s          p         ee ch l        a         b

“l” to “a”
transition:
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Spectral Analysis

§ Frequency gives pitch; amplitude gives volume
§ Sampling at ~8 kHz (phone), ~16 kHz (mic) (kHz=1000 cycles/sec)

§ Fourier transform of wave displayed as a spectrogram
§ Darkness indicates energy at each frequency

s             p            ee ch l          a            b

fr
eq

ue
nc

y
am

pl
itu

de

Human ear figure: depion.blogspot.com

Acoustic Feature Sequence

§ Time slices are translated into acoustic feature vectors (~39 real numbers 
per slice)

§ These are the observations E, now we need the hidden states X

fr
eq

ue
nc

y

……………………………………………..e12e13e14e15e16………..
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Speech State Space

§ HMM Specification
§ P(E|X) encodes which acoustic vectors are appropriate for each phoneme (each kind 

of sound)
§ P(X|X’) encodes how sounds can be strung together 

§ State Space
§ We will have one state for each sound in each word
§ Mostly, states advance sound by sound
§ Build a little state graph for each word and chain them together to form the state 

space X

States in a Word



40

Transitions with a Bigram Model

Figure: Huang et al, p. 618

198015222 the first
194623024 the same
168504105 the following
158562063 the world
…
14112454 the door
-----------------------------------
23135851162 the *

Tr
ai

ni
ng

 C
ou

nt
s

Decoding

§ Finding the words given the acoustics is an HMM inference problem
§ Which state sequence x1:T is most likely given the evidence e1:T?

§ From the sequence x, we can simply read off the words
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AI in the News

I Know Why You Went to the Clinic: Risks and Realization of HTTPS Traffic Analysis
Brad Miller, Ling Huang, A. D. Joseph, J. D. Tygar (UC Berkeley)

Challenge

§ Setting
§ User we want to spy on use HTTPS to browse the internet

§ Measurements
§ IP address
§ Sizes of packets coming in

§ Goal
§ Infer browsing sequence of that user

§ E.g.: medical, financial, legal, …
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HMM

§ Transition model
§ Probability distribution over links on the current page + some 

probability to navigate to any other page on the site

§ Noisy observation model due to traffic variations
§ Caching
§ Dynamically generated content
§ User-specific content, including cookies
à Probability distribution P( packet size | page )

Results

0
20

40
60

80
10

0

Session Length Effect

Length of Browsing Session

Ac
cu

ra
cy

0 10 20 30 40 50 60 70
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