CS 687 Jana Kosecka

Uncertainty, Bayesian Networks Chapter 13, Russell and Norvig Chapter 14, 14.1-14.3

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are

Outline

- Uncertainty
- Probability
- Syntax and Semantics
- Inference
- Independence and Bayes' Rule

Random Variables

- A random variable is some aspect of the world about which we (may) have uncertainty
 - R = Is it raining?
 - T = Is it hot or cold?
 - D = How long will it take to drive to work? L = Where is the ghost?
- We denote random variables with capital letters
- Random variables have domains
 - R in {true, false} (often write as {+r, -r})
 - T in {hot, cold}
 - D in [0, ∞)
 L in possible locations, maybe {(0,0), (0,1), ...}

Probability Distributions

- Associate a probability with each value
 - Temperature:

Weather:

P(W)		
W	Р	
sun	0.6	
rain	0.1	
fog	0.3	
meteor	0.0	

Probability Distributions

Unobserved random variables have distributions

P(T)	
Т	Р
hot	0.5
cold	0.5

P(W)	
W	Р
sun	0.6
rain	0.1
fog	0.3
meteor	0.0

- A distribution is a TABLE of probabilities of values
- A probability (lower case value) is a single number

$$P(W = rain) = 0.1$$

Must have:

 $\forall x \ P(X=x) \ge 0$ and $\sum_{x} P(X=x) = 1$

Shorthand notation:

P(hot) = P(T = hot),P(cold) = P(T = cold),P(rain) = P(W = rain),

OK if all domain entries are unique

Joint Distributions

A joint distribution over a set of random variables $X_1, X_2, \dots X_n$ specifies a real number for each assignment (or outcome):

$$P(X_1 = x_1, X_2 = x_2, \dots X_n = x_n)$$

 $P(x_1, x_2, \dots x_n)$

Must obey:

ust obey:
$$P(x_1,x_2,\dots x_n)\geq 0$$
 $\sum_{\substack{(x_1,x_2,\dots x_n)}} P(x_1,x_2,\dots x_n)=1$

Size of distribution if n variables with domain sizes d?

- For all but the smallest distributions, impractical to write out!

P(T, W)W

0.4 hot hot 0.1 cold 0.2 cold rain 0.3

Probabilistic Models

- A probabilistic model is a joint distribution over a set of random variables
- · Probabilistic models:
 - (Random) variables with domains
 - Assignments are called outcomes
 - Joint distributions: say whether assignments (outcomes) are likely
 - Normalized: sum to 1.0
 - Ideally: only certain variables directly interact
- · Constraint satisfaction problems:
 - Variables with domains
 - Constraints: state whether assignments are possible
 - Ideally: only certain variables directly interact

Distribution over T,W

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Т	W	Р
hot	sun	Т
hot	rain	F
cold	sun	F
cold	rain	Т

Events

An event is a set E of outcomes

$$P(E) = \sum_{(x_1...x_n)\in E} P(x_1...x_n)$$

- From a joint distribution, we can calculate the probability of any event
 - Probability that it's hot AND sunny?
 - Probability that it's hot?
 - Probability that it's hot OR sunny?
- Typically, the events we care about are partial assignments, like P(T=hot)

P(T,W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

Quiz: Events

- P(+x, +y)?
- P(+x)?
- P(-y OR +x)?

P(X,Y)

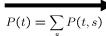
X	Υ	Р
+x	+y	0.2
+x	-у	0.3
-X	+y	0.4
-X	-V	0.1

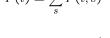
Marginal Distributions

- Marginal distributions are sub-tables which eliminate variables
- Marginalization (summing out): Combine collapsed rows by adding

P(T,	W)
------	----

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3





$$P(s) = \sum_{t} P(t, s)$$

$$P(X_1 = x_1) = \sum_{x_2} P(X_1 = x_1, X_2 = x_2)$$

0.5

0.6

P(W)

Quiz: Marginal Distributions

$P(x) = \sum P(x, y)$
$\frac{1}{y}$ $\frac{1}{y}$ $\frac{1}{y}$

$\hspace{1cm} \longrightarrow \hspace{1cm}$	٠
$P(y) = \sum P(x, y)$	
$P(y) = \sum P(x, y)$	
x	

P(Y)		
Υ	Р	
+y		
-у		

Conditional Probabilities

- A simple relation between joint and conditional probabilities
 - In fact, this is taken as the *definition* of a conditional probability

$$P(a|b) = \frac{P(a,b)}{P(b)}$$

P(a,b)	
P(b)	

P(T,W)			
Т	W	Р	
hot	sun	0.4	
hot	rain	0.1	
cold	sun	0.2	
cold	rain	0.3	

$$P(W = s|T = c) = \frac{P(W = s, T = c)}{P(T = c)} = \frac{0.2}{0.5} = 0.4$$

$$= P(W = s, T = c) + P(W = r, T = c)$$

$$= 0.2 + 0.3 = 0.5$$

Quiz: Conditional Probabilities

• P(+x | +y) ?

P(X,Y)

X	Υ	Р
+x	+y	0.2
+x	-у	0.3
-X	+y	0.4
-X	-у	0.1

• P(-x | +y) ?

• P(-y | +x) ?

Conditional Distributions

 Conditional distributions are probability distributions over some variables given fixed values of others

Conditional Distributions

P(W|T)

P(W|T = hot)

W	Р
sun	8.0
rain	0.2

$$P(W|T=cold)$$

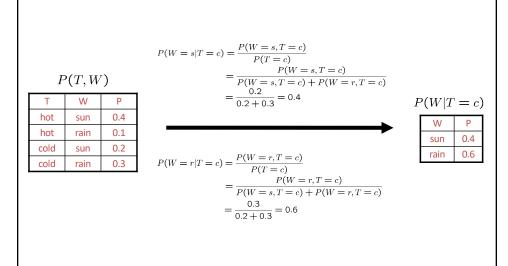
• '	
W	Р
sun	0.4
rain	0.6

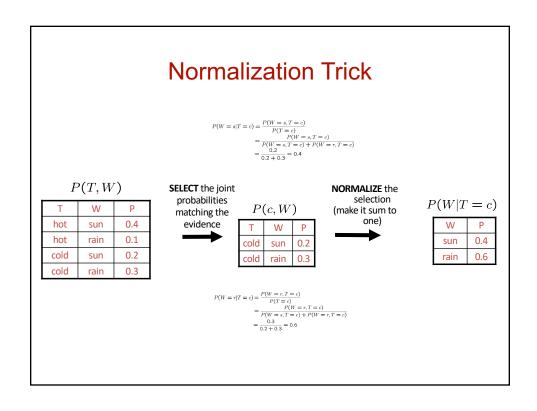
Joint Distribution

P(T,W)

1 (1, 11)				
Τ	W	Р		
hot	sun	0.4		
hot	rain	0.1		
cold	sun	0.2		
cold	rain	0.3		

Normalization Trick





Normalization Trick

P(T, W)

Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

SELECT the joint probabilities matching the evidence

NORMALIZE the selection (make it sum to one)

P(W|T = c) $\begin{array}{c|c} W & P \\ \hline sun & 0.4 \\ \hline rain & 0.6 \\ \end{array}$

Why does this work? Sum of selection is P(evidence)! (P(T=c), here)

$$P(x_1|x_2) = \frac{P(x_1, x_2)}{P(x_2)} = \frac{P(x_1, x_2)}{\sum_{x_1} P(x_1, x_2)}$$

Quiz: Normalization Trick

• P(X | Y=-y) ?

P(X,Y)

X	Υ	Р
+x	+y	0.2
+x	-у	0.3
-X	+y	0.4
-X	-у	0.1

select the joint probabilities matching the evidence

NORMALIZE the selection (make it sum to one)

To Normalize

(Dictionary) To bring or restore to a normal condition

- · Procedure:
 - Step 1: Compute Z = sum over all entries
 - Step 2: Divide every entry by Z
- Example 1

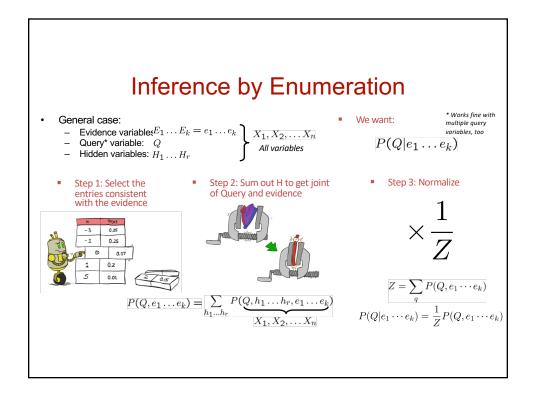
W	Р	Normalize	W	Р
sun	0.2	\rightarrow	sun	0.4
rain	0.3	Z = 0.5	rain	0.6

Example 2

Т	W	Р		Т	W	Р
hot	sun	20	Normalize	hot	sun	0.4
hot	rain	5		hot	rain	0.1
cold	sun	10	Z = 50	cold	sun	0.2
cold	rain	15		cold	rain	0.3

Probabilistic Inference

- Probabilistic inference: compute a desired probability from other known probabilities (e.g conditional from joint)
- · We generally compute conditional probabilities
 - P(on time | no reported accidents) = 0.90
 - These represent the agent's beliefs given the evidence
- Probabilities change with new evidence:
 - P(on time | no accidents, 5 a.m.) = 0.95
 - P(on time | no accidents, 5 a.m., raining) = 0.80
 - Observing new evidence causes beliefs to be updated



Inference by Enumeration

- P(W)?
- P(W | winter)?
- P(W | winter, hot)?

S	Т	W	Р
summer	hot	sun	0.30
summer	hot	rain	0.05
summer	cold	sun	0.10
summer	cold	rain	0.05
winter	hot	sun	0.10
winter	hot	rain	0.05
winter	cold	sun	0.15
winter	cold	rain	0.20

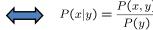
Inference by Enumeration

- Obvious problems:
 - Worst-case time complexity O(dn)
 - Space complexity O(dn) to store the joint distribution

The Product Rule

Sometimes have conditional distributions but want the

$$P(y)P(x|y) = P(x,y)$$
 \iff $P(x|y) = \frac{P(x,y)}{P(y)}$



The Product Rule

$$P(y)P(x|y) = P(x,y)$$

• Example:

 P(W)

 R
 P

 sun
 0.8

 rain
 0.2

P(D W)				
D W P				
sun	0.1			
sun	0.9			
rain	0.7			
rain	0.3			
	w sun sun rain			

P(D,W)			
D	W	Р	
wet	sun		
dry	sun		
wet	rain	-	
dry	rain		

The Chain Rule

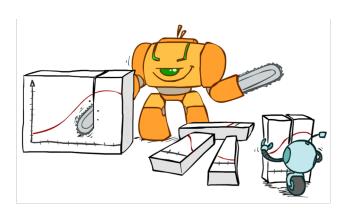
 More generally, can always write any joint distribution as an incremental product of conditional distributions

$$P(x_1, x_2, x_3) = P(x_1)P(x_2|x_1)P(x_3|x_1, x_2)$$

$$P(x_1, x_2, \dots x_n) = \prod_i P(x_i | x_1 \dots x_{i-1})$$

· Why is this always true?

Bayes Rule



Bayes' Rule

Two ways to factor a joint distribution over two variables:

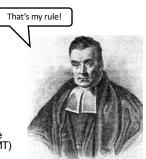
$$P(x,y) = P(x|y)P(y) = P(y|x)P(x)$$

Dividing, we get:

$$P(x|y) = \frac{P(y|x)}{P(y)}P(x)$$

- Why is this at all helpful?

 - Lets us build one conditional from its reverse
 Often one conditional is tricky but the other one is simple
 Foundation of many systems we'll see later (e.g. ASR, MT)
- In the running for most important AI equation!



Inference with Bayes' Rule

• Example: Diagnostic probability from causal probability:

$$P(\text{cause}|\text{effect}) = \frac{P(\text{effect}|\text{cause})P(\text{cause})}{P(\text{effect})}$$

- Example:
 - M: meningitis, S: stiff neck

$$P(+m) = 0.0001 \\ P(+s|+m) = 0.8 \\ P(+s|-m) = 0.01$$
 Example givens

- Note: posterior probability of meningitis still very small
- Note: you should still get stiff necks checked out! Why?

$$P(+m|+s) = \frac{P(+s|+m)P(+m)}{P(+s)} = \frac{P(+s|+m)P(+m)}{P(+s|+m)P(+m) + P(+s|-m)P(-m)} = \frac{0.8 \times 0.0001}{0.8 \times 0.0001 + 0.01 \times 0.999}$$

Quiz: Bayes' Rule

• Given:

P(D|W)

D	W	Р
wet	sun	0.1
dry	sun	0.9
wet	rain	0.7
dry	rain	0.3

• What is P(W | dry)?

Probabilistic Models

- Models describe how (a portion of) the world works
- Models are always simplifications
 - May not account for every variable
 - May not account for all interactions between variables
 - "All models are wrong; but some are useful."

 George E. P. Box

- What do we do with probabilistic models?

 We (or our agents) need to reason about unknown variables, given evidence

 Example: explanation (diagnostic reasoning)

 Example: prediction (causal reasoning)

 - Example: value of information

Independence

Two variables are independent if:

$$\forall x, y : P(x, y) = P(x)P(y)$$

- This says that their joint distribution factors into a product two simpler distributions
- Another form:

$$\forall x, y : P(x|y) = P(x)$$

- We write: $X \perp \!\!\! \perp Y$
- Independence is a simplifying modeling assumption
 - Empirical joint distributions: at best "close" to independent
 - What could we assume for {Weather, Traffic, Cavity, Toothache}?

Example: Independence?

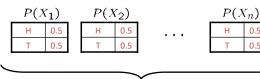
 $\begin{array}{c|cccc} P_1(T,W) \\ \hline T & W & P \\ \hline hot & sun & 0.4 \\ hot & rain & 0.1 \\ \hline cold & sun & 0.2 \\ \hline cold & rain & 0.3 \\ \hline \end{array}$

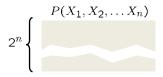
P(T)		
Т	Р	
hot	0.5	
cold	0.5	

P(W)		
W	Р	
sun	0.6	
rain	0.4	

Example: Independence

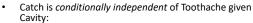
• N fair, independent coin flips:





Conditional Independence

- P(Toothache, Cavity, Catch)
- If I have a cavity, the probability that the probe catches in it doesn't depend on whether I have a toothache:
 - P(+catch | +toothache, +cavity) = P(+catch | +cavity)
- The same independence holds if I don't have a cavity:
 - P(+catch | +toothache, -cavity) = P(+catch | -cavity)



P(Catch | Toothache, Cavity) = P(Catch | Cavity)

- P(Toothache | Catch , Cavity) = P(Toothache | Cavity)
- P(Toothache, Catch | Cavity) = P(Toothache | Cavity)P(Catch | Cavity)
- One can be derived from the other easily

- Unconditional (absolute) independence very rare (why?)
- Conditional independence is our most basic and robust form of knowledge about uncertain environments.
- X is conditionally independent of Y given Z

if and only if:

$$\forall x, y, z : P(x, y|z) = P(x|z)P(y|z)$$

or, equivalently, if and only if

$$\forall x, y, z : P(x|z, y) = P(x|z)$$

Conditional Independence

- · What about this domain:
 - Traffic
 - Umbrella
 - Raining

Conditional Independence and the Chain Rule

- Chain rule: $P(X_1, X_2, ... X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)...$
- Trivial decomposition:

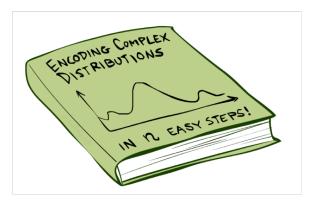
$$\begin{split} &P(\mathsf{Traffic},\mathsf{Rain},\mathsf{Umbrella}) = \\ &P(\mathsf{Rain})P(\mathsf{Traffic}|\mathsf{Rain})P(\mathsf{Umbrella}|\mathsf{Rain},\mathsf{Traffic}) \end{split}$$

• With assumption of conditional independence:

P(Traffic, Rain, Umbrella) = P(Rain)P(Traffic|Rain)P(Umbrella|Rain)

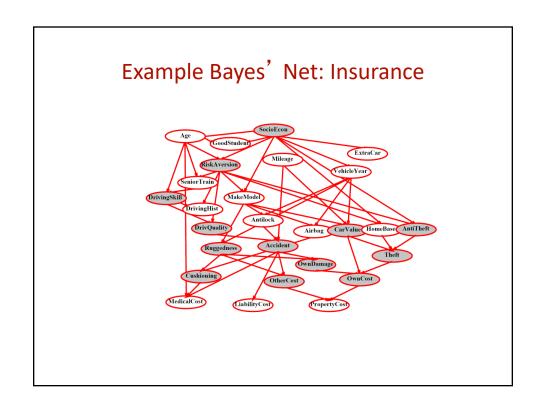
• Bayes' nets / graphical models help us express conditional independence assumptions

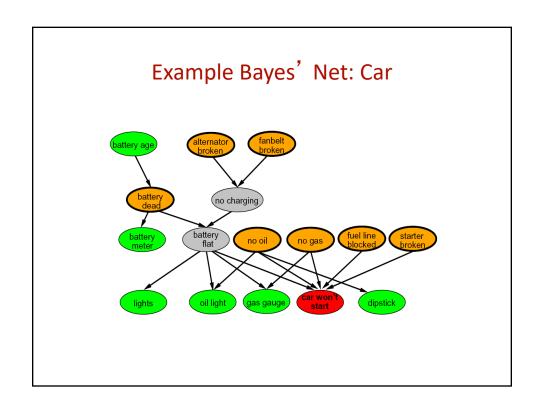
Bayes' Nets: Big Picture



Bayes' Nets: Big Picture

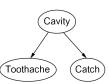
- Two problems with using full joint distribution tables as our probabilistic models:
 - Unless there are only a few variables, the joint is WAY too big to represent explicitly
 - Hard to learn (estimate) anything empirically about more than a few variables at a time
- Bayes' nets: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probabilities)
 - More properly called graphical models
 - We describe how variables locally interact
 - Local interactions chain together to give global, indirect interactions
 - For about 10 min, we'll be vague about how these interactions are specified





Graphical Model Notation

- Nodes: variables (with domains)
 - Can be assigned (observed) or unassigned (unobserved)
- Arcs: interactions
 - Similar to CSP constraints
 - Indicate "direct influence" between variables
 - Formally: encode conditional independence (more later)
- For now: imagine that arrows mean direct causation (in general, they don't!)



Example: Coin Flips

• N independent coin flips

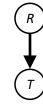
No interactions between variables: absolute independence

Example: Traffic

- Variables:
 - R: It rains
 - T: There is traffic

• Model 1: independence

Model 2: rain causes traffic



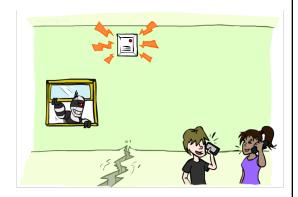
• Why is an agent using model 2 better?

Example: Traffic II

- Let's build a causal graphical model!
- Variables
 - T: Traffic
 - R: It rains
 - L: Low pressure
 - D: Roof drips
 - B: Ballgame
 - C: Cavity

Example: Alarm Network

- Variables
 - B: Burglary
 - A: Alarm goes off
 - M: Mary calls
 - J: John calls
 - E: Earthquake!

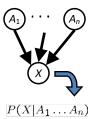


Bayes' Net Semantics

- A set of nodes, one per variable X
- A directed, acyclic graph
- A conditional distribution for each node
 - A collection of distributions over X, one for each combination of parents' values

$$P(X|a_1\ldots a_n)$$

- CPT: conditional probability table
- Description of a noisy "causal" process



A Bayes net = Topology (graph) + Local Conditional Probabilities

Probabilities in BNs

- Bayes' nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

- Example:

P(+cavity, +catch, -toothache)

Probabilities in BNs

• Why are we guaranteed that setting n

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

results in a proper joint distribution?

• Chain rule (valid for all distributions):

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | x_1 \dots x_{i-1})$$

• Assume conditional independences:

$$P(x_i|x_1, \dots x_{i-1}) = P(x_i|parents(X_i))$$

→ Consequence:

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

- Not every BN can represent every joint distribution
 - The topology enforces certain conditional independencies

Example: Coin Flips

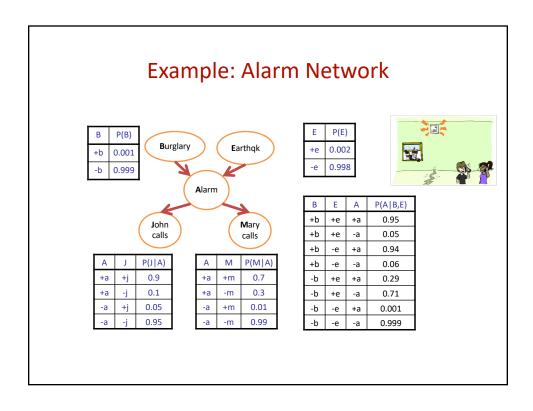
$$P(X_2)$$
h 0.5
t 0.5

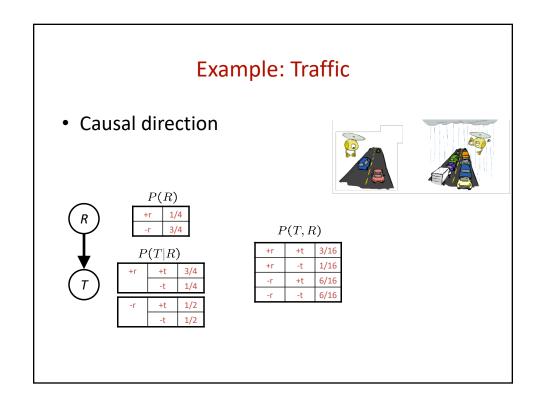
$$P(h, h, t, h) =$$

Only distributions whose variables are absolutely independent can be represented by a Bayes' net with no arcs.

Example: Traffic

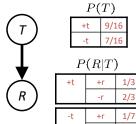
$$P(+r,-t) =$$





Example: Reverse Traffic

• Reverse causality?



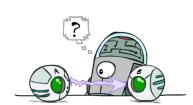
P(T,R)				
+r	+t	3/16		
+r	-t	1/16		
-r	+t	6/16		
-r	-t	6/16		

Causality?

- When Bayes' nets reflect the true causal patterns:
 - Often simpler (nodes have fewer parents)
 - Often easier to think about
 - Often easier to elicit from experts
- BNs need not actually be causal
 - Sometimes no causal net exists over the domain (especially if variables are missing)
 - E.g. consider the variables Traffic and Drips
 - End up with arrows that reflect correlation, not causation
- · What do the arrows really mean?

$$P(x_i|x_1, \dots x_{i-1}) = P(x_i|parents(X_i))$$

- Topology may happen to encode causal structure
- Topology really encodes conditional independence



Bayes' Nets

- So far: how a Bayes' net encodes a joint distribution
- Next: how to answer queries about that distribution

 - Today:
 First assembled BNs using an intuitive notion of conditional independence as causality
 Then saw that key property is conditional independence
 Main goal: answer queries about conditional Main goal: answer queries about conditional independence and influence
- After that: how to answer numerical queries (inference)

