### CS 687 Jana Kosecka

Uncertainty, Bayesian Networks Chapter 13, Russell and Norvig Chapter 14, 14.1-14.3

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are

#### Outline

- Uncertainty
- Probability
- Syntax and Semantics
- Inference
- Independence and Bayes' Rule

#### Random Variables

- A random variable is some aspect of the world about which we (may) have uncertainty
  - R = Is it raining?
  - T = Is it hot or cold?
  - D = How long will it take to drive to work? L = Where is the ghost?
- We denote random variables with capital letters
- Random variables have domains
  - R in {true, false} (often write as {+r, -r})
    - T in {hot, cold}
  - D in [0, ∞)
     L in possible locations, maybe {(0,0), (0,1), ...}



## **Probability Distributions**

- Associate a probability with each value
  - Temperature:

Weather:







| P(W)   |     |  |
|--------|-----|--|
| W      | Р   |  |
| sun    | 0.6 |  |
| rain   | 0.1 |  |
| fog    | 0.3 |  |
| meteor | 0.0 |  |

### **Probability Distributions**

Unobserved random variables have distributions

| P(T) |     |
|------|-----|
| Т    | Р   |
| hot  | 0.5 |
| cold | 0.5 |

| P(W)   |     |
|--------|-----|
| W      | Р   |
| sun    | 0.6 |
| rain   | 0.1 |
| fog    | 0.3 |
| meteor | 0.0 |

- A distribution is a TABLE of probabilities of values
- A probability (lower case value) is a single number

$$P(W = rain) = 0.1$$

Must have:

 $\forall x \ P(X=x) \ge 0$  and  $\sum_{x} P(X=x) = 1$ 

Shorthand notation:

P(hot) = P(T = hot),P(cold) = P(T = cold),P(rain) = P(W = rain),

OK if all domain entries are unique

#### Joint Distributions

A joint distribution over a set of random variables  $X_1, X_2, \dots X_n$ specifies a real number for each assignment (or outcome):

$$P(X_1 = x_1, X_2 = x_2, \dots X_n = x_n)$$
  
 $P(x_1, x_2, \dots x_n)$ 

Must obey:

ust obey: 
$$P(x_1,x_2,\dots x_n)\geq 0$$
  $\sum_{\substack{(x_1,x_2,\dots x_n)}} P(x_1,x_2,\dots x_n)=1$ 

Size of distribution if n variables with domain sizes d?

- For all but the smallest distributions, impractical to write out!

P(T, W)W

0.4 hot hot 0.1 cold 0.2 cold rain 0.3

#### **Probabilistic Models**

- A probabilistic model is a joint distribution over a set of random variables
- · Probabilistic models:
  - (Random) variables with domains
  - Assignments are called outcomes
  - Joint distributions: say whether assignments (outcomes) are likely
  - Normalized: sum to 1.0
  - Ideally: only certain variables directly interact
- · Constraint satisfaction problems:
  - Variables with domains
  - Constraints: state whether assignments are possible
  - Ideally: only certain variables directly interact

#### Distribution over T,W

| Т    | W    | Р   |
|------|------|-----|
| hot  | sun  | 0.4 |
| hot  | rain | 0.1 |
| cold | sun  | 0.2 |
| cold | rain | 0.3 |



| Т    | W    | Р |
|------|------|---|
| hot  | sun  | Т |
| hot  | rain | F |
| cold | sun  | F |
| cold | rain | Т |





#### **Events**

An event is a set E of outcomes

$$P(E) = \sum_{(x_1...x_n)\in E} P(x_1...x_n)$$

- From a joint distribution, we can calculate the probability of any event
  - Probability that it's hot AND sunny?
  - Probability that it's hot?
  - Probability that it's hot OR sunny?
- Typically, the events we care about are partial assignments, like P(T=hot)

P(T,W)

| Т    | W    | Р   |
|------|------|-----|
| hot  | sun  | 0.4 |
| hot  | rain | 0.1 |
| cold | sun  | 0.2 |
| cold | rain | 0.3 |

#### Quiz: Events

- P(+x, +y)?
- P(+x)?
- P(-y OR +x)?

P(X,Y)

| X  | Υ  | Р   |
|----|----|-----|
| +x | +y | 0.2 |
| +x | -у | 0.3 |
| -X | +y | 0.4 |
| -X | -V | 0.1 |

# **Marginal Distributions**

- Marginal distributions are sub-tables which eliminate variables
- Marginalization (summing out): Combine collapsed rows by adding

| P(T, | W) |
|------|----|
|------|----|

| Т    | W    | Р   |
|------|------|-----|
| hot  | sun  | 0.4 |
| hot  | rain | 0.1 |
| cold | sun  | 0.2 |
| cold | rain | 0.3 |
|      |      |     |





$$P(s) = \sum_{t} P(t, s)$$

$$P(X_1 = x_1) = \sum_{x_2} P(X_1 = x_1, X_2 = x_2)$$



0.5

0.6

P(W)

## **Quiz: Marginal Distributions**



| $P(x) = \sum P(x, y)$                     |
|-------------------------------------------|
| $\frac{1}{y}$ $\frac{1}{y}$ $\frac{1}{y}$ |





| $\hspace{1cm} \longrightarrow \hspace{1cm}$ | ٠ |
|---------------------------------------------|---|
|                                             |   |
| $P(y) = \sum P(x, y)$                       |   |
| $P(y) = \sum P(x, y)$                       |   |
|                                             |   |
| x                                           |   |

| P(Y) |   |  |
|------|---|--|
| Υ    | Р |  |
| +y   |   |  |
| -у   |   |  |

#### **Conditional Probabilities**

- A simple relation between joint and conditional probabilities
  - In fact, this is taken as the *definition* of a conditional probability

$$P(a|b) = \frac{P(a,b)}{P(b)}$$



| P(a,b) |  |
|--------|--|
| P(b)   |  |
|        |  |

| P(T,W) |      |     |  |
|--------|------|-----|--|
| Т      | W    | Р   |  |
| hot    | sun  | 0.4 |  |
| hot    | rain | 0.1 |  |
| cold   | sun  | 0.2 |  |
| cold   | rain | 0.3 |  |

$$P(W = s|T = c) = \frac{P(W = s, T = c)}{P(T = c)} = \frac{0.2}{0.5} = 0.4$$

$$= P(W = s, T = c) + P(W = r, T = c)$$

$$= 0.2 + 0.3 = 0.5$$

### **Quiz: Conditional Probabilities**

• P(+x | +y) ?

P(X,Y)

| X  | Υ  | Р   |
|----|----|-----|
| +x | +y | 0.2 |
| +x | -у | 0.3 |
| -X | +y | 0.4 |
| -X | -у | 0.1 |

• P(-x | +y) ?

• P(-y | +x) ?

### **Conditional Distributions**

 Conditional distributions are probability distributions over some variables given fixed values of others

Conditional Distributions

P(W|T)

P(W|T = hot)

| W    | Р   |
|------|-----|
| sun  | 8.0 |
| rain | 0.2 |

$$P(W|T=cold)$$

| • '  |     |
|------|-----|
| W    | Р   |
| sun  | 0.4 |
| rain | 0.6 |

Joint Distribution

P(T,W)

| 1 (1, 11) |      |     |  |  |
|-----------|------|-----|--|--|
| Τ         | W    | Р   |  |  |
| hot       | sun  | 0.4 |  |  |
| hot       | rain | 0.1 |  |  |
| cold      | sun  | 0.2 |  |  |
| cold      | rain | 0.3 |  |  |

#### **Normalization Trick**





#### **Normalization Trick**

P(T, W)

| Т    | W    | Р   |
|------|------|-----|
| hot  | sun  | 0.4 |
| hot  | rain | 0.1 |
| cold | sun  | 0.2 |
| cold | rain | 0.3 |

SELECT the joint probabilities matching the evidence



NORMALIZE the selection (make it sum to one)

P(W|T = c)  $\begin{array}{c|c} W & P \\ \hline sun & 0.4 \\ \hline rain & 0.6 \\ \end{array}$ 

Why does this work? Sum of selection is P(evidence)! (P(T=c), here)

$$P(x_1|x_2) = \frac{P(x_1, x_2)}{P(x_2)} = \frac{P(x_1, x_2)}{\sum_{x_1} P(x_1, x_2)}$$

#### **Quiz: Normalization Trick**

• P(X | Y=-y) ?

P(X,Y)

| X  | Υ  | Р   |
|----|----|-----|
| +x | +y | 0.2 |
| +x | -у | 0.3 |
| -X | +y | 0.4 |
| -X | -у | 0.1 |
|    |    |     |

select the joint probabilities matching the evidence

NORMALIZE the selection (make it sum to one)

#### To Normalize

(Dictionary) To bring or restore to a normal condition



- · Procedure:
  - Step 1: Compute Z = sum over all entries
  - Step 2: Divide every entry by Z
- Example 1

| W    | Р   | Normalize     | W    | Р   |
|------|-----|---------------|------|-----|
| sun  | 0.2 | $\rightarrow$ | sun  | 0.4 |
| rain | 0.3 | Z = 0.5       | rain | 0.6 |

Example 2

| Т    | W    | Р  |           | Т    | W    | Р   |
|------|------|----|-----------|------|------|-----|
| hot  | sun  | 20 | Normalize | hot  | sun  | 0.4 |
| hot  | rain | 5  |           | hot  | rain | 0.1 |
| cold | sun  | 10 | Z = 50    | cold | sun  | 0.2 |
| cold | rain | 15 |           | cold | rain | 0.3 |

#### **Probabilistic Inference**

- Probabilistic inference: compute a desired probability from other known probabilities (e.g conditional from joint)
- · We generally compute conditional probabilities
  - P(on time | no reported accidents) = 0.90
  - These represent the agent's beliefs given the evidence
- Probabilities change with new evidence:
  - P(on time | no accidents, 5 a.m.) = 0.95
  - P(on time | no accidents, 5 a.m., raining) = 0.80
  - Observing new evidence causes beliefs to be updated





## Inference by Enumeration

- P(W)?
- P(W | winter)?
- P(W | winter, hot)?

| S      | Т    | W    | Р    |
|--------|------|------|------|
| summer | hot  | sun  | 0.30 |
| summer | hot  | rain | 0.05 |
| summer | cold | sun  | 0.10 |
| summer | cold | rain | 0.05 |
| winter | hot  | sun  | 0.10 |
| winter | hot  | rain | 0.05 |
| winter | cold | sun  | 0.15 |
| winter | cold | rain | 0.20 |

## Inference by Enumeration

- Obvious problems:
  - Worst-case time complexity O(dn)
  - Space complexity O(dn) to store the joint distribution

#### The Product Rule

Sometimes have conditional distributions but want the

$$P(y)P(x|y) = P(x,y)$$
  $\iff$   $P(x|y) = \frac{P(x,y)}{P(y)}$ 





#### The Product Rule

$$P(y)P(x|y) = P(x,y)$$

• Example:

 P(W)

 R
 P

 sun
 0.8

 rain
 0.2

| P(D W) |                         |  |  |  |
|--------|-------------------------|--|--|--|
| D W P  |                         |  |  |  |
| sun    | 0.1                     |  |  |  |
| sun    | 0.9                     |  |  |  |
| rain   | 0.7                     |  |  |  |
| rain   | 0.3                     |  |  |  |
|        | w<br>sun<br>sun<br>rain |  |  |  |



| P(D,W) |      |   |  |
|--------|------|---|--|
| D      | W    | Р |  |
| wet    | sun  |   |  |
| dry    | sun  |   |  |
| wet    | rain | - |  |
| dry    | rain |   |  |

### The Chain Rule

 More generally, can always write any joint distribution as an incremental product of conditional distributions

$$P(x_1, x_2, x_3) = P(x_1)P(x_2|x_1)P(x_3|x_1, x_2)$$

$$P(x_1, x_2, \dots x_n) = \prod_i P(x_i | x_1 \dots x_{i-1})$$

· Why is this always true?

## Bayes Rule



## Bayes' Rule

Two ways to factor a joint distribution over two variables:

$$P(x,y) = P(x|y)P(y) = P(y|x)P(x)$$

Dividing, we get:

$$P(x|y) = \frac{P(y|x)}{P(y)}P(x)$$

- Why is this at all helpful?

  - Lets us build one conditional from its reverse
     Often one conditional is tricky but the other one is simple
     Foundation of many systems we'll see later (e.g. ASR, MT)
- In the running for most important AI equation!



### Inference with Bayes' Rule

• Example: Diagnostic probability from causal probability:

$$P(\text{cause}|\text{effect}) = \frac{P(\text{effect}|\text{cause})P(\text{cause})}{P(\text{effect})}$$

- Example:
  - M: meningitis, S: stiff neck

$$P(+m) = 0.0001 \\ P(+s|+m) = 0.8 \\ P(+s|-m) = 0.01$$
 Example givens

- Note: posterior probability of meningitis still very small
- Note: you should still get stiff necks checked out! Why?

$$P(+m|+s) = \frac{P(+s|+m)P(+m)}{P(+s)} = \frac{P(+s|+m)P(+m)}{P(+s|+m)P(+m) + P(+s|-m)P(-m)} = \frac{0.8 \times 0.0001}{0.8 \times 0.0001 + 0.01 \times 0.999}$$

## Quiz: Bayes' Rule

• Given:

P(D|W)

| D   | W    | Р   |
|-----|------|-----|
| wet | sun  | 0.1 |
| dry | sun  | 0.9 |
| wet | rain | 0.7 |
| dry | rain | 0.3 |

• What is P(W | dry)?

#### **Probabilistic Models**

- Models describe how (a portion of) the world works
- Models are always simplifications
  - May not account for every variable
  - May not account for all interactions between variables
  - "All models are wrong; but some are useful."

     George E. P. Box



- What do we do with probabilistic models?

   We (or our agents) need to reason about unknown variables, given evidence

   Example: explanation (diagnostic reasoning)

   Example: prediction (causal reasoning)

  - Example: value of information

### Independence

Two variables are independent if:

$$\forall x, y : P(x, y) = P(x)P(y)$$

- This says that their joint distribution factors into a product two simpler distributions
- Another form:

$$\forall x, y : P(x|y) = P(x)$$

- We write:  $X \perp \!\!\! \perp Y$
- Independence is a simplifying modeling assumption
  - Empirical joint distributions: at best "close" to independent
  - What could we assume for {Weather, Traffic, Cavity, Toothache}?



## Example: Independence?

 $\begin{array}{c|cccc} P_1(T,W) \\ \hline T & W & P \\ \hline hot & sun & 0.4 \\ hot & rain & 0.1 \\ \hline cold & sun & 0.2 \\ \hline cold & rain & 0.3 \\ \hline \end{array}$ 

| P(T) |     |  |
|------|-----|--|
| Т    | Р   |  |
| hot  | 0.5 |  |
| cold | 0.5 |  |
|      |     |  |

| P(W) |     |  |
|------|-----|--|
| W    | Р   |  |
| sun  | 0.6 |  |
| rain | 0.4 |  |



## Example: Independence

• N fair, independent coin flips:









#### **Conditional Independence**

- P(Toothache, Cavity, Catch)
- If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
  - P(+catch | +toothache, +cavity) = P(+catch | +cavity)
- The same independence holds if I don't have a cavity:
  - P(+catch | +toothache, -cavity) = P(+catch | -cavity)



P(Catch | Toothache, Cavity) = P(Catch | Cavity)



- P(Toothache | Catch , Cavity) = P(Toothache | Cavity)
- P(Toothache, Catch | Cavity) = P(Toothache | Cavity)P(Catch | Cavity)
- One can be derived from the other easily



- Unconditional (absolute) independence very rare (why?)
- Conditional independence is our most basic and robust form of knowledge about uncertain environments.
- X is conditionally independent of Y given Z

if and only if:

$$\forall x, y, z : P(x, y|z) = P(x|z)P(y|z)$$

or, equivalently, if and only if

$$\forall x, y, z : P(x|z, y) = P(x|z)$$

### **Conditional Independence**

- · What about this domain:
  - Traffic
  - Umbrella
  - Raining



#### Conditional Independence and the Chain Rule

- Chain rule:  $P(X_1, X_2, ... X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)...$
- Trivial decomposition:

$$\begin{split} &P(\mathsf{Traffic},\mathsf{Rain},\mathsf{Umbrella}) = \\ &P(\mathsf{Rain})P(\mathsf{Traffic}|\mathsf{Rain})P(\mathsf{Umbrella}|\mathsf{Rain},\mathsf{Traffic}) \end{split}$$



• With assumption of conditional independence:

P(Traffic, Rain, Umbrella) = P(Rain)P(Traffic|Rain)P(Umbrella|Rain)

• Bayes' nets / graphical models help us express conditional independence assumptions

## Bayes' Nets: Big Picture



## Bayes' Nets: Big Picture

- Two problems with using full joint distribution tables as our probabilistic models:
  - Unless there are only a few variables, the joint is WAY too big to represent explicitly
  - Hard to learn (estimate) anything empirically about more than a few variables at a time
- Bayes' nets: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probabilities)
  - More properly called graphical models
  - We describe how variables locally interact
  - Local interactions chain together to give global, indirect interactions
  - For about 10 min, we'll be vague about how these interactions are specified









### **Graphical Model Notation**

- Nodes: variables (with domains)
  - Can be assigned (observed) or unassigned (unobserved)
- Arcs: interactions
  - Similar to CSP constraints
  - Indicate "direct influence" between variables
  - Formally: encode conditional independence (more later)
- For now: imagine that arrows mean direct causation (in general, they don't!)







### **Example: Coin Flips**

• N independent coin flips











No interactions between variables: absolute independence

## Example: Traffic

- Variables:
  - R: It rains
  - T: There is traffic

• Model 1: independence





Model 2: rain causes traffic







• Why is an agent using model 2 better?

## Example: Traffic II

- Let's build a causal graphical model!
- Variables
  - T: Traffic
  - R: It rains
  - L: Low pressure
  - D: Roof drips
  - B: Ballgame
  - C: Cavity



### **Example: Alarm Network**

- Variables
  - B: Burglary
  - A: Alarm goes off
  - M: Mary calls
  - J: John calls
  - E: Earthquake!



## Bayes' Net Semantics



- A set of nodes, one per variable X
- A directed, acyclic graph
- A conditional distribution for each node
  - A collection of distributions over X, one for each combination of parents' values

$$P(X|a_1\ldots a_n)$$

- CPT: conditional probability table
- Description of a noisy "causal" process



A Bayes net = Topology (graph) + Local Conditional Probabilities

#### **Probabilities in BNs**



- Bayes' nets implicitly encode joint distributions
  - As a product of local conditional distributions
  - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

- Example:





P(+cavity, +catch, -toothache)

#### **Probabilities in BNs**



• Why are we guaranteed that setting n

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

results in a proper joint distribution?

• Chain rule (valid for all distributions):

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | x_1 \dots x_{i-1})$$

• Assume conditional independences:

$$P(x_i|x_1, \dots x_{i-1}) = P(x_i|parents(X_i))$$

→ Consequence:

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

- Not every BN can represent every joint distribution
  - The topology enforces certain conditional independencies

## Example: Coin Flips







$$P(X_2)$$
h 0.5
t 0.5



$$P(h, h, t, h) =$$

Only distributions whose variables are absolutely independent can be represented by a Bayes' net with no arcs.

## Example: Traffic





$$P(+r,-t) =$$













### Example: Reverse Traffic

• Reverse causality?





| P(T,R) |    |      |  |  |
|--------|----|------|--|--|
| +r     | +t | 3/16 |  |  |
| +r     | -t | 1/16 |  |  |
| -r     | +t | 6/16 |  |  |
| -r     | -t | 6/16 |  |  |

#### Causality?

- When Bayes' nets reflect the true causal patterns:
  - Often simpler (nodes have fewer parents)
  - Often easier to think about
  - Often easier to elicit from experts
- BNs need not actually be causal
  - Sometimes no causal net exists over the domain (especially if variables are missing)
  - E.g. consider the variables Traffic and Drips
  - End up with arrows that reflect correlation, not causation
- · What do the arrows really mean?

$$P(x_i|x_1, \dots x_{i-1}) = P(x_i|parents(X_i))$$

- Topology may happen to encode causal structure
- Topology really encodes conditional independence



## Bayes' Nets

- So far: how a Bayes' net encodes a joint distribution
- Next: how to answer queries about that distribution

  - Today:
     First assembled BNs using an intuitive notion of conditional independence as causality
     Then saw that key property is conditional independence
     Main goal: answer queries about conditional Main goal: answer queries about conditional independence and influence
- After that: how to answer numerical queries (inference)

