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Chapter 2
Principal Component Analysis and Its
Extensions

In this chapter, we give a brief review of principal component analysis (PCA), i.e.,
the method for finding a dominant affine subspace to fit a set of data points. The
solution to PCA has been well established in the literature and it has become one
of the most useful tools for data modeling, compression, and visualization. In this
section, we first show that the singular value decomposition (SVD) provides an
optimal solution to PCA. Both the geometric and statistical formulation of PCA
will be introduced and their equivalence will be established. When the dimension
of the subspace is unknown, we introduce some conventional model selection
methods to determine the number of principal components. When the samples
contain outliers and incomplete data points, we review some robust statistical
techniques that help resolve these difficulties. Finally, some nonlinear extensions
to PCA such as nonlinear PCA and kernel PCA will also be reviewed.

2.1 Principal Component Analysis (PCA)

Principal component analysis (PCA) refers to the problem of fitting a low-
dimensional affine subspace S to a set of points X = {x1, x2, . . . , xN} in a
high-dimensional space RD, the ambient space. Mathematically, this problem can
be formulated as either a statistical problem or a geometric one, and they both lead
to the same solution, as we will show in this section.
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2.1.1 A Geometric Approach to PCA
We first examine the more intuitive geometric approach to PCA. That is, one
tries to find an (affine) subspace that fits the given data points. Let us assume for
now that the dimension of the subspace d is known. Then every point xi on a
d-dimensional affine subspace in RD can be represented as

xi = x0 + Udyi, i = 1, . . . , N (2.1)

where x0 ∈ RD is a(ny) fixed point in the subspace, Ud is a D × d matrix with d
orthonormal column vectors, and yi ∈ Rd is simply the vector of new coordinates
of xi in the subspace. Notice that there is some redundancy in the above represen-
tation due to the arbitrariness in the choice of x0 in the subspace. More precisely,
for any y0 ∈ Rd, we can re-represent xi as xi = (x0 + Udy0) + Ud(yi − y0).
Therefore, we need some additional constraints in order to end up with a unique
solution to the problem of finding an affine subspace to fir the data. A common
constraint is to impose that the mean of yi is zero:1

ȳ
.
=

1

N

N∑

i=1

yi = 0. (2.2)

In general the given points are imperfect and have noise. We define the “op-
timal” affine subspace to be the one that minimizes the sum of squared error
between xi and its projection on the subspace, i.e.,

min
x0,Ud,{yi}

N∑

i=1

∥∥xi − x0 − Udyi

∥∥2
, s.t. UT

d Ud = I and ȳ = 0. (2.3)

Differentiating this function with respect to x0 and yi (assuming Ud is fixed) and
setting the derivatives to be zero,2 we obtain the relations:

x̂0 = x̄
.
=

1

N

N∑

i=1

xi; ŷi = UT
d (xi − x̄). (2.4)

The vector ŷi ∈ Rd is simply the coordinates of the projection of xi ∈ RD in the
subspace S. We may call such ŷ the “geometric principal components” of x.3

Then the original objective becomes one of finding an orthogonal matrix Ud ∈
RD×d that minimizes

min
Ud

N∑

i=1

∥∥(xi − x̄) − UdU
T
d (xi − x̄)

∥∥2
. (2.5)

1In the statistical setting, xi and yi will be samples of two random variables x and y, respectively.
Then this constraint is equivalent to setting their means to be zero.

2which are the necessary conditions for the minima.
3As we will soon see in the next section, it coincides with the traditional principal components

defined in a statistical sense.
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Note that this is a restatement of the original problem with the mean x̄ subtracted
from each of the sample points. Therefore, from now on, we will consider only
the case in which the data points have zero mean. If not, simply subtract the mean
from each point and the solution for Ud remains the same. The following theorem
gives a constructive solution to the optimal solution Ûd.

Theorem 2.1 (PCA via SVD). Let X = [x1, x2, . . . , xN ] ∈ RD×N be the
matrix formed by stacking the (zero-mean) data points as its column vectors. Let
X = UΣV T be the singular value decomposition (SVD) of the matrix X . Then
for any given d < D, a solution to PCA, Ûd is exactly the first d columns of U ;
and ŷi is the ith column of the top d × N submatrix ΣdV T

d of the matrix ΣV T .

Proof. Note that the problem

min
Ud

N∑

i=1

∥∥xi − UdU
T
d xi

∥∥2 (2.6)

is equivalent to

min
Ud

N∑

i=1

trace
[(

xi − UdU
T
d xi

)(
xi − UdU

T
d xi

)T
]

⇔ min
Ud

trace
[
(I − UdU

T
d )XXT

]
,

where, for the second equivalence, we use the facts trace(AB) = trace(BA),
UdUT

d UdUT
d = UdUT

d , and XXT =
∑N

i=1 xix
T
i to simplify the expression.

Substitute X = UΣV T into the above expression, the problem becomes

min
Ud

trace
[
(I − UT UdU

T
d U)Σ2

]
.

Let
∑D

i=1 σ2
i eieT

i be the dyadic decomposition of the diagonal matrix Σ2.4 Since
UT

d U is an orthogonal matrix, the above minimization is the same as

min
Ud

D∑

i=1

trace
[(

σiei − UT UdU
T
d Uσiei

)(
σiei − UT UdU

T
d Uσiei

)T
]

⇔ min
Ud

D∑

i=1

σ2
i

∥∥(
I − UT UdU

T
d U

)
ei

∥∥2
.

Because Ud is an orthogonal matrix of rank d so is UT
d U so that I−UT UdUT

d U is
an idempotent matrix of rank D− d, so that the D terms

∥∥(
I −UT UdUT

d U
)
ei

∥∥2

always sum up to a constant D − d, and σ2
1 ≥ σ2

2 ≥ · · ·σ2
D are ordered.

Therefore, the minimum is achieved when the d terms associated with the higher
weights σ2

1 , . . . , σ2
d become zero. This happens only when Ûd consists of the first

d columns of U . The rest of the theorem then easily follows.

4Here ei ∈ RD is the standard ith base vector of RD , i.e., its ith entry is 1 and others are 0.
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When there are repeated singular values with σd = σd+1, there is a loss of
uniqueness of the solution corresponding to the principal components.

According to the theorem, the SVD gives an optimal solution to the PCA
problem. The resulting matrix Ûd (together with the mean x̄ if the data is not zero-
mean) provides a geometric description of the dominant subspace structure for all
the points;5 and the columns of the matrix ΣdV T

d = [ŷ1, . . . , ŷN ] ∈ Rd×N ,
i.e., the principal components, give a more compact representation for the points
X = [x1, . . . , xN ] ∈ RD×N , as d is typically much smaller than D.

2.1.2 A Statistical View of PCA
Historically PCA was first formulated in a statistical setting: to estimate the prin-
cipal components of a multivariate random variable x from given sample points
{xi} [Hotelling, 1933]. For a multivariate random variable x ∈ RD and any
d < D, the d “principal components” are defined to be d uncorrelated linear
components of x:

yi = uT
i x ∈ R, i = 1, . . . , d (2.7)

for some ui ∈ RD such that the variance of yi is maximized subject to

uT
i ui = 1, Var(y1) ≥ Var(y2) ≥ · · · ≥ Var(yd).

For example, to find the first principal component, we seek a vector u∗
1 ∈ RD

such that

u∗
1 = arg max

u1∈RD
Var(uT

1 x), s.t. uT
1 u1 = 1. (2.8)

Without loss of generality, we will, in what follows assume x has zero-mean.

Theorem 2.2 (Principal Components of a Random Variable). The first d prin-
cipal components of a multivariate random variable x are given by the d leading
eigenvectors of its covariance matrix Σx

.
= E[xxT ].

Proof. Notice that for any u ∈ RD,

Var(uT x) = E[(uT x)2] = E[uT xxT u] = uT Σxu.

Then to find the first principal compoent, the above minimization (2.8) is
equivalent to

max
u1∈RD

uT
1 Σxu1, s.t. uT

1 u1 = 1. (2.9)

Solving the above constrained minimization problem using s Lagrange multiplier
method, we obtain the necessary condition for u1 to be an extrema:

Σxu1 = λu1 (2.10)

5From a statistical standpoint, the column vectors of Ud give the directions in which the data X
has the largest variance, hence the name “principal components.”
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for some Lagrange multiplier λ ∈ R, and the the associated extremum value
is uT

1 Σxu1 = λ. Obviously, the optimal solution u∗
1 is exactly the eigenvector

associated with the largest eigenvalue of Σx.
To find the remaining principal components, since uT

1 x and uT
i x (i > 1) need

to be uncorrelated, we have

E[(uT
1 x)(uT

i x)] = E[uT
1 xxT ui] = uT

1 Σxui = λ1u
T
1 ui = 0.

That is, u2, . . . , ud are all orthogonal to u1. Following the proof for the optimality
of u1, u2 is then the leading eigenvector of Σx restricted to the orthogonal com-
plement of u1.6 Overall, u2 is the second leading eigenvector of Σx. Inductively,
one can show for the rest of the principal components.

Normally, we do not know Σx and can only estimate it from the given N
samples xi. It is known from statistics that

Σ̂x
.
=

1

N

N∑

i=1

xix
T
i =

1

N
XXT (2.11)

is an asymptotically unbiased estimate of the covariance matrix Σx. The eigen-
vectors of Σ̂x, or equivalently those of XXT , lead to the “sample principal
components”:

ŷi = ûT
i x, s.t. Σ̂xûi = λûi and ûT

i ûi = 1. (2.12)

One can show that, if x is Gaussian, then every eigenvector u of Σ̂x is
an asymptotically unbiased estimate for the corresponding eigenvector of Σx

[Jollife, 1986].

Theorem 2.3 (Equivalence of Geometric and Sample Principal Components).
Let X = [x1, x2, . . . , xN ] ∈ RD×N be the data matrix (with x̄ = 0). The
vectors û1, û2, . . . , ûd ∈ RD associated with the d sample principal components
for X are exactly the columns of the matrix Ûd ∈ RD×d that minimizes the
least-squares error (2.6).

Proof. The proof is simple. Notice that if X has the singular value decomposition
X = UΣV T , then XXT = UΣ2UT is the eigenvalue decomposition of X . If
Σ is ordered, then the first d columns of U are exactly the leading d eigenvectors
of XXT , which give the d sample principal components.

Therefore, both the geometric and statistical formulation of PCA lead to exactly
the same solutions/estimates of the principal components. The geometric formu-
lation allows us to apply PCA to data even if the statistical nature of the data is
unclear; the statistical formulation allows to quantitatively evaluate the quality of
the estimates. For instance, for Gaussian random variables, one can derive explicit
formulae for the mean and covariance of the estimated principal components. For

6The reason for this is that both u1 and its orthogonal complement u⊥
1 are invariant subspaces of

Σx .
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a more thorough analysis of the statistical properties of PCA, we refer the reader
to the classical book [Jollife, 1986].

2.1.3 Determining the Number of Principal Components
Notice that SVD does not only give a solution to PCA for a particular d, but also
the solutions to all d = 1, 2, . . . , D. This has an important side-benefit: if the
dimension d is not known or specified a priori, one may have to look at the entire
spectrum of solutions to decide on the “best” estimate d̂ for the dimension and
hence the subspace S for the given data.

As we have discussed in the introduction of the book, the conventional wisdom
is to strike a good balance between the complexity of the chosen model and the
data fidelity (to the model). The dimension d of the subspace S can be viewed as
a natural measure of the complexity of the model; and the sum of squares of the
remaining singular values

∑D
i=d+1 σ2

i is exactly the modeling error
∑N

i=1 ‖xi −
x̂i‖2. The leading singular value σ2

d+1 of the remaining ones is a good index of
the modeling error. Therefore, one can seek for a model that balances between d
and σ2

d+1 by minimizing an objective function of the form:

JPCA(S)
.
= α · σ2

d+1 + β · d (2.13)

for some proper positive weights α, β > 0. In general, the ordered singular values
of the data matrix X versus the dimension d of the subspace resemble a plot as
in Figure 2.1. In the statistics literature, this is known as the “Scree graph.” We
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Figure 2.1. Singular value as a function of the dimension of the subspace.

will see a significant drop in the singular value right after the “correct” dimension
d̂, which is sometimes called the “knee” or “elbow” point of the plot. Obviously,
such a point is a stable minimum as it optimizes the above objective function
(2.13) for a range of values for α and β.


