1. On a day when an assignment is due $(\mathrm{A}=\mathrm{a})$, the newsgroup tends to be busy $(\mathrm{B}=\mathrm{b})$, and the computer lab tends to be full $(\mathrm{C}=\mathrm{c})$. Consider the following conditional probability tables for the domain, where $\mathrm{A}=\mathrm{a}, \neg \mathrm{a}, \mathrm{B}=\mathrm{b}, \neg \mathrm{b}, \mathrm{C}=\mathrm{c}, \neg \mathrm{c}$.

| $P(A)$ |  | $P(B \mid A)$ |  |  | $P(C \mid A)$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | B | A | P | C | A | P |
| A | P | b | a | 0.9 | c | a | 0.7 |
| a | 0.2 | $\neg \mathrm{b}$ | a | 0.1 | $\neg \mathrm{c}$ | a | 0.3 |
| $\neg \mathrm{a}$ | 0.8 | b | $\neg \mathrm{a}$ | 0.4 | c | $\neg \mathrm{a}$ | 0.5 |
|  |  | $\neg \mathrm{b}$ | $\neg \mathrm{a}$ | 0.6 | $\neg \mathrm{c}$ | $\neg \mathrm{a}$ | 0.5 |

Construct the joint distribution out of these conditional probabilities tables assuming B and C are independent given $A$. What is the marginal distribution $\mathrm{P}(\mathrm{B}, \mathrm{C})$ ? Justify your answer using the actual probabilities, not your intuitions. What is the posterior distribution over A given that $B=b, P(A \mid B=b)$ ? What is the posterior distribution over A given that $\mathrm{C}=\mathrm{c}, P(A \mid C=c)$ ? What about $P(A \mid B=b, C=c)$ ? Explain the pattern among these posteriors and why it holds.
2. Often we need to carry out reasoning over some pair of variables X, Y conditioned on the value of other variable E. Using the definitions of conditional probabilities, prove the conditionalized version of the product rule:

$$
P(x, y \mid e)=P(x \mid y, e) P(y \mid e)
$$

Prove the conditionalized version of Bayes' rule:

$$
P(y \mid x, e)=P(x \mid y, e) P(y \mid e) / P(x \mid e)
$$

State whether this is true or give a counterexample

$$
P(a \mid b, c)=P(b \mid a, c) \text { then } P(a \mid c)=P(b \mid c)
$$

3. 13.8 .
4. Naive Bayes. Given the following titles of movies and songs and using the bag of words representation determine whether the word is more likely to be from a title of the movie or of a song and estimate the probabilities below:

Table 1: default

| movie | song |
| :---: | :---: |
| A perfect world | A perfect day |
| My perfect woman | Electric Storm |
| Pretty woman | Another rainy day |

(a) $P$ (movie) and $P$ (song)
(b) P("Perfect" $\mid$ movie $), P(" P e r f e c t " \mid$ song $), P(" S t o r m " \mid$ movie $)$ and $P(" S t o r m " \mid$ song $)$.
(c) Using Laplace Smoothing ${ }^{1}$ with $\mathrm{k}=1$ compute $P$ (movie|"Perfect Storm")
(d) Compute P(movie|" Perfect Storm") with no Laplacian Smoothing.

[^0]
[^0]:    ${ }^{1}$ Consider Laplace Smoothing where $P\left(w_{i} \mid c\right)$ is estimated as $\frac{n_{i}+k}{n+c k}$ where $n_{i}$ is the number of occurrences of $w_{i}$ in $c$ and $C$ is the total number of classes.

