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Linear Algebra 
Prerequisites

Jana Kosecka
kosecka@gmu.edu

Recommended txt: Linear Algebra and its applications by G. Strang

Why do we need Linear Algebra?
• We will associate coordinates to

– 3D points in the scene
– 2D points in the CCD array
– 2D points in the image

• Coordinates/Data points will be used to
– Perform geometrical transformations
– Associate  3D with 2D points

• Images are matrices of numbers
– We will find properties of these numbers
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Matrices
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Example:

A and B must have the same 
dimensions

Matrices
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A and B must have 
compatible dimensions
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Matrices

mn
T
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Transpose:

jiij ac = TTT ABAB =)(

TTT BABA +=+ )(

If AAT = A is symmetric

Examples:
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Matrices

Determinant:
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Matrices
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2D,3D Vectors
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v xx Is a unit vector

If 1|||| =v , v is a UNIT vector
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Vector Addition

v
u

u+v

Vector Subtraction
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Scalar Product

v
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Inner (dot) Product
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The inner product is a SCALAR!

norm of a vector
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Vector (cross) Product

wvu ×=

The cross product is a VECTOR!

w
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Orientation:

αsin|||||||||.||  ||u|| wvwv ==Magnitude:

Standard base vectors:

Coordinates of a point     in space:

Orthonormal Basis in 3D
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Vector (Cross) Product Computation

w
v

au

Skew symmetric matrix associated with vector

Matrices

n x m matrix

transformationm points from n-dimensional space

meaning

Covariance matrix – symmetric
Square matrix associated with 
The data points (after mean 
has been subtracted) in 2D Special case 

matrix is square
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Geometric interpretation

Lines in 2D space - row solution
Equations are considered isolation

Linear combination of vectors in 2D
Column solution

We already know how to multiply the vector by scalar

Linear equations

When is RHS a linear combination of LHS

Solving linear n equations with n unknows
If matrix is invertible - compute the inverse
Columns are linearly independent

In 3D
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Linear equations

Not all matrices are invertible

- inverse of a 2x2 matrix (determinant non-zero)
- inverse of a diagonal matrix 

Computing inverse - solve for the columns 
Independently or using Gauss-Jordan method

Vector spaces (informally)

• Vector space in n-dimensional space 
• n-dimensional columns with real entries 
• Operations of addition, multiplication and scalar 

multiplication
• Additions of the vectors and multiplication of a vector 

by a scalar always produces vectors which lie in the 
space 

• Matrices also make up vector space - e.g. consider 
all 3x3 matrices as elements of        space
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Vector subspace
A subspace of a vector space is a non-empty set 
Of vectors closed under vector addition and scalar
multiplication
Example: over constrained system - more equations 
then unknowns

The solution exists if  b is in the subspace spanned 
by vectors u and v

Linear Systems - Nullspace

1. When matrix is square and invertible
2. When the matrix is square and noninvertible
3. When the matrix is non-square with more 

constraints then unknowns

Solution exists when b is in column space of A
Special case 

All the vectors which satisfy                 lie in the
NULLSPACE of matrix A (see later)



12

Basis

n x n matrix A is invertible if it is of a full rank 

Rank of the matrix - number of linearly 
independent rows  (see definition next page)

If the rows or columns of the matrix A are linearly 
independent - the null space of contains only 0 vector

Set of linearly independent vectors forms a basis of 
the vector space

Given a basis, the representation of every vector is unique
Basis is not unique ( examples) 

Linear Equations

Vector space spanned by columns of A 

• Column space of A – dimension of C(A) 
number of linearly independent columns
r = rank(A)

• Row space of A     - dimension of R(A)
number of linearly independent rows
r = rank(AT)

• Null space of A     - dimension of N(A)  n - r
• Left null space of A – dimension of N(A^T)  m – r
• Maximal rank - min(n,m) – smaller of the two dimensions

Four basic subspaces
In general
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Nu(A )

Structure induced by a linear map A

A

T

T

Ra(A)

Nu(A)

Ra(A )

X X�

Nu(A)

T

T

Ra(A)

Row space of A

Null space of AT
Null space of A

Row space of AT

Linear Equations

Vector space spanned by columns of A 

• if n < m number of equations is less then number of 
unknowns, the set of solutions is (m-n) dimensional vector 
subspace of R^m

• if n = m there is a unique solution 

• if n > m number of equations is more then number of 
unknowns, there is no solution

Four cases, suppose that the matrix A has full rank
Then:

In general
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Linear Equations – Square Matrices

1. A is square and invertible
2. A is square and non-invertible

1. System Ax = b has at most one solution –
columns 
are linearly independent rank = n
- then the matrix is invertible

2. Columns are linearly dependent rank < n
- then the matrix is not invertible

Linear Equations – non-square matrices

The solution exist when b is aligned with [2,3,4]^T
If not we have to seek some approximation – least squares 
Approximation – minimize squared error

Least squares solution - find such value of x that the error 
Is minimized (take a derivative, set it to zero and solve for x)

Long-thin matrix
over-constrained 

system

Short for such solution
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Linear equations – non-squared matrices

• If A has linearly independent columns ATA is square,   symmetric 
and invertible

Similarly when A is a matrix

is so called pseudoinverse of matix A
In Matlab A’ = pinv(A)

Eigenvalues and Eigenvectors

eigenvector
eigenvalue

Solve the equation:

x – is in the null space of 
l is chosen such that                       has a null space

(1)

For larger matrices – alternative ways of computation

Computation of eigenvalues and eigenvectors (for dim 2,3)
1. Compute determinant
2. Find roots (eigenvalues) of the polynomial such that determinant = 0
3. For each eigenvalue solve the equation (1)

In Matlab [vec, val] = eig(A)
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Eigenvalues and Eigenvectors

eigenvector
eigenvalue

Solve the equation:

x – is in the null space of 
l is chosen such that                       has a null space

(1)

For larger matrices – alternative ways of computation

Computation of eigenvalues and eigenvectors (for dim 2,3)
1. Compute determinant
2. Find roots (eigenvalues) of the polynomial such that determinant = 0
3. For each eigenvalue solve the equation (1)

In Matlab [vec, val] = eig(A)

Square Matrices - Eigenvalues and 
Eigenvectors

For the previous example

We will get special solutions to ODE

Their linear combination is also a solution (due to the linearity of             )

In the context of diff. equations – special meaning 
Any solution can be expressed as linear combination

Individual solutions correspond to modes 
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Eigenvalues and Eigenvectors

• For square matrices

We look for the solutions 
of the following type exponentials

• Motivated by solution to differential equations

For scalar ODE�s

Substitute back to the equation

Eigenvalues and Eigenvectors - Diagonalization

• Given a square matrix A and its eigenvalues and 
eigenvectors – matrix can be diagonalized 

Matrix of eigenvectors Diagonal matrix of eigenvalues

• If some of the eigenvalues are the same, eigenvectors
are not independent
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Eigenvalues and Eigenvectors - Diagonalization

• Given a square matrix A and its eigenvalues and 
eigenvectors – matrix can be diagonalized 

• This diagonalization is useful for computing inverse
• General rule for inverse

• In this case

• Inverse of a diagonal matrix is 1/xi for all diagonal elements 
x of       (works for non-zero eigenvalues)

Matrix of eigenvectors Diagonal matrix of eigenvalues

(AB)−1 = B−1A−1

A−1 = (SΛS−1)−1 = SΛ−1S−1

Λ

Diagonalization

• If there are no zero eigenvalues – matrix is  invertible
• If there are no repeated eigenvalues – matrix is diagonalizable 
• If all the eigenvalues are different then eigenvectors are linearly 

independent

For Symmetric Matrices

If A is symmetric

orthonormal matrix of eigenvectors

i.e. for a covariance matrix

Diagonal matrix of eigenvalues

or some matrix B = A^TA
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Singular Value Decomposition

Previously eigenvectors and eigenvalues for square matrices

Singular value decomposition: Factorization of real or complex 
matrix m x n  into a form

Where U is m x m  with eigenvectors of AA*
V is n x n matrix with eigenvectors of A*A
S is  m x n rectangular diagonal matrix of singular values

Where A* is transpose for real valued matrices or conjugate trans
Pose for matrices with complex entries

A = USV T

Singular Value Decomposition

Previously eigenvectors and eigenvalues for square matrices

Where U is m x m  with eigenvectors of AA*
V is n x n matrix with eigenvectors of A*A
S is  m x n rectangular diagonal matrix of singular values

Where A* is transpose for real valued matrices or conjugate trans
Pose for matrices with complex entries

Relationship to pseudo-inverse: to compute pseudoinverse 
take the the reciprocal elements of the diagonal matrix S

In Matlab:

A = USV T

[m,n]=size(A);
[U,S,V]=svd(A);
r=rank(S);
SR=S(1:r,1:r);
SRc=[SR^-1 zeros(r,m-r);zeros(n-
r,r) zeros(n-r,m-r)];
A_pseu=V*SRc*U.';

A+ =US+VT
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Homogeneous Systems of equations

• When matrix is square and non-singular, there a
Unique trivial solution x = 0

• If m >= n there is a non-trivial solution when rank of A
is  rank(A) <  n 
• We need to impose some constraint to avoid trivial 
solution, for example  

• Find such x that                 is minimized

Solution: eigenvector associated with the smallest eigenvalue

Linear regression Least squares line fitting
• Data: (x1, y1), …, (xn, yn)
• Line equation: yi = m xi + b
• Find (m, b) to minimize 
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Problem with “vertical” least squares

• Not rotation-invariant
• Fails completely for vertical lines

Total least squares

• Distance between point (xi, yi) and 
line ax+by=d (a2+b2=1): |axi + byi – d|

å =
-+=

n

i ii dybxaE
1

2)( (xi, yi)

ax+by=d
Unit normal: 

N=(a, b)
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Total least squares

• Distance between point (xi, yi) and 
line ax+by=d (a2+b2=1): |axi + byi – d|
• Find (a, b, d) to minimize the sum of 
squared perpendicular distances

å =
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i ii dybxaE
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ax+by=d
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2)(

Unit normal: 
N=(a, b)

Total least squares
• Distance between point (xi, yi) and 
line ax+by=d (a2+b2=1): |axi + byi – d|
• Find (a, b, d) to minimize the sum of 
squared perpendicular distances å =
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Unit normal: 
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Solution to (UTU)N = 0, subject to ||N||2 = 1: eigenvector of UTU
associated with the smallest eigenvalue (least squares solution 
to homogeneous linear system UN = 0)
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Total least squares
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second moment matrix
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