Linear Algebra
 Prerequisites

Jana Kosecka
kosecka@gmu.edu

Why do we need Linear Algebra?

- We will associate coordinates to
- 3D points in the scene
- 2D points in the CCD array
- 2D points in the image
- Coordinates/Data points will be used to
- Perform geometrical transformations
- Associate 3D with 2D points
- Images are matrices of numbers
- We will find properties of these numbers

Matrices

Sum:

$$
A_{n \times m}=\left[\begin{array}{cccc}
a_{11} & a 12 & \ldots & a_{1 m} \\
a_{21} & a_{22} & \cdots & a_{2 m} \\
a_{n 1} & \ldots & a_{n 2} & \ldots
\end{array} a_{n m}\right] \quad C_{n \times m}=A_{n \times m}+B_{n \times m}
$$

A and B must have the same dimensions
Example:

$$
\left[\begin{array}{ll}
2 & 5 \\
3 & 1
\end{array}\right]+\left[\begin{array}{ll}
6 & 2 \\
1 & 5
\end{array}\right]=\left[\begin{array}{ll}
8 & 7 \\
4 & 6
\end{array}\right]
$$

Matrices

Product:

$$
\begin{array}{cl}
C_{n \times p}=A_{n \times m} B_{n \times p} & \begin{array}{l}
\text { A and B must have } \\
\text { compatible dimensions }
\end{array} \\
c_{i j}=\sum_{k=1}^{m} a_{i k} b_{k j} & A_{n \times n} B_{n \times n} \neq B_{n \times n} A_{n \times n}
\end{array}
$$

Examples:

$$
\left[\begin{array}{ll}
2 & 5 \\
3 & 1
\end{array}\right] \cdot\left[\begin{array}{ll}
6 & 2 \\
1 & 5
\end{array}\right]=\left[\begin{array}{ll}
17 & 29 \\
19 & 11
\end{array}\right] \quad\left[\begin{array}{ll}
6 & 2 \\
1 & 5
\end{array}\right] \cdot\left[\begin{array}{ll}
2 & 5 \\
3 & 1
\end{array}\right]=\left[\begin{array}{cc}
18 & 32 \\
17 & 10
\end{array}\right]
$$

Matrices

Transpose:

$$
\begin{aligned}
C_{m \times n} & =A^{T}{ }_{n \times m} & (A+B)^{T} & =A^{T}+B^{T} \\
c_{i j} & =a_{j i} & (A B)^{T} & =B^{T} A^{T}
\end{aligned}
$$

$$
\text { If } \quad A^{T}=A \quad \mathrm{~A} \text { is symmetric }
$$

Examples:

$$
\left[\begin{array}{ll}
6 & 2 \\
1 & 5
\end{array}\right]^{T}=\left[\begin{array}{ll}
6 & 1 \\
2 & 5
\end{array}\right] \quad\left[\begin{array}{ll}
6 & 2 \\
1 & 5 \\
3 & 8
\end{array}\right]^{T}=\left[\begin{array}{lll}
6 & 1 & 3 \\
2 & 5 & 8
\end{array}\right]
$$

Matrices

Determinant: A must be square

$$
\operatorname{det}\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|=a_{11} a_{22}-a_{21} a_{12}
$$

Example: $\quad \operatorname{det}\left[\begin{array}{ll}2 & 5 \\ 3 & 1\end{array}\right]=2-15=-13$

Matrices

Inverse:

A must be square

$$
\begin{aligned}
& A_{n \times n} A^{-1}{ }_{n \times n}=A^{-1}{ }_{n \times n} A_{n \times n}=I \\
& \quad\left[\begin{array}{cc}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]^{-1}=\frac{1}{a_{11} a_{22}-a_{21} a_{12}}\left[\begin{array}{cc}
a_{22} & -a_{12} \\
-a_{21} & a_{11}
\end{array}\right]
\end{aligned}
$$

Example: $\quad\left[\begin{array}{ll}6 & 2 \\ 1 & 5\end{array}\right]^{-1}=\frac{1}{28}\left[\begin{array}{cc}5 & -2 \\ -1 & 6\end{array}\right]$

$$
\left[\begin{array}{ll}
6 & 2 \\
1 & 5
\end{array}\right]^{-1} \cdot\left[\begin{array}{ll}
6 & 2 \\
1 & 5
\end{array}\right]=\frac{1}{28}\left[\begin{array}{cc}
5 & -2 \\
-1 & 6
\end{array}\right] \cdot\left[\begin{array}{ll}
6 & 2 \\
1 & 5
\end{array}\right]=\frac{1}{28}\left[\begin{array}{cc}
28 & 0 \\
0 & 28
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

$2 \mathrm{D}, 3 \mathrm{D}$ Vectors
$\mathbf{v}=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right] \in \mathbb{R}^{2} \quad \mathbf{v}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right] \in \mathbb{R}^{3}$
Magnitude: $\|\mathbf{v}\|=\sqrt{x_{1}{ }^{2}+x_{2}{ }^{2}}$
If $\|\mathbf{v}\|=1, \quad \mathbf{v}$ is a UNIT vector
$\frac{\mathbf{v}}{\|\mathbf{v}\|}=\left(\frac{x_{1}}{\|\mathbf{v}\|} \| \frac{x_{2}}{\|\mathbf{v}\|}\right)$ Is a unit vector
Orientation: $\quad \theta=\tan ^{-1}\left(\frac{x_{2}}{x_{1}}\right)$

$$
\begin{gathered}
\text { Vector Addition } \\
u+v=\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]+\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
u_{1}+v_{1} \\
u_{2}+v_{2}
\end{array}\right]
\end{gathered}
$$

Vector Subtraction

$$
u-v=\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]-\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
u_{1}-v_{1} \\
u_{2}-v_{2}
\end{array}\right]
$$

Scalar Product

$$
a v=a\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
a v_{1} \\
a v_{2}
\end{array}\right]
$$

Inner (dot) Product

$$
u^{T} v=\left[\begin{array}{ll}
u_{1} & u_{2}
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{1}
\end{array}\right]=u_{1} \cdot v_{1}+u_{2} \cdot v_{2}
$$

The inner product is a SCALAR!
$u^{T} v=\left[\begin{array}{ll}u_{1} & u_{2}\end{array}\right]\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]=\|u\|\|v\| \cos \alpha$ $u^{T} v=0 \leftrightarrow u \perp v$
$u=\left[\begin{array}{l}u_{1} \\ u_{2} \\ u_{3}\end{array}\right] \quad v=\left[\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right]$
$\langle u, v\rangle \doteq u^{T} v=u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3} \quad \cos (\theta)=\frac{\langle u, v\rangle}{\|u\|\|v\|}$
$\|u\| \doteq \sqrt{u^{T} u}=\sqrt{u_{1}^{2}+u_{2}^{2}+u_{3}^{3}} \quad$ norm of a vector

Vector (cross) Product

Magnitude: $\|\mathrm{u}\|=\|v . w\|=\|v\| \| w \sin \alpha$

Orientation: $\quad u \perp v \rightarrow u^{T} v=(u \times v)^{T} v=0$

$$
\begin{aligned}
u \times v & =-v \times u \\
a(u \times v) & =a u \times v=u \times a v \\
u \| u \rightarrow(u \times v) & =0
\end{aligned}
$$

Orthonormal Basis in 3D

Standard base vectors:
$\mathrm{i}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right] \quad \mathbf{j}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right] \quad \mathbf{k}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$

Coordinates of a point p in space:

$$
\boldsymbol{X}=\left[\begin{array}{c}
X \\
Y \\
Z
\end{array}\right] \in \mathbb{R}^{3} \quad \boldsymbol{X}=\left[\begin{array}{c}
X \\
Y \\
Z
\end{array}\right]=X . \mathbf{i}+Y . \mathbf{j}+Z . \mathbf{k}
$$

$$
\begin{aligned}
& \text { Vector (Cross) Product Computation } \\
& \mathbf{i}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \quad \mathbf{j}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \quad \mathbf{k}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \\
& u \times v=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
u_{1} & u_{2} & u_{3} \\
v_{1} & v_{2} & v_{3}
\end{array}\right| \\
& =\left(u_{2} v_{3}-u_{3} v_{2}\right) \mathbf{i}+\left(u_{3} v_{1}-u_{1} v_{3}\right) \mathbf{j}+\left(u_{1} v_{2}-u_{2} v_{1}\right) \mathbf{k} \\
& u \times v \doteq \widehat{u} v, \quad u, v \in \mathbb{R}^{3} \\
& \hat{u}=\left[\begin{array}{ccc}
0 & -u_{3} & u_{2} \\
u_{3} & 0 & -u_{1} \\
-u_{2} & u_{1} & 0
\end{array}\right] \in \mathbb{R}^{3 \times 3} \\
& \mathbf{\uparrow} \text { Skew symmetric matrix associated with vector }
\end{aligned}
$$

Matrices

m points from n-dimensional space
$C=A A^{T}$
Covariance matrix - symmetric
Square matrix associated with
The data points (after mean
has been subtracted) in 2D
Special case matrix is square

$$
C=\left[\begin{array}{cc}
\sum_{1}^{n} x_{i}^{2} & \sum_{1}^{n} x_{i} y_{i} \\
\sum_{1}^{n} x_{i} y_{i} & \sum_{1}^{n} y_{i}^{2}
\end{array}\right]
$$

Geometric interpretation

Lines in 2D space - row solution
Equations are considered isolation

$$
\begin{aligned}
2 x-y & =1 \\
x+y & =5
\end{aligned}
$$

Linear combination of vectors in 2D
Column solution

$$
\left[\begin{array}{l}
2 \\
1
\end{array}\right] x+\left[\begin{array}{c}
-1 \\
1
\end{array}\right] y=\left[\begin{array}{l}
1 \\
5
\end{array}\right]
$$

We already know how to multiply the vector by scalar

Linear equations

In 3D

$$
\left[\begin{array}{ccc}
2 & 1 & 1 \\
4 & -6 & 0 \\
-2 & 7 & 2
\end{array}\right]\left[\begin{array}{l}
u \\
v \\
w
\end{array}\right]=\left[\begin{array}{c}
5 \\
-2 \\
9
\end{array}\right]
$$

When is RHS a linear combination of LHS

$$
\left[\begin{array}{c}
2 \\
4 \\
-2
\end{array}\right] u+\left[\begin{array}{c}
1 \\
-6 \\
7
\end{array}\right] v+\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right] w=\left[\begin{array}{c}
5 \\
-2 \\
9
\end{array}\right]
$$

Solving linear n equations with n unknows If matrix is invertible - compute the inverse Columns are linearly independent

$$
\begin{aligned}
A \mathbf{x} & =\mathbf{y} \\
\operatorname{det}(A) & \neq 0 \\
A^{-1} A \mathbf{x} & =A^{-1} \mathbf{y} \\
\mathbf{x} & =A^{-1} \mathbf{y}
\end{aligned}
$$

Linear equations

Not all matrices are invertible

- inverse of a $2 x 2$ matrix (determinant non-zero)
- inverse of a diagonal matrix

Computing inverse - solve for the columns Independently or using Gauss-Jordan method
$\left[\begin{array}{ccc}2 & 1 & 1 \\ 4 & -6 & 0 \\ -2 & 7 & 2\end{array}\right]\left[\begin{array}{lll} & & \\ \mathbf{x}_{1} & \mathbf{x}_{2} & \mathbf{x}_{3}\end{array}\right]=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

Vector spaces (informally)

- Vector space in n-dimensional space \Re^{n}
- n-dimensional columns with real entries
- Operations of addition, multiplication and scalar multiplication
- Additions of the vectors and multiplication of a vector by a scalar always produces vectors which lie in the space
- Matrices also make up vector space - e.g. consider all 3×3 matrices as elements of \Re^{9} space

Vector subspace

A subspace of a vector space is a non-empty set Of vectors closed under vector addition and scalar multiplication
Example: over constrained system - more equations then unknowns

$$
\left[\begin{array}{ll}
u_{1} & v_{1} \\
u_{2} & v_{2} \\
u_{3} & v_{3}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]
$$

The solution exists if b is in the subspace spanned by vectors u and v

$$
\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right] x_{1}+\left[\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right] x_{2}=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]
$$

Linear Systems - Nullspace

1. When matrix is square and invertible
2. When the matrix is square and noninvertible
3. When the matrix is non-square with more constraints then unknowns

$$
A \mathbf{x}=\mathbf{b}
$$

Solution exists when b is in column space of A Special case

All the vectors which satisfy $A \mathbf{x}=0$ lie in the NULLSPACE of matrix A (see later)

Basis

$\mathrm{n} \times \mathrm{n}$ matrix A is invertible if it is of a full rank
Rank of the matrix - number of linearly independent rows (see definition next page)

If the rows or columns of the matrix A are linearly independent - the null space of contains only 0 vector

Set of linearly independent vectors forms a basis of the vector space

Given a basis, the representation of every vector is unique Basis is not unique (examples)

Linear Equations

Vector space spanned by columns of $\mathbf{A}\left[\begin{array}{c}2 \\ 4 \\ -2\end{array}\right] u+\left[\begin{array}{c}1 \\ -6 \\ 7\end{array}\right] v+\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right] w=\left[\begin{array}{c}5 \\ -2 \\ 9\end{array}\right]$

In general $A \in \Re^{n \times m}$
Four basic subspaces

- Column space of A - dimension of $C(A)$
number of linearly independent columns

$$
r=\operatorname{rank}(A)
$$

- Row space of A - dimension of $R(A)$
number of linearly independent rows
$r=\operatorname{rank}\left(A^{T}\right)$
- Null space of A - dimension of $N(A) n-r$
- Left null space of A - dimension of $N\left(A^{\wedge} T\right) m-r$
- Maximal rank - $\min (n, m)-$ smaller of the two dimensions

Structure induced by a linear map A

Linear Equations

Vector space spanned by columns of $\mathrm{A}\left[\begin{array}{c}2 \\ 4 \\ -2\end{array}\right] u+\left[\begin{array}{c}1 \\ -6 \\ 7\end{array}\right] v+\left[\begin{array}{l}1 \\ 0 \\ 2\end{array}\right] w=\left[\begin{array}{c}5 \\ -2 \\ 9\end{array}\right]$

In general
$A \in \Re^{n \times m}$
Four cases, suppose that the matrix A has full rank
Then:

- if $n<m$ number of equations is less then number of unknowns, the set of solutions is ($m-n$) dimensional vector subspace of $R^{\wedge} m$
- if $n=m$ there is a unique solution
- if $n>m$ number of equations is more then number of unknowns, there is no solution

Linear Equations - Square Matrices

1. A is square and invertible
2. A is square and non-invertible
3. System $A x=b$ has at most one solution columns
are linearly independent rank $=n$

- then the matrix is invertible $\quad \mathrm{x}=A^{-1} \mathrm{y}$

2. Columns are linearly dependent rank $<n$

- then the matrix is not invertible

Linear Equations - non-square matrices

Long-thin matrix
over-constrained system

$$
\left[\begin{array}{l}
2 \\
3 \\
4
\end{array}\right] \mathrm{x}=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]
$$

The solution exist when b is aligned with $[2,3,4]^{\wedge} T$
If not we have to seek some approximation - least squares
Approximation - minimize squared error
$e^{2}=\left(2 x-b_{1}\right)^{2}+\left(3 x-b_{2}\right)^{2}+\left(4 x-b_{3}\right)^{2}$
Least shuares solution - find such value of x that the error Is mir mized (take a derivative, set it to zero and solve for x)
Shop for such solution

$$
\begin{aligned}
a \mathrm{x} & =b \\
e^{2}=\|a x-b\|^{2} & a^{T} a \mathbf{x}
\end{aligned}=a^{T} b
$$

Linear equations - non-squared matrices

Similarly when A is a matrix

$$
\begin{aligned}
{\left[\begin{array}{ll}
1 & 2 \\
1 & 3 \\
0 & 0
\end{array}\right] \mathrm{x} } & =\left[\begin{array}{l}
4 \\
5 \\
6
\end{array}\right] \\
A \mathrm{x} & =b \\
e^{2}=\|A \mathrm{x}-b\|^{2} \quad A^{T} A \mathrm{x} & =A^{T} b \\
\overline{\mathrm{x}} & =\left(A^{T} A\right)^{-1} A^{T} b
\end{aligned}
$$

- If A has linearly independent columns $A^{\top} A$ is square, symmetric and invertible

$$
A^{\dagger}=\left(A^{T} A\right)^{-1} A^{T}
$$

is so called pseudoinverse of matix A
In Matlab $A^{\prime}=\operatorname{pinv}(A)$

Eigenvalues and Eigenvectors

$$
\lambda \mathrm{x}=\left[\begin{array}{ll}
4 & -5 \tag{1}\\
2 & -3
\end{array}\right] \mathrm{x} \quad A \mathrm{x}=\lambda \mathrm{x}
$$

Solve the equation: $\quad(A-\lambda I) \mathrm{x}=0$
x - is in the null space of $(A-\lambda I)$
λ is chosen such that $(A-\lambda I)$ has a null space
Computation of eigenvalues and eigenvectors (for dim 2,3)

1. Compute determinant
2. Find roots (eigenvalues) of the polynomial such that determinant $=0$
3. For each eigenvalue solve the equation (1)

For larger matrices - alternative ways of computation

In Matlab [vec, val] $=\operatorname{eig}(\mathrm{A})$

Eigenvalues and Eigenvectors

$$
\lambda \mathrm{x}=\left[\begin{array}{ll}
4 & -5 \tag{1}\\
2 & -3
\end{array}\right] \mathrm{x} \quad A \mathrm{x}=\lambda \mathrm{x}
$$

Solve the equation: $\quad(A-\lambda I) \mathrm{x}=0$
$\mathrm{x}-$ is in the null space of $(A-\lambda I)$
λ is chosen such that $\quad(A-\lambda I)$ has a null space
Computation of eigenvalues and eigenvectors (for dim 2,3)

1. Compute determinant
2. Find roots (eigenvalues) of the polynomial such that determinant $=0$
3. For each eigenvalue solve the equation (1)

For larger matrices - alternative ways of computation

In Matlab [vec, val] = eig(A)

Square Matrices - Eigenvalues and Eigenvectors

For the previous example

$$
\lambda_{1}=-1, x_{1}=[1,1]^{T} \quad \lambda_{2}=-2, x_{2}=[5,2]^{T}
$$

We will get special solutions to ODE $\quad \dot{\mathbf{u}}=A \mathbf{u}$

$$
A \mathbf{u}=e^{\lambda_{1} t}\left[\begin{array}{l}
1 \\
1
\end{array}\right] \quad \mathbf{u}=e^{\lambda_{2} t}\left[\begin{array}{l}
5 \\
2
\end{array}\right]
$$

Their linear combination is also a solution (due to the linearity of

$$
\dot{\mathbf{u}} \rightleftharpoons A \mathbf{u}
$$

$$
\mathbf{u}=c_{1} e^{\lambda_{1} t}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+c_{2} e^{\lambda_{1} t}\left[\begin{array}{l}
5 \\
2
\end{array}\right]
$$

In the context of diff. equations - special meaning Any solution can be expressed as linear combination Individual solutions correspond to modes

Eigenvalues and Eigenvectors

- Motivated by solution to differential equations
- For square matrices $\quad A \in \Re^{n \times n} \quad \dot{\mathbf{u}}=A \mathbf{u} \quad A=\left[\begin{array}{ll}4 & -5 \\ 2 & -3\end{array}\right]$

For scalar ODE's
We look for the solutions of the following type exponentials

$$
\dot{u}=a u
$$

$u(t)=e^{a t} u(0)$

$$
\begin{aligned}
v(t) & =e^{\lambda t} y \\
w(t) & =e^{\lambda t} z
\end{aligned}
$$

Substitute back to the equation

$$
\begin{aligned}
& \lambda e^{x t} y=4 e \frac{\lambda}{y} y-5 e^{\lambda t} z \\
& \lambda e^{\lambda y} z=2 e^{\lambda \not y} y-3 e^{\lambda \not} z \\
& \mathrm{x}=\left[\begin{array}{l}
y \\
z
\end{array}\right] \quad \lambda \mathrm{x}=\left[\begin{array}{ll}
4 & -5 \\
2 & -3
\end{array}\right] \mathrm{x}
\end{aligned}
$$

Eigenvalues and Eigenvectors - Diagonalization

- Given a square matrix A and its eigenvalues and eigenvectors - matrix can be diagonalized

$$
\begin{array}{rl}
A & A=S \wedge S^{-1} \\
\text { Matrix of eigenvectors } & =S \wedge S^{-1} \\
A S & =\wedge S \\
A\left[\begin{array}{llll}
x_{1} & x_{2} & \ldots & x_{n}
\end{array}\right] & =\left[\begin{array}{llll}
\lambda_{1} x_{1} & \lambda_{2} x_{2} & \ldots & \lambda_{n} x_{n}
\end{array}\right] \quad A \mathbf{x}=\lambda \mathbf{x} \\
{\left[\begin{array}{llll}
\lambda_{1} x_{1} & \lambda_{2} x_{2} & \ldots & \lambda_{n} x_{n}
\end{array}\right]} & =\left[\begin{array}{llll}
x_{1} & x_{2} & \ldots & x_{n}
\end{array}\right]\left[\begin{array}{llll}
\lambda_{1} & & & \\
& \lambda_{2} & \ldots & \\
& & & \\
& & & \\
& & &
\end{array}\right]
\end{array}
$$

- If some of the eigenvalues are the same, eigenvectors are not independent

Eigenvalues and Eigenvectors - Diagonalization

- Given a square matrix A and its eigenvalues and eigenvectors - matrix can be diagonalized

$$
\begin{aligned}
& \text { Matrix of eigenvectors } \quad A=S \wedge S^{-1} \quad A=S \wedge S^{-1} \\
& \qquad A S=\wedge S
\end{aligned}
$$

- This diagonalization is useful for computing inverse
- General rule for inverse

$$
(A B)^{-1}=B^{-1} A^{-1}
$$

- In this case

$$
A^{-1}=\left(S \Lambda S^{-1}\right)^{-1}=S \Lambda^{-1} S^{-1}
$$

- Inverse of a diagonal matrix is $1 / x_{i}$ for all diagonal elements x of (works fot non-zero eigenvalues)

Diagonalization

- If there are no zero eigenvalues - matrix is invertible
- If there are no repeated eigenvalues - matrix is diagonalizable
- If all the eigenvalues are different then eigenvectors are linearly independent

For Symmetric Matrices

If A is symmetric

$$
A=Q \wedge Q^{T}
$$

orthonormal matrix of eigenvectors
i.e. for a covariance matrix
or some matrix $B=A^{\wedge} T A$

Singular Value Decomposition

Previously eigenvectors and eigenvalues for square matrices
Singular value decomposition: Factorization of real or complex matrix $\mathrm{m} \times \mathrm{n}$ into a form

$$
A=U S V^{T}
$$

Where U is $m \times m$ with eigenvectors of $A A^{*}$
V is $n \times n$ matrix with eigenvectors of $A^{*} A$
S is $m \times n$ rectangular diagonal matrix of singular values
Where A^{*} is transpose for real valued matrices or conjugate trans Pose for matrices with complex entries

Singular Value Decomposition

Previously eigenvectors and eigenvalues for square matrices

$$
A=U S V^{T}
$$

Where U is $m \times m$ with eigenvectors of $A A^{*}$
V is $n \times n$ matrix with eigenvectors of $A^{*} A$
S is $m \times n$ rectangular diagonal matrix of singular values
Where A^{*} is transpose for real valued matrices or conjugate trans
Pose for matrices with complex entries
Relationship to pseudo-inverse: to compute pseudoinverse
take the the reciprocal elements of the diagonal matrix S

$$
\begin{array}{ll}
A^{+}=U S^{+} V^{T} \quad \text { In Matlab: } \quad & {[m, n]=\operatorname{size}(A) ;} \\
& {[U, S, V]=\operatorname{svd}(A) ;} \\
& r=\operatorname{rank}(S) ; \\
& \operatorname{SR=S(1:r,1:r);} \\
& S R C=[S R \wedge-1 \operatorname{zeros}(r, m-r) ; \operatorname{zeros}(n- \\
& r, r) \operatorname{zeros}(n-r, m-r)] ; \\
& \text { A_pseu=V*SRC*U.'; }
\end{array}
$$

Homogeneous Systems of equations

$$
A \mathrm{x}=0
$$

- When matrix is square and non-singular, there a Unique trivial solution $\mathrm{x}=0$
- If $m>=n$ there is a non-trivial solution when rank of A is $\operatorname{rank}(A)<n$
- We need to impose some constraint to avoid trivial solution, for example

$$
\|\mathbf{x}\|=1
$$

- Find such x that $\|A \mathbf{x}\|^{2}$ minimized $\|A \mathbf{x}\|^{2}=\mathbf{x} A^{T} A \mathbf{x}$
Solution: eigenvector associated with the smallest eigenvalue

Linear regression Least squares line fitting

- Data: $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$
- Line equation: $y_{i}=m x_{i}+b$
- Find (m, b) to minimize
$E=\sum_{i=1}^{n}\left(y_{i}-m x_{i}-b\right)^{2}$

$Y=\left[\begin{array}{c}y_{1} \\ \vdots \\ y_{n}\end{array}\right] \quad X=\left[\begin{array}{cc}x_{1} & 1 \\ \vdots & \vdots \\ x_{n} & 1\end{array}\right] \quad B=\left[\begin{array}{c}m \\ b\end{array}\right]$
$E=\|Y-X B\|^{2}=(Y-X B)^{T}(Y-X B)=Y^{T} Y-2(X B)^{T} Y+(X B)^{T}(X B)$
$\frac{d E}{d B}=2 X^{T} X B-2 X^{T} Y=0$

$X^{T} X B=X^{T} Y$	$\begin{array}{l}\text { Normal equations: least squares solution to } \\ X B=Y\end{array}$

Problem with "vertical" least squares

- Not rotation-invariant
- Fails completely for vertical lines

Total least squares

- Distance between point $\left(x_{i}, y_{i}\right)$ and line $a x+b y=d\left(a^{2}+b^{2}=1\right)$: $\left|a x_{i}+b y_{i}-d\right|$

Total least squares

- Distance between point $\left(x_{i}, y_{i}\right)$ and line $a x+b y=d\left(a^{2}+b^{2}=1\right)$: $\left|a x_{i}+b y_{i}-d\right|$
- Find (a, b, d) to minimize the sum of squared perpendicular distances

$$
E=\sum_{i=1}^{n}\left(a x_{i}+b y_{i}-d\right)^{2}
$$

Total least squares

- Distance between point $\left(x_{i}, y_{i}\right)$ and line $a x+b y=d\left(a^{2}+b^{2}=1\right)$: $\left|a x_{i}+b y_{i}-d\right|$
- Find (a, b, d) to minimize the sum of squared perpendicular distances

$$
E=\sum_{i=1}^{n}\left(a x_{i}+b y_{i}-d\right)^{2}
$$

$$
\frac{\partial E}{\partial d}=\sum_{i=1}^{n}-2\left(a x_{i}+b y_{i}-d\right)=0 \quad d=\frac{a}{n} \sum_{i=1}^{n} x_{i}+\frac{b}{n} \sum_{i=1}^{n} y_{i}=a \bar{x}+b \bar{y}
$$

$$
\begin{aligned}
& E=\sum_{i=1}^{n}\left(a\left(x_{i}-\bar{x}\right)+b\left(y_{i}-\bar{y}\right)\right)^{2}=\left\|\left[\begin{array}{cc}
x_{1}-\bar{x} & y_{1}-\bar{y} \\
\vdots & \vdots \\
x_{n}-\bar{x} & y_{n}-\bar{y}
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]\right\|^{2}=(U N)^{T}(U N),
\end{aligned}
$$

$$
\frac{d E}{d N}=2\left(U^{T} U\right) N=0
$$

Solution to $\left(U^{T} U\right) N=0$, subject to $\|N\|^{2}=1$: eigenvector of $U^{T} U$ associated with the smallest eigenvalue (least squares solution to homogeneous linear system $U N=0$)

Total least squares

$$
U=\left[\begin{array}{cc}
x_{1}-\bar{x} & y_{1}-\bar{y} \\
\vdots & \vdots \\
x_{n}-\bar{x} & y_{n}-\bar{y}
\end{array}\right] \quad U^{T} U=\left[\begin{array}{cc}
\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} & \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right) \\
\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right) & \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}
\end{array}\right]
$$

second moment matrix

Total least squares

$U=\left[\begin{array}{cc}x_{1}-\bar{x} & y_{1}-\bar{y} \\ \vdots & \vdots \\ x_{n}-\bar{x} & y_{n}-\bar{y}\end{array}\right] \quad U^{T} U=\left[\begin{array}{cc}\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} & \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right) \\ \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right) & \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}\end{array}\right]$

