

Logistics

- Prerequisites: at least two 600 level CS courses
- Course web page cs.gmu.edu/~kosecka/cs700/
- Course newsgroup
- Homeworks 30%
- Midterm 25\%
- Final 20\%
- Project 25\%
- Late policy: semester budget of 3 late days

Software

- Required Software MATLAB + one language of your choice for homeworks and project
- Project - apply techniques covered in the class to the problem of your choice
- Focus on quantitative analysis or simulation
- Project proposal due early November

Course Topics

- Basic techniques in "experimental" computer science
- measurement tools and techniques
- Quantitative characterizations of measurement
- Simulation
- Design of experiments
- Quantitative Methods
- Use of statistical techniques in design of experiments
- Use of statistical techniques in comparing alternatives
- Characterizing and interpreting measured data
- Simple analytical modeling
- Initial examples from performance measurement of computer systems and networks, but techniques are applicable in all fields of CS
- Methods used in applied science in general - interdisciplinary nature of computer science

The Role of Experimentation in CS

Schedule

- Introduction
- Performance Metrics (time, rate, size)
- Summarizing Measured Data
- Comparing Alternatives, hypothesis testing
- Simulation, design of experiments
- Analytical Modeling
- Linear Regression Models
- Basic optimization
- Statistical Analysis of multidimensional data
- Interpreting \& characterizing measured data

Course Goals

- Understand the inherent trade-offs involved in using simulation, measurement, and analytical modeling.
- Rigorously compare computer systems/networks/ software/artifacts/... often in the presence of measurement noise
- Usually compare/measure performance in many fields of CS
- Many times "quality" of the output is more important than raw performance, e.g. face recognition
- Study variability
- Determine whether results are statistically significant impact (related to the amount of evidence)

Course Goals

- Provide intuitive conceptual background for some standard statistical tools
- Draw meaningful conclusions in presence of noisy measurements
- Allow you to correctly and intelligently apply techniques in new situations.
- Present techniques for aggregating and interpreting large quantities of data.
- Obtain a big-picture view of your results.
- Obtain new insights from complex measurement and simulation results.
\rightarrow E.g. How does a new feature impact the overall system?

Course Goals

- Traditional measurements one dimensional
- Study of analysis of multidimensional data
- Analysis of real and categorical data

Summarizing measured data
means, variability, distributions

Goals in Studying Statistics

- Analyze, present, and describe numerical information properly.
- Draw conclusions about the properties of large populations from sample information (inference)
- Descriptive statistics - characterize sample of populations
- Inferential statistics - draw conclusions about whole population
- Design experiments to learn about real-world situations.
- To forecast or predict not-measured values from a set of measurements.

Population and Sample

- Population (or universe): all N members of a class or group (people, objects, items of interest)
- E.g., all files retrieved from a Web site since the site went into operation.
- Census: gather data about the whole population
- Sample: portion of the population. Its size is denoted by n.
- E.g., the set of files retrieved from a Web site from 10:00 AM to 2:00 PM on January 03, 2001.

Visualizing Numerical Data

- Type of Plots:
- Time ordered plots: the time scale is time.
- Time-scale analysis: time is slotted into fixed time intervals. The y-axis displays a statistics over the time slot (e.g., sum, average).
- Changing the time scale may reveal interesting properties about the variable being plotted (e.g., strong correlations between adjacent time intervals).
- Percent frequency histograms: show the percentage of occurrences of values in a bin (range of values).
- Cumulative frequency histograms.

Census, Parameter, Statistic

- Parameter: summary measure of the individual observations made in a census of an entire population.
- E.g., average size of all files ever retrieved from the Web site.
- Statistic: summary measure obtained from a sample.
- E.g., average size of all files retrieved from the Web site from 10:00 AM to 2:00 PM on January 03, 2001.

Major Properties of Numerical Data

- Central Tendency: arithmetic mean, geometric mean, median, mode.
- Variability: range, interquartile range, variance, standard deviation, coefficient of variation, mean absolute deviation.
- Skewness
- Kurtosis
- Type of distribution

Measures of Central Tendency

- Arithmetic Mean

$$
\bar{X}=\frac{\sum_{i=1}^{n} X_{i}}{n}
$$

- Based on all observations $->$ greatly affected by extreme values
- In the absence of other information about data
- Desire to reduce performance to a single number
- Makes comparisons easy
- Mine Apple is faster than your Cray!
- People like a measure of "typical" performance

Mean

- For discrete random variable
- Expected value of $X=E[X]$
- "First moment" of X
- $x_{i}=$ values measured
- Sample mean
- $\mathrm{p}_{\mathrm{i}}=\operatorname{Pr}\left(\mathrm{X}=\mathrm{x}_{\mathrm{i}}\right)=\operatorname{Pr}\left(\right.$ we measure $\left.\mathrm{x}_{\mathrm{i}}\right)$

$$
E[X]=\sum_{i=1}^{n} x_{i} p_{i}
$$

For continuous random variable (more details later)

$$
\mu=\int x f(x) d x
$$

Effect of Outliers on Average			
Average	1.1 1.4 1.8 1.9 2.3 2.4 2.8 3.1 3.4 3.8 10.3	1.1 1.4 1.8 1.9 2.3 2.4 2.8 3.1 3.4 3.8 3.5 2.5	
			22

Median

- Middle Value in an Ordered Set of Data.
- If there are no ties, 50% of the values are smaller than the median and 50% are larger.

Median

- The median is unaffected by extreme values.
- Obtaining the median:
- Odd-sized samples:

$$
X_{(n+1) / 2}
$$

- Even-sized samples:

$$
\frac{X_{n / 2}+X_{(n / 2)+1}}{2}
$$

- Measured values: $10,20,15,18,16$
- Mean = 15.8
- Median = 16
- Obtain one more measurement: 200
- Mean $=46.5$
- Median $=\frac{1}{2}(16+18)=17$

Mode

- Most frequently occurring value.
- Mode may not exist.
- Single mode distributions: unimodal.
- Distributions with two modes: bimodal.

unimodal

bimodal

Mean, Median, or Mode?

- Mean
- If the sum of all values is meaningful
- Incorporates all available information
- Median
- Intuitive sense of central tendency with outliers
- What is "typical" of a set of values?
- Mode
- When data can be grouped into distinct types, categories (categorical data)
- Size of messages sent on a network, Number of cache hits
- Execution time, Bandwidth, Speedup, Cost
- Categorical data type of operating system, name of school 28

Yet Even More Means!

- Arithmetic
- Harmonic?
- Geometric?
- Which one should be used when?

Geometric Mean (?)

- Geometric Mean: $\left(\prod_{i=1}^{n} X_{i}\right)^{1 / n}$
- Used when the product of the observations is of interest.
- Important when multiplicative effects are at play:
- Cache hit ratios at several levels of cache
- Percentage performance improvements between successive versions.
- Performance improvements across protocol layers.
- Time performance index example

Harmonic mean

$$
\overline{x_{H}}=\frac{n}{\sum_{i=1}^{n} \frac{1}{x_{i}}}
$$

What makes a good mean?

- Time-based mean (e.g. seconds)
- Should be directly proportional to total weighted time
- Time doubles, mean value doubles
- Rate-based mean (e.g. operations $/ \mathrm{sec}$)
- Should be inversely proportional to total weighted time
- Time doubles, mean value reduced by half
-Which means satisfy these criteria?

Assumptions

- Measured execution times of n benchmark programs
- $\mathrm{T}_{\mathrm{i}}, \mathrm{i}=1,2, \ldots, n$
- Total work performed by each benchmark is constant
- F = \# operations performed
- Relax this assumption later
- Execution rate $=M_{i}=F / T_{i}$

Arithmetic mean for times

- Produces a mean value that is directly proportional to total time
\rightarrow Correct mean to summarize execution time

Arithmetic mean for rates

- Produces a mean value that is proportional to sum of inverse of times
- But we want inversely proportional to sum of times

$$
\begin{aligned}
\overline{M_{A}} & =\frac{1}{n} \sum_{i=1}^{n} M_{i} \\
& =\sum_{i=1}^{n} \frac{F / T_{i}}{n} \\
& =\frac{F}{n} \sum_{i=1}^{n} \frac{1}{T_{i}}
\end{aligned}
$$

Harmonic mean for times

- Not directly proportional to sum of times

$$
\overline{T_{H}}=\frac{n}{\sum_{i=1}^{n} \frac{1}{T_{i}}}
$$

Harmonic mean for rates

- Produces
(total number of ops) \div (sum execution times)
- Inversely proportional to total execution time
\rightarrow Harmonic mean is appropriate to summarize rates

$$
\overline{M_{H}}=\frac{n}{\sum_{i=1}^{n} \frac{1}{M_{i}}}
$$

$$
=\frac{n}{\sum_{i=1}^{n} \frac{T_{i}}{F}}
$$

$$
=\frac{F n}{\sum_{i=1}^{n} T_{i}}
$$

Geometric mean with times				
System 1 System 2 System 3 417 244 134 83 70 70 66 153 135 39,449 33,527 66,000 772 368 369 Geo mean 587 503 499 Rank 3 2 1			$.$	43
:---				

Geometric mean

- Claim: Correct mean for averaging normalized values
- Used to compute SPECmark
- Claim: Good when averaging measurements with wide range of values
- Maintains consistent relationships when comparing normalized values
- Independent of basis used to normalize

Geometric mean normalized to System 1

	System 1	System 2	System 3
	1.0	0.59	0.32
	1.0	0.84	0.85
	1.0	2.32	2.05
	1.0	0.85	1.67
Geo mean	1.0	0.48	0.45
Rank	1.0	0.86	0.84
	3	2	1

Geometric mean normalized to System 2			
System 1 System 2 System 3 1.71 1.0 0.55 1.19 1.0 1.0 0.43 1.0 0.88 1.18 1.0 1.97 Geo mean 2.10 1.0 1.0 Rank 1.17 1.0 0.99$\quad 3$	2	1	

Total execution times			
	System 1	System 2	System 3
	417	244	134
	83	70	70
	66	153	135
	39,449	33,527	66,000
	772	368	369
Total	40,787	34,362	66,798
Arith mean	8157	6872	13,342
Rank	2	1	3

Geometric mean for times

- Not directly proportional to sum of times

$$
\overline{T_{G}}=\left(\prod_{i=1}^{n} T_{i}\right)^{1 / n}
$$

Geometric mean for rates

- Not inversely proportional to sum of times

$$
\begin{aligned}
\overline{T_{G}} & =\left(\prod_{i=1}^{n} M_{i}\right)^{1 / n} \\
& =\left(\prod_{i=1}^{n} \frac{F}{T_{i}}\right)^{1 / n}
\end{aligned}
$$

Geometric mean

- Does provide consistent rankings
- Independent of basis for normalization
- But can be consistently wrong!
- Value can be computed
- But has no physical meaning

Other uses of Geometric Mean
- Used when the product of the observations is of
interest.
- Important when multiplicative effects are at play:
- Cache hit ratios at several levels of cache
- Percentage performance improvements between
successive versions.
- Performance improvements across protocol layers.
53

Summary of Means

- Avoid means if possible
- Loses information
- Arithmetic
- When sum of raw values has physical meaning
- Use for summarizing times (not rates)
- Harmonic
- Use for summarizing rates (not times)
- Geometric mean
- Not useful when time is best measure of perf
- Useful when multiplicative effects are in play

Normalization

- Averaging normalized values doesn'† make sense mathematically
- Gives a number
- But the number has no physical meaning
- First compute the mean
- Then normalize

Quantifying variability

- Mean hides information about variability
- How spread are the values
- What is the shape of distributions
- Indices of dispersion
- Range
- Variance or standard deviation
- 10- and 90-percentiles
- Semi-interquartile range
- Mean absolute deviation

Histograms

Index of Dispersion

- Quantifies how "spread out" measurements are
- Range
- (max value) - (min value)
- Maximum distance from the mean
- Max of | x_{i} - mean |
- Neither efficiently incorporates all available information

Sample Variance

- Gives "units-squared"
- Hard to compare to mean
- Use standard deviation, s
- s = square root of variance
- Units = same as mean

Meanings of the Variance and Standard Deviation

- The larger the spread of the data around the mean, the larger the variance and standard deviation.
- If all observations are the same, the variance and standard deviation are zero.
- The variance and standard deviation cannot be negative.
- Variance is measured in the square of the units of the data.
- Standard deviation is measured in the same units as the data.
- Coefficient of variation (COV) : s / \bar{X}
- Ratio of standard deviation to mean
- no units \begin{tabular}{ll}
1.05

1.06

1.09

1

\quad

\hline S \& 29.50

Average \& 9.51

COV \& 3.10

\hline
\end{tabular}

Coefficient of Skewness		
- Coefficient of skewness: - Measure of assymetry of distribution		
- Used for measuring deviation from normal Gaussian distribution $\frac{1}{n s^{3}} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{3}$		${ }^{65}$

\quadCoefficient of Kurtosis - Coefficient of kurtosis: - Measure of peakedness of distribution - High kurtosis - variance is due to many infrequent observations
- Used another 'feature' of the distribution
- Kurtosis of common distributions

Mean Absolute Deviation

- Mean absolute deviation: $\quad \frac{1}{n} \sum_{i=1}^{n}\left|X_{i}-\bar{X}\right|$

\square
\square
\rightarrow

Example of Percentile
Eroperamil 3 Bisior

In Excel:
p-th percentile=PERCENTILE(<array>,p) ($0 \leq p \leq 1$)

Range, Interquartile Range, Variance, and Standard Deviation

- Interquartile Range: $Q_{3}-Q_{1}$
- not affected by extreme values.
- Semi-interquartile Range (SIQR): $\left(Q_{3}-Q_{1}\right) / 2$
- Variance:

$$
s^{2}=\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{n-1}
$$

- Standard Deviation:

$$
s=\sqrt{\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{n-1}}
$$

- If the distribution is highly skewed, SIQR is

Preferred to the standard deviation for the same

In Excel: $s^{2}=$ VAR(<array>) reason that median is preferred to mean

Selecting the index of dispersion

- Numerical data
- If the distribution is bounded, use the range
- For unbounded distributions that are unimodal and symmetric, use C.O.V.
- O/w use percentiles or SIQR

Box-and-Whisker Plot

- Graphical representation of data through a fivenumber summary.

8.04	Five-number Summary	
9.96	Minimum	4.26
5.68	First Quartile	6.08
${ }_{8.81}^{6.95}$	Median	7.35
10.84	Third Quartile	8.33
4.26	Maximum	12.74

Confidence Interval for the Mean

- The sample mean is an estimate of the population mean.
- Problem: given k samples of the population (with k sample means), get a single estimate of the population mean.
- Only probabilistic statements can be made:
- E.g. we want mean of the population but can get only mean of the sample
- k samples, k estimates of the mean
- Finite size samples, we cannot get the true mean
- We can get probabilistic bounds

Determining the Distributions of a Data Set

- A measured data set can be summarized by stating its average and variability
- If we can say something about the distribution of the data, that would provide all the information about the data
- Distribution information is required if the summarized mean and variability have to be used in simulations or analytical models
- To determine the distribution of a data set, we compare the data set to a theoretical distribution
- Heuristic techniques (Graphical/Visual): Histograms, Q-Q plots
- Statistical goodness-of-fit tests: Chi-square test, Kolmogrov-Smirnov test
- Will discuss this topic in detail later this semester

Comparing Data Sets

- Problem: given two data sets D1 and D2 determine if the data points come from the same distribution.
- Simple approach: draw a histogram for each data set and visually compare them.
- To study relationships between two variables use a scatter plot.
- To compare two distributions use a quantilequantile ($Q-Q$) plot.

Histogram

- Divide the range (\max value - \min value) into equalsized cells or bins.
- Count the number of data points that fall in each cell.
- Plot on the y-axis the relative frequency, i.e., number of point in each cell divided by the total number of points and the cells on the x-axis.
- Cell size is critical!
- Sturge's rule of thumb Given n data points, number of bins $k=\left\lfloor 1+\log _{2} n\right\rfloor$

Example System- Robotic Navigation

- Stanford Stanley Grand Challenge
- Outdoors unstructured env., single vehicle

- Urban Challenge
- Outdoors structured env., mixed traffic, traffic rules

Robot Components (Stanley)

- Sensors
- Actuators-Effectors
- Locomotion System
- Computer system - Architectures

- Lasers, camera, radar, GPS, compass, antenna, IMU,
- Steer by wire system
- Rack of PC's with Ethernet for processing information from sensors

System performance

- Performance can be analyzed an many levels
- Sensors - speed, accuracy, noise characterization
- Design of algorithms for sensing and control
- Characterizing throughput and delays in the system
- Accuracy of the classification algorithms
- Complexity and accuracy of the planning algorithms

