J. Košecká CS 687 Homework 1, Due Feb 28th

1. On a day when an assignment is due (A=a), the newsgroup tends to be busy (B=b), and the computer lab tends to be full (C=c). Consider the following conditional probability tables for the domain, where A = a, $\neg a$, B = b, $\neg b$, C = c, $\neg c$.

P(A)		P(B A)			P(C A)			
		В	А	Р	С	А	Р	
A	Р		b	a	0.9	с	a	0.7
a	0.2		¬ b	a	0.1	¬ c	a	0.3
□¬ a	0.8		b	¬ a	0.4	с	$\neg a$	0.5
			¬ b	¬ a	0.6	¬ c	$\neg a$	0.5

Construct the joint distribution out of these conditional probabilities tables assuming B and C are independent given A. What is the marginal distribution P(B,C)? Justify your answer using the actual probabilities, not your intuitions. What is the posterior distribution over A given that B = b, P(A|B = b)? What is the posterior distribution over A given that C=c, P(A|C = c)? What about P(A|B = b, C = c)? Explain the pattern among these posteriors and why it holds.

2. Often we need to carry out reasoning over some pair of variables X, Y conditioned on the value of other variable E. Using the definitions of conditional probabilities, prove the conditionalized version of the product rule:

$$P(x, y|e) = P(x|y, e)P(y|e)$$

Prove the conditionalized version of Bayes' rule:

$$P(y|x,e) = P(x|y,e)P(y|e)/P(x|e)$$

State whether this is true or give a counterexample

$$P(a|b,c) = P(b|a,c)$$
 then $P(a|c) = P(b|c)$

3. 13.8.

4. Naive Bayes. Given the following titles of movies and songs and using the bag of words representation determine whether the word is more likely to be from a title of the movie or of a song and estimate the probabilities below:

Tabl	le 1:	defau	lt

movie	song			
A perfect world	A perfect day			
My perfect woman	Electric Storm			
Pretty woman	Another rainy day			

- (a) P(movie) and P(song)
- (b) P("Perfect" | movie), P("Perfect" | song), P("Storm" | movie) and P("Storm" | song).
- (c) Using Laplace Smoothing¹ with k=1 compute P(movie|"Perfect Storm")
- (d) Compute P(movie|"Perfect Storm") with no Laplacian Smoothing.

¹Consider Laplace Smoothing where $P(w_i|c)$ is estimated as $\frac{n_i+k}{n+ck}$ where n_i is the number of occurrences of w_i in c and C is the total number of classes.