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Recommended txt: Linear Algebra and its applications by G. Strang

Why do we need Linear Algebra?

+ We will associate coordinates to
— 3D points in the scene
— 2D points in the CCD array
— 2D points in the image
« Coordinates/Data points will be used to
— Perform geometrical transformations
— Associate 3D with 2D points
+ Images are matrices of numbers
— We will find properties of these numbers




Matrices

Sum:
a1 al2 ... a1m Cnxm =Anxm+anm
Apxm = | @21 @22 -+ d2m
¢, =a; +b,.j
anpl ap2 - Gnm
A and B must have the same
dimensions
Example:
25 6 2 8 7
+ =
31 1 5 4 6
Matrices
Product:
A and B must have
C_=A_B . ) .
nxp nx,% f’xp compatible dimensions
m
clj - _1 aikbkj AanBl’an # BnXI’IAan
Examples:
2 5116 21 T[17 29 6 27112 571 [18 32
[3 1}'[1 5]=[19 11} 1 5(13 1_17 10




Matrices

Transpose:
T T T T
men=A nxm (A+B) =A +B
Cp=4a; (AB)" =B" 4"
i A" =4 A is symmetric
Examples: ;
6
[6 2]T [6 1} | [6 1 3}
1 5] |25 12 5 8
3
Matrices
Determinant: A must be square
a a a a
det 11 12 _ 11 12 =a11a22 _a21a12
a2l a22 a2l a22
a, 4, da;
Ay, dy a, Ay ay Ay
det|a, a, ay|=a, -4, +4a;
as, 33 as; Ay as;  di

25
Example: det[3 1]=2—15=—13




Matrices

Inverse: A must be square

Anan_lnx” = A_]”annxn =1

4
a, ap _ 1 ay —ap
ay dp a,ay —aa;, | —ay 4,
6 217 1[5 -2
Example: =—
1 5 28(-1 6

6 21716 21 1[5 =216 21 1728 01 [1 O
1 5| |1 5| 28/-1 6|1 5| 28/0 28/ |0 1

2D,3D Vectors

Ty
| *1 2 3
vV = R =
[332 € v zo | €R
T3 >

Magnitude: || v ||= 4/x,” +x,’

If |[v]=1, V isaUNIT vector

A" X X .
=|-—=,=2_1| |Is a unit vector
vl vl vl

af x
Orientation: 6 =tan 1(—2)




Vector Addition

Vector Subtraction




Scalar Product

Inner (dot) Product

UTU = [ ulp up ] ’V Zi “ = ul.v1 + Uu2.v2
v The inner product is a SCALAR!
o
o=l u uz]| 2] = fullv) cosa
T

uwv=0«ulwv

(u,v) = uwly = u1v1] + UV + u3v3 COS(&) = ||§Z|L|’|1|)1>1||

ull = VaTu = \/u? + 43 + u3 norm of a vector




Vector (cross) Product

w/ o U=VXW
The cross product is a VECTOR!
Magnitude: || u||=|v.w|=||v]||w]| sina
Orientation: uwLlv—ulv = (uxv)Tv=0
UXv = —vXu
a(uXxv) = auxXv=uXav
ullu—(uxv) = 0

Orthonormal Basis in 3D

Standard base vectors:

1 0 0 . p
i=|o0 j=11 k=|0
0 0 1 'T
]
2

X
Y
Z

X = e R3 X=|Y| =Xi+VYj+2Zk




Vector (Cross) Product Computation

1 0 0
i=|0 =1 k=10
0 0 1
i j k U w/ g
UXV=| UL U2 U3

U1 V2 U3
= (uQ’Ug — ’LL3’02)i + (U3U1 — ul’l}3)j + (u1v2 — uQ’Ul)k

1uv
¢ B / = /

a=—(a)T

uXv=7av, u,v€ER3

[ 0 —u3z wuo

U3 0 —up
—Uun U1 0

U =

f

Skew symmetric matrix associated with vector

Matrices

A € pnxm n X m matrix

meaning
/ \

m points from n-dimensional space transformation

C = AAT l

, . : A€ R2X2
Covariance matrix — symmetric
Square matrix associated with y = Ax
The data points (after mean
has been subtracted) in 2D Special case

matrix is square

c=| 21 z? ¥ zilli
Yrwiyi X1




Geometric interpretation

Lines in 2D space - row solution
Equations are considered isolation

20 —y =
r+y = D

Linear combination of vectors in 2D
Column solution

e o= 15

We already know how to multiply the vector by scalar

Linear equations

2 1 1
4 -6 O

-2 7 2

In 3D

u
v
w

When is RHS a linear combination of LHS

2 1 1 5
[4 u+t+| —6 |v+ 0w=[—2
-2 7 2 9
Ax =y
Solving linear n equations with n unknows det(A) #0
If matrix is invertible - compute the inverse A-lAx = A~ ly

Columns are linearly independent 1
x=A""y




Linear equations

Not all matrices are invertible

- inverse of a 2x2 matrix (determinant non-zero)
- inverse of a diagonal matrix

Computing inverse - solve for the columns
Independently or using Gauss-Jordan method

2 1 1 1 0 0
4 -6 0 X, X9 X3 =10 1 0
-2 7 2 0 0 1

Vector spaces (informally)

+ Vector space in n-dimensional space R"
+ n-dimensional columns with real entries

+ Operations of addition, multiplication and scalar
multiplication
+ Additions of the vectors and multiplication of a vector

by a scalar always produces vectors which lie in the
space

+ Matrices also make up vector space - e.g. consider
all 3x3 matrices as elements of %9 space
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Vector subspace

A subspace of a vector space is a non-empty set

Of vectors closed under vector addition and scalar
multiplication

Example: over constrained system - more equations
then unknowns

uyp U1 |: 1 ~| bl

Uz Vo by
X9 b
u3z U3 3

The solution exists if b is in the subspace spanned
by vectors u and v

Uuq U1 bl
Uy | T1 + V2 To = bo
us V3 b’;

Linear Systems - Nullspace

When matrix is square and invertible

When the matrix is square and noninvertible
3. When the matrix is non-square with more
constraints then unknowns

Ax=Db

Solution exists when b is in column space of A
Special case

N —

All the vectors which satisfy Ax = 0 lie in the
NULLSPACE of matrix A (see later)
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Basis

n x n matrix A is invertible if it is of a full rank

Rank of the matrix - number of linearly
independent rows (see definition next page)

If the rows or columns of the matrix A are linearly
independent - the null space of contains only 0 vector

Set of linearly independent vectors forms a basis of
the vector space

Given a basis, the representation of every vector is unique
Basis is not unique ( examples)

Linear Equations

2

Vector space spanned by columns of A { 42

1
-6
7

1
0
2

u —+ v+

I3

In general A g Rnxm
Four basic subspaces

+ Column space of A — dimension of C(A)
number of linearly independent columns
r = rank(A)
* Row space of A - dimension of R(A)
number of linearly independent rows
r = rank(AT)
* Null space of A - dimension of N(A) n-r
* Left null space of A —dimension of N(AAT) m —r
+ Maximal rank - min(n,m) — smaller of the two dimensions
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Structure induced by a linear map A

A

—

X X’
Ty — Aa}"r = AJ)
T n Ra(A
Ra(A’) [ Nu(A) T — Az "
o,
Roy space of A
Row space of AT G A =0 NU(AI—)
Tn Ra(A)
Nu(A)

Null space of A

Null space of AT

Linear Equations

Vector space spanned by columns of A {

In general A g Rnxm

2
4
-2

1
-6
7

u+

Four cases, suppose that the matrix A has full rank

Then:

1
0
2

v+

|

¢ if n < m number of equations is less then number of
unknowns, the set of solutions is (m-n) dimensional vector

subspace of R"m

¢ if n = m there is a unique solution

¢ if n > m number of equations is more then number of

unknowns, there is no solution

5
-2
9

|
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Linear Equations — Square Matrices

1. Ais square and invertible
2. Ais square and non-invertible

1. System Ax = b has at most one solution —
columns

are linearly independent rank = n
- then the matrix is invertible x=A"ly

2. Columns are linearly dependent rank < n
- then the matrix is not invertible

Linear Equations — non-square matrices

Long-thin matrix 2 /b1><\
over-constrained 3|x=]b ax =b
system 4 b3

The solution exist when b is aligned with [2,3,4]AT
If not we have to seek some approximation — least squares
Approximation — minimize squared error

e? = (2z — b1)? + (3 — b2)? + (42 — b3)?

Least sfluares solution - find such value of x that the error
Is minfmized (take a derivative, set it to zero and solve for x)
Shoyt for such solution

ax =>b
e? = ||a,ac—b||2 alax = aTb

= _ d¥b

X = aTa
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Linear equations — non-squared matrices

Similarly when A is a matrix

12 4
1 3|x=]5
00 6
Ax=1b
e? = ||Ax — b||? AT Ax = ATy

x=(ATA)"1ATY

« If A has linearly independent columns ATA is square, symmetric
and invertible

AT = (ATA)~1AT
is so called pseudoinverse of matix A
In Matlab A’ = pinv(A)

Eigenvalues and Eigenvectors

_ |4 =5 _
)\x—[2 _3})( Ax—//\\
. eigenvector
eigenvalue
Solve the equation: (A-—XDx=0 (1)

x —is in the null space of (A — AI)
A is chosen such that (A — \I) has a null space

Computation of eigenvalues and eigenvectors (for dim 2,3)

1. Compute determinant

2. Find roots (eigenvalues) of the polynomial such that determinant =0
3. For each eigenvalue solve the equation (1)

For larger matrices — alternative ways of computation

In Matlab [vec, val] = eig(A)
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Eigenvalues and Eigenvectors

)\x—[Q _3}x Ax—//\)\
. eigenvector
eigenvalue
Solve the equation: (A=XDx =0 (1)

x —is in the null space of (A — AI)
L is chosen such that (A — XI) has a null space

Computation of eigenvalues and eigenvectors (for dim 2,3)
1. Compute determinant

2. Find roots (eigenvalues) of the polynomial such that determinant =0
3. For each eigenvalue solve the equation (1)

For larger matrices — alternative ways of computation

In Matlab [vec, val] = eig(A)

Square Matrices - Eigenvalues and

Eigenvectors
For the previous example

A o=-1,2 =[1,1]7 Ao = —2,2p = [5,2]T

We will get special solutionsto ODE 1 = Au
5
fu:eAlt{i} u=e>‘2t{2}

Their linear combination is also a solution (due to the linearity of u= Au
1 5
u= cleklt [ 1 } +626>‘1t { 5 }

In the context of diff. equations — special meaning
Any solution can be expressed as linear combination
Individual solutions correspond to modes
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Eigenvalues and Eigenvectors

Motivated by solution to differential equations

For square matrices AeRVN 1= Au A= { 4 -5 }

2 -3

We look for the solutions
of the following type exponentials

For scalar ODE’ s
U = au

v(t) = eM
u(t) = e™u(0) () Y

w(t) = eMz

Substitute back to the equation

Ay = ac¥] — 5%
Az = 202y — 3

o[z et

Eigenvalues and Eigenvectors - Diagonalization

Given a square matrix A and its eigenvalues and
eigenvectors — matrix can be diagonalized

A= SAS™1
A=SASs™!
Matrix of eigenvectors / ™ Diagonal matrix of eigenvalues
AS = AN\S
Al xr Tn | = | A1z1 Aomo ... >\n$n] Ax = Ax
—
1 "
AT1 A2Zp ... ApXp | = | 1 X2 ... Tp Ao ...
An
A=5SAst

* If some of the eigenvalues are the same, eigenvectors
are not independent




Eigenvalues and Eigenvectors - Diagonalization

+ Given a square matrix A and its eigenvalues and
eigenvectors — matrix can be diagonalized

A=5SAst
A= SAS1
Matrix of eigenvectors / N Diagonal matrix of eigenvalues
AS = AN\S

+ This diagonalization is useful for computing inverse
+ General rule for inverse _ 14—
(AB)'=B'A™"

* In this case

A =(SASTH) T =SAT'S

+ Inverse of a diagonal matrix is 1/x; for all diagonal elements
x of (works f@x non-zero eigenvalues)

Diagonalization

If there are no zero eigenvalues — matrix is invertible
If there are no repeated eigenvalues — matrix is diagonalizable

If all the eigenvalues are different then eigenvectors are linearly
independent

For Symmetric Matrices

If Ais symmetric A= QAQT
/ N Diagonaﬁmatrix of eigenvalues

orthonormal matrix of eigenvectors

i.e. for a covariance matrix /
. ) _
or some matrix B = AATA A =
(<]
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Singular Value Decomposition

Previously eigenvectors and eigenvalues for square matrices

Singular value decomposition: Factorization of real or complex
matrix m x n into a form

A=USVT

Where U is m x m with eigenvectors of AA*
V is n x n matrix with eigenvectors of A*A
S is m x n rectangular diagonal matrix of singular values

Where A* is transpose for real valued matrices or conjugate trans
Pose for matrices with complex entries

Singular Value Decomposition

Previously eigenvectors and eigenvalues for square matrices

A=USVv"’

Where U is m x m with eigenvectors of AA*

Vis n x n matrix with eigenvectors of A*A

S is m x n rectangular diagonal matrix of singular values
Where A* is transpose for real valued matrices or conjugate trans
Pose for matrices with complex entries

Relationship to pseudo-inverse: to compute pseudoinverse
take the the reciprocal elements of the diagonal matrix S

+ v, T [m,n]=size(A);
A" =USV In Matlab: [U,S,V]=svd(A);
r=rank(S);
SR=S(l:r,1l:r);
SRc=[SR"-1 zeros(r,m-r);zeros(n-
r,r) zeros(n-r,m-r)];
A pseu=V*SRc*U."';
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Homogeneous Systems of equations

Ax =0

+ When matrix is square and non-singular, there a
Unique trivial solution x =0

* If m >=n there is a non-trivial solution when rank of A
is rank(A) < n

* We need to impose some constraint to avoid trivial
solution, for example

x| =1
« Find such x that HAX”2 minimized
|Ax||? = xAT Ax

Solution: eigenvector associated with the smallest eigenvalue

Linear regression Least squares line fitting

* Data: (x1, 1), --r (X ) . y=mx+b
« Line equation: y; =mx; + b ]
* Find (m, b) to minimize i (x-.y-)

b3 i i

E:Z;(yi_mxi_b)z i >

Wi x o1
Y=|: X=|: : Bz[ }
b
Y x, 1
E=|r- XB||2 =(Y-XB) (Y-XB)=Y"Y-2(XB)"Y +(XB)" (XB)
dE

= =2XTXB-2XTY =0
dB

YT XB= XY )N(;r_n;al equations: least squares solution to

20



Problem with “vertical” least squares

* Not rotation-invariant
+ Fails completely for vertical lines

Total least squares

« Distance between point (x;, y;) and
line ax+by=d (a*+b*=1): |ax; + by, — d|

ax+by=d

() N=a b)

Unit normal:

21



Total least squares

+ Distance between point (x;, y;) and
line ax+by=d (a*+b*=1): |ax; + by, — d|
* Find (a, b, d) to minimize the sum of
squared perpendicular distances

E= Z;(axi +by, —d)’

ax+by=d
. Unit normal:
(xi, y;) N=(a b)

OE

a:

dE

Total least squares

Distance between point (x;, y;) and

line ax+by=d (a>+b*=1): |ax; + by; — d|

Find (a, b, d) to minimize the sum of

squared perpendicular distances

E=)" (ax,+by,—d)’

ax+by=d
. Unit normal:
(5 ) N~ b)

" n b n _ _
Zi:1—2(axl.+by,.—d):0 d:%Zizlxﬁ;zi:ly[:aHby
_ _ 2
X=X Y- 4
EZZi:l(a(xi_)_C)_'_b(yi_y))z = |:bi| Z(UN)T(UN)
X, =X y,—Yy
=2(U'U)N=0

dN

Solution to (UTU)N = 0, subject to ||N||*= 1: eigenvector of UTU
associated with the smallest eigenvalue (least squares solution

to homogeneous linear system UN =

0)

22



Total least squares

0% 3=y PICE SR 3 COR 9 )
U= UTU = , i=l i=1 i
X —x b ;(‘xi—f)(yi_j}) ;(yi_y)z

second moment matrix

Total least squares

6—X Y-y Y -3 D -0, -
U = E E UTU = n = = n
X —x v _)7 Z(xi_f)(yi_j}) Z(yi_j/)z
n n i=1 i=1
y second moment matrix
o N=(a, b)
g ~ < ' (xl _f’ yl _J7)
d (x,¥) »
by
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