# Quatitative Methods and Experimental Design

CS 700

Jana Kosecka, 4444 Research II kosecka@gmu.edu , 3-1876

# Logistics

- Prerequisites: at least two 600 level CS courses
- Course web page cs.gmu.edu/~kosecka/cs700/
- Course newsgroup
- Homeworks 30%
- Midterm 25%
- Final 20%
- Project 25%
- Late policy: semester budget of 3 late days

# Readings

- Textbook
  - David Lilja, "Measuring Computer Performance: A Practitioner's Guide"
    - Alternative Text: Raj Jain, "Art of Computer Systems Performance Analysis"
    - Cohen "Empirical techniques in AI"
- Online resources
- Class notes, slides
- Relevant research articles (links on class web site)

# Software

- Required Software MATLAB + one language of your choice for homeworks and project
- Project apply techniques covered in the class to the problem of your choice
- Focus on quantitative analysis or simulation
- Project proposal due early November

# **Course Topics**

- Basic techniques in "experimental" computer science
  - measurement tools and techniques
  - Quantitative characterizations of measurement
  - Simulation
  - Design of experiments
- Quantitative Methods
  - Use of statistical techniques in design of experiments
- Use of statistical techniques in comparing alternatives
- Characterizing and interpreting measured data
- Simple analytical modeling

   Initial examples from performance measurement of computer systems and networks, but techniques are applicable in all fields of CS
- Methods used in applied science in general
   interdisciplinary nature of computer science

5

# <image>

6

# Schedule

- Introduction
- Performance Metrics (time, rate, size)
- Summarizing Measured Data
- Comparing Alternatives, hypothesis testing
- · Simulation, design of experiments
- Analytical Modeling
- Linear Regression Models
- Basic optimization
- Statistical Analysis of multidimensional data
- Interpreting & characterizing measured data

# Course Goals

- Understand the inherent trade-offs involved in using simulation, measurement, and analytical modeling.
- Rigorously compare computer systems/networks/ software/artifacts/... often in the presence of measurement noise
- Usually compare/measure performance in many fields of CS  $% \left( \mathcal{S}^{\prime}\right) =0$
- Many times "quality" of the output is more important than raw performance, e.g. face recognition
- Study variability
- Determine whether results are statistically significant impact (related to the amount of evidence)



- Provide intuitive conceptual background for some standard statistical tools
- Draw meaningful conclusions in presence of noisy measurements
- Allow you to correctly and intelligently apply techniques in new situations.
- Present techniques for aggregating and interpreting large quantities of data.
  - Obtain a big-picture view of your results.
  - Obtain new insights from complex measurement and simulation results.
- $\rightarrow$  E.g. How does a new feature impact the overall system?

# Course Goals

- Traditional measurements one dimensional
- Study of analysis of multidimensional data
- Analysis of real and categorical data

.

10

# Goals in Studying Statistics

- Analyze, present, and describe numerical information properly.
- Draw conclusions about the properties of large populations from sample information (inference)
- Descriptive statistics characterize sample of populations
- Inferential statistics draw conclusions about whole population
- Design experiments to learn about real-world situations.
- To forecast or predict not-measured values from a set of measurements.

12

# Summarizing measured data means, variability, distributions













# Measures of Central Tendency

Arithmetic Mean

$$\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$

- Based on all observations -> greatly affected by extreme values
- $\boldsymbol{\cdot}$  In the absence of other information about data
- Desire to reduce performance to a single number
   Makes comparisons easy
  - Mine Apple is faster than your Cray!
  - People like a measure of "typical" performance

19

# Mean

- For discrete random variable
- Expected value of X = E[X]
- "First moment" of X
- $x_i$  = values measured
- Sample mean
- $p_i = Pr(X = x_i) = Pr(we measure x_i)$

$$E[X] = \sum_{i=1}^{n} x_i p$$

For continuous random variable (more details later)

$$\mu = \int x f(x) dx$$

5



- Performance is multidimensional
  - CPU time
  - I/O time
  - Network time
  - Interactions of various components
  - Etc, etc

You will be pressured to provide mean values

- $\cdot$  Understand how to choose the best type for the circumstance
- Be able to detect bad results from others













#### Mean, Median, or Mode?

- Mean
  - If the sum of all values is meaningful
  - Incorporates all available information
- Median
  - Intuitive sense of central tendency with outliers
- What is "typical" of a set of values?
- Mode
  - When data can be grouped into distinct types, categories (categorical data)
- Size of messages sent on a network, Number of cache hits
- Execution time, Bandwidth, Speedup, Cost
- + Categorical data type of operating system, name of school  $_{\rm 28}$



| E           | xample o            | f Geome      | etric Me    | an                                              |
|-------------|---------------------|--------------|-------------|-------------------------------------------------|
| _           |                     |              |             |                                                 |
|             | Perforr             | nance Improv | ement       |                                                 |
| Test Number | Operating<br>System | Middleware   | Application | Avg.<br>Performance<br>Improvement<br>per Layer |
| 1           | 1.18                | 1.23         | 1.10        | 1.17                                            |
| 2           | 1.25                | 1.19         | 1.25        | 1.23                                            |
| 3           | 1.20                | 1.12         | 1.20        | 1.17                                            |
| 4           | 1.21                | 1.18         |             | 1.17                                            |
| 5           | 1.30                |              |             | 1.23                                            |
| 6           | 1.24                |              |             | 1.21                                            |
| 7           | 1.22                |              |             | 1.18                                            |
| 8           | 1.29                |              | -           | 1.20                                            |
| 9<br>10     | 1.30<br>1.22        |              |             | 1.22<br>1.18                                    |
| -           | e Performanc        | -            | -           | 1.10                                            |
| Averag      | je Periormanic      | e improvemer | n per Layer | 1.20                                            |
|             |                     |              |             |                                                 |



# What makes a good mean?

- *Time*-based mean (e.g. seconds)
  - Should be directly proportional to total weighted time
  - Time doubles, mean value doubles
- Rate-based mean (e.g. operations/sec)
  - Should be *inversely proportional* to total weighted time
  - Time doubles, mean value reduced by half
- Which means satisfy these criteria?

33

#### Assumptions

- Measured execution times of *n* benchmark programs
  - T<sub>i</sub>, i = 1, 2, ..., n
- Total work performed by each benchmark is constant
  - F = # operations performed
  - Relax this assumption later
- Execution rate = M<sub>i</sub> = F / T<sub>i</sub>

34

# Arithmetic mean for times

- Produces a mean value that is *directly* proportional to total time
- → Correct mean to summarize *execution time*



35

# Arithmetic mean for rates

- Produces a mean value that is proportional to sum of inverse of times
- But we want inversely proportional to sum of times











 $\overline{M_H} = \frac{n}{\sum_{i=1}^{n} \frac{1}{M_i}}$  $\frac{n}{\sum_{i=1}^{n} \frac{T_i}{F}}$ Fn  $\sum_{i=1}^{n} T_i$ 





|          | System 1 | System 2 | System 3 |
|----------|----------|----------|----------|
|          | 417      | 244      | 134      |
|          | 83       | 70       | 70       |
|          | 66       | 153      | 135      |
|          | 39,449   | 33,527   | 66,000   |
|          | 772      | 368      | 369      |
| Geo mean | 587      | 503      | 499      |
| Rank     | 3        | 2        | 1        |

# Geometric mean normalized to System 1

|          | System 1 | System 2 | System 3 |
|----------|----------|----------|----------|
|          | 1.0      | 0.59     | 0.32     |
|          | 1.0      | 0.84     | 0.85     |
|          | 1.0      | 2.32     | 2.05     |
|          | 1.0      | 0.85     | 1.67     |
|          | 1.0      | 0.48     | 0.45     |
| Geo mean | 1.0      | 0.86     | 0.84     |
| Rank     | 3        | 2        | 1        |

|          | System 1 | System 2 | System 3 |
|----------|----------|----------|----------|
|          | 1.71     | 1.0      | 0.55     |
|          | 1.19     | 1.0      | 1.0      |
|          | 0.43     | 1.0      | 0.88     |
|          | 1.18     | 1.0      | 1.97     |
|          | 2.10     | 1.0      | 1.0      |
| Geo mean | 1.17     | 1.0      | 0.99     |
| Rank     | 3        | 2        | 1        |

# Geometric mean normalized to System 2

# Total execution times

|            | System 1 | System 2 | System 3 |
|------------|----------|----------|----------|
|            | 417      | 244      | 134      |
|            | 83       | 70       | 70       |
|            | 66       | 153      | 135      |
|            | 39,449   | 33,527   | 66,000   |
|            | 772      | 368      | 369      |
| Total      | 40,787   | 34,362   | 66,798   |
| Arith mean | 8157     | 6872     | 13,342   |
| Rank       | 2        | 1        | 3        |

|                | System 1 | System 2 | System 3 |
|----------------|----------|----------|----------|
| Geo mean wrt 1 | 1.0      | 0.86     | 0.84     |
| Rank           | 3        | 2        | 1        |
| Geo mean wrt 2 | 1.17     | 1.0      | 0.99     |
| Rank           | 3        | 2        | 1        |
| Arith mean     | 8157     | 6872     | 13,342   |
| Rank           | 2        | 1        | 3        |

# Geometric mean for times

 Not directly proportional to sum of times

$$\overline{T_G} = \left(\prod_{i=1}^n T_i\right)^{1/n}$$



# Geometric mean for rates

 Not inversely proportional to sum of times



# Geometric mean for rates

- Not inversely proportional to sum of times
- → Geometric mean is **not** appropriate for summarizing rates



51

#### Geometric mean

- Does provide consistent rankings
- Independent of basis for normalization
- But can be consistently wrong!Value can be computed
  - But has no physical meaning



- Cache hit ratios at several levels of cache
  - Percentage performance improvements between successive versions.
  - Performance improvements across protocol layers.

#### Performance Improvement

Example of Geometric Mean

| Test Number | Operating<br>System | Middleware   | Application  | Avg.<br>Performance<br>Improvement<br>per Layer |
|-------------|---------------------|--------------|--------------|-------------------------------------------------|
| 1           | 1.18                | 1.23         | 1.10         | 1.17                                            |
| 2           | 1.25                | 1.19         | 1.25         | 1.23                                            |
| 3           | 1.20                | 1.12         | 1.20         | 1.17                                            |
| 4           | 1.21                | 1.18         | 1.12         | 1.17                                            |
| 5           | 1.30                | 1.23         | 1.15         | 1.23                                            |
| 6           | 1.24                | 1.17         | 1.21         | 1.21                                            |
| 7           | 1.22                | 1.18         | 1.14         | 1.18                                            |
| 8           | 1.29                |              | 1.13         | 1.20                                            |
| 9           | 1.30                | 1.21         | 1.15         | 1.22                                            |
| 10          | 1.22                | 1.15         | -            | 1.18                                            |
| Averag      | ge Performanc       | e Improvemer | nt per Layer | 1.20                                            |

53

#### Summary of Means

- Avoid means if possible
  - Loses information
- Arithmetic

•

- When sum of raw values has physical meaning
- Use for summarizing times (not rates)
- Harmonic
  - Use for summarizing rates (not times)
- Geometric mean
  - Not useful when time is best measure of perf
  - Useful when multiplicative effects are in play

55

# Normalization

- Averaging normalized values doesn't make sense mathematically
  - Gives a number
- But the number has no physical meaning
- First compute the mean
  - Then normalize



# Quantifying variability

- Mean hides information about variability
- $\cdot \;$  How spread are the values
- $\boldsymbol{\cdot}$  . What is the shape of distributions
- Indices of dispersion
- Range
- Variance or standard deviation
- 10- and 90- percentiles
- Semi-interquartile range
- Mean absolute deviation













#### Sample Variance

- Gives "units-squared"
- Hard to compare to mean
- Use standard deviation, s
  - s = square root of variance
  - Units = same as mean

62

# Meanings of the Variance and Standard Deviation

- The larger the spread of the data around the mean, the larger the variance and standard deviation.
- If all observations are the same, the variance and standard deviation are zero.
- The variance and standard deviation cannot be negative.
- Variance is measured in the square of the units of the data.
- Standard deviation is measured in the same units as the data.



















- Numerical data
  - If the distribution is bounded, use the range
  - For unbounded distributions that are unimodal and symmetric, use C.O.V.
  - $\ensuremath{\text{O}}\xspace$  with the second secon



Confidence Interval for the Mean

- The sample mean is an estimate of the population mean.
- Problem: given k samples of the population (with k sample means), get a single estimate of the population mean.
- Only probabilistic statements can be made:
- E.g. we want mean of the population but can get only mean of the sample
- k samples, k estimates of the mean
- Finite size samples, we cannot get the true mean
- We can get probabilistic bounds

75

73

# Determining the Distributions of a Data Set

- A measured data set can be summarized by stating its average and variability
- If we can say something about the distribution of the data, that would provide all the information about the data
  - Distribution information is required if the summarized mean and variability have to be used in simulations or analytical models
- To determine the distribution of a data set, we compare the data set to a theoretical distribution
- Heuristic techniques (Graphical/Visual): Histograms, Q-Q plots
- Statistical goodness-of-fit tests: Chi-square test, Kolmogrov-Smirnov test
  - Will discuss this topic in detail later this semester



- Problem: given two data sets D1 and D2 determine if the data points come from the same distribution.
- Simple approach: draw a histogram for each data set and visually compare them.
- To study relationships between two variables use a scatter plot.
- To compare two distributions use a quantilequantile (Q-Q) plot.

77

# Histogram

- Divide the range (max value min value) into equalsized cells or bins.
- Count the number of data points that fall in each cell.
- Plot on the y-axis the relative frequency, i.e., number of point in each cell divided by the total number of points and the cells on the x-axis.
  Cell size is criticall
  - Cell size is critical! - Sturge's rule of thumb Given n data points, number of bins  $k = |1 + \log_2 n|$







#### Robot Components (Stanley)

- Sensors
- Actuators-Effectors •
- . Locomotion System
- Computer system Architectures •



- Lasers, camera, radar, GPS, compass, antenna, IMU,
- Steer by wire system •
- Rack of PC's with Ethernet for processing information • from sensors





- Performance can be analyzed an many levels
- Sensors speed, accuracy, noise characterization
- Design of algorithms for sensing and control
  Characterizing throughput and delays in the system
- Accuracy of the classification algorithms
- Complexity and accuracy of the planning algorithms











# Document retrieval applications

Information retrieval context - set of retrieved documents - set of relevant documents

 $precision = \frac{relevant \cap retrieved}{retrieved}$ 

 $recall = \frac{relevant \cap retrieved}{relevant}$