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Previously 

•  Focus was on solving matrix inversion problems 
•  Now we look at other properties of matrices 
•  Useful when A represents a transformations 

•  Or A simply represents data 
•  Notion of eigenvectors, eigenvalues  
•  Diagonalization 
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y = Ax

Eigenvalues and Eigenvectors:  
Diagonalization 
•  Given a square matrix A and its eigenvalues and 

eigenvectors – matrix can be diagonalized  

Matrix of eigenvectors Diagonal matrix of eigenvalues 

•  If some of the eigenvalues are the same, eigenvectors 
  are not independent 
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AS = SΛ
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Diagonalization 

•  If there are no zero eigenvalues – matrix is  invertible 
•  If there are no repeated eigenvalues – matrix is diagonalizable  
•  If all the eigenvalues are different then eigenvectors are 

linearly independent 

For Symmetric Matrices 

If A is symmetric 

orthonormal matrix of eigenvectors 

i.e. for a covariance matrix 

Diagonal matrix of eigenvalues 

or some matrix B = A^TA 

Dimensionality Reduction 

•  Many dimensions are often interdependent 
(correlated); 

•  Reduce the dimensionality of problems; 

•  Transform interdependent coordinates into significant 
and independent ones; 

•  Linear and non-linear techniques 
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Singular Value Decomposition 

•  Previously eigenvalue-eigenvector factorization of a 
symmetric matrix, using diagonal an orthogonal 
matrix 

•  Eigenvectors of symmetric matrices can be chosen 
orthogonal 

•  What about general non-square matrices 
•  Key of working with non-square matrices is to 

consider  
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AT A or AAT

Singular value Decomposition 

•  Any m x n matrix A can be factored into 

•  Where columns of   m x m matrix     are eigenvectors 
of        , and the columns of  n x n matrix           are 
eigenvectors of       . The     singular values on the m x 
m diagonal matrix     are square roots of non-zero 
eigenvalues of both         and       .   
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Singular value Decomposition 

•  Any m x n matrix A can be factored into 

•  Columns of       and      give orthonormal basis 
of all fundamental subspaces of A  

•  First r columns of     : column space of A 
•  Last m-r columns of     : left null space of A 
•  First r columns of    : row space of A 
•  Last n-r columns of    : null space of A 
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Example 

•  Image processing, computer vision face recognition 
•  Image e.g. matrix of 200 x 200 grey-level values  can 

be considered as point in high-dimensional space of 
dimension 40,000  

•  Consider set of all images of faces  
•  Premise set of all face images spans lower 

dimensional linear subspace 
•  Use SVD to find the sub-space 
•  Blackboard example   
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Principal Component Analysis -- PCA 
(also called Karhunen-Loeve transformation) 

•  PCA transforms the original input space into a lower 
dimensional space, by constructing dimensions that 
are linear combinations of the given features; 

•  The objective is to consider independent dimensions 
along which data have largest variance (i.e., greatest 
variability);   

Geometric view 

•  Given set of datapoints in D dimensional space – find 
some transformation which will transform the points 
to lower dimensional space.        is  D x d  matrix with 
d orthonormal column vectors 

•    are the new coordinates of     in d-dimensional 
space 

•  Derivation on the board – see handout for more 
details 
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Statistical view 

•  Given multivariate random variable x and set of 
sample points      ,  find d uncorrelated linear 
components of x  such that variance of the 
components is maximized 

•  Such that   

•  Derivation on the board  
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ui
T ui =1 and Var(y1) ≥Var(y2)L

Principal Component Analysis -- PCA 

•  PCA enables transforms a number of possibly 
correlated variables into a smaller number of 
uncorrelated variables called principal components; 

•  The first principal component accounts for as much of 
the variability in the data as possible; 

•  Each succeeding  component (orthogonal to the 
previous ones) accounts for as much of the remaining 
variability as possible.   
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Curse of Dimensionality 

•  One way to deal with dimensionality is to 
assume that we know the form of the 
probability distribution. 

•  For example, a Gaussian model in N 
dimensions has N + N(N-1)/2 parameters to 
estimate. 

•  Requires              data to learn reliably. This 
may be practical. 

Dimension Reduction 

•  One way to avoid the curse of dimensionality 
is by projecting the data onto a lower-
dimensional space. 

•  Techniques for dimension reduction: 
•  Principal Component Analysis (PCA) 
•  Multi-dimensional Scaling.  
•  Independent Component Analysis. 
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Principal Component Analysis  

•  PCA is the most commonly used dimension 
reduction technique. 

•  (Also called the Karhunen-Loeve transform). 
•  Data samples  
•  Compute the mean  
•  Computer the covariance: 

  

€ 

x1,L,xN

€ 

x = 1
N

xi
i=1

N

∑

€ 

Σx =
1
N

(xi − x )(xi − x )T
i=1

N

∑

Principal Component Analysis 

•  Compute the eigenvalues  
   and eigenvectors         of the matrix  
•  Solve  
•  Order them by magnitude: 

•  PCA reduces the dimension by keeping 
direction      such that  
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Principal Component Analysis 

•  For many datasets, most of the eigenvalues 
are negligible and can be discarded. 

The eigenvalue            measures the variation 
In the direction e 

Example: 

Principal Component Analysis 

•  How to get uncorrelated components which  
   Capture most of the variance 
•  Project the data onto the selected 

eigenvectors: 

•  If we consider first M eigenvectors we get 
new lower dimensional representation 

•  Proportion covered by first M eigenvalues   
€ 

yi = ei
T (xi − x )
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10 

PCA Example 

•  The images of an object under different lighting 
lie in a low-dimensional space. 

•  The original images are 256x 256. But the data 
lies mostly in 3-5 dimensions. 

•  First we show the PCA for a face under a range 
of lighting conditions. The PCA components 
have simple interpretations. 

•  Then we plot                  as a function of M for 
several objects under a range of lighting. 

PCA on Faces. 
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PCA & Gaussian Distributions. 

•  PCA is similar to learning a Gaussian 
distribution for the data. 

•        is the mean of the distribution. 
•        is the estimate of the covariance. 

•  Dimension reduction occurs by ignoring the 
directions in which the covariance is small. 
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Limitations of PCA 

•  PCA is not effective for some datasets. 
•  For example, if the data is a set of strings 
•  (1,0,0,0,…), (0,1,0,0…),…,(0,0,0,…,1) then 

the eigenvalues do not fall off as PCA 
requires. 
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PCA and Discrimination 

•  PCA may not find the best directions for discriminating 
between two classes. 

•  Example: suppose the two classes have 2D Gaussian 
densities as ellipsoids.  

•  1st eigenvector is best for representing the probabilities. 
•  2nd eigenvector is best for discrimination. 

Principal Component Analysis -- PCA 

•  Statistical view of PCA 

•  PCA finds n linearly transformed  components so that 
they explain the maximum amount of variance 

•  See hand out/blackboard how to compute the largest 
principal component 

•  We can define PCA in an intuitive way using a 
recursive formulation: 
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Principal Component Analysis -- PCA 

•  Suppose data are first centered at the origin 
(i.e., their mean is 0 ); 

•  We define the direction of the first principal 
component, say     , as follows 

   where       is of the same dimensionality     as 
the data vector  

•  Thus: the first principal component is the 
projection on the direction along which the 
variance of the projection is maximized.         
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u1 = arg  max
u =1

E[(uT x)2]
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u1

Principal Component Analysis -- PCA 

•  Having determined the first k-1 principal 
components, the k-th principal component is 
determined as the principal component of the 
data residual: 

•  The principal components are then given by:         
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Simple illustration of PCA 

First principal component of a two-dimensional data 
set. 

Simple illustration of PCA 

Second principal component of a two-dimensional 
data set. 
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PCA – Geometric interpretation 

•  PCA computes new coordinates of points, i.e. the 
rotates the data (centered at the origin) in such a 
way that the maximum variability of the data is 
aligned with the axes.) 

PCA – How to compute the principal components 
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PCA – How to compute the principal components 

PCA – How to compute the principal components 
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Thus :  the variance of data along direction w can be written as 
                                  wTΣw
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PCA – How to compute the principal components 

PCA -- Summary 

•  The computation of the       is accomplished by solving 
an eigenvalue problem for the sample covariance 
matrix (assuming data have 0 mean): 

•  The eigenvector associated with the largest 
eigenvalue corresponds to the first principal 
component; the eigenvector associated with the 
second largest eigenvalue corresponds to the second 
principal component; and so on… 

•  Thus: The        are the eigenvectors of      that 
correspond to the n largest eigenvalues of          
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PCA -- In practice 

•  The basic goal of PCA is to reduce the 
dimensionality of the data. Thus, one usually 
chooses:  

•  But how do we select the number of 
components n ? 

Determining the number of components 

•  Plot the eigenvalues – each eigenvalue is 
related to the amount of variation explained by 
the corresponding axis (eigenvector);  

•  If the points on the graph tend to level out 
(show an “elbow” shape), these eigenvalues 
are usually close enough to zero that they can 
be ignored. 

•  In general: Limit the variance accounted for. 
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Critical information lies in low dimensional 
subspaces 

 F 
 S 

 A typical eigenvalue spectrum and its division into  
two orthogonal subspaces 

Dimensionality Reduction 

•  Need to analyze large amounts multivariate data. 
•  Human Faces. 
•  Speech Waveforms. 
•  Global Climate patterns. 
•  Gene Distributions. 

•  Difficult to visualize data in dimensions just greater  
than three. 

•  Discover compact representations of high dimensional data. 
•  Visualization. 
•  Compression. 
•  Better Recognition. 
•  Probably meaningful dimensions. 

Applications 
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Two methods 

•  Tenenbaum et.al’s Isomap Algorithm 
–  Global approach. 
–  On a low dimensional embedding 

•  Nearby points should be nearby. 
•  Farway points should be faraway. 

•  Roweis and Saul’s Locally Linear Embedding Algorithm 
–  Local approach 

•  Nearby points nearby 

Dimensionality reduction cont. 

•  Multidimensional scaling  
•  Often used for visualization and exploring similarities 

and dissimilarities between data 
•  Problem: Start with matrix of similarities and/or 

dissimilarities 
•  Goal: compute set of coordinates in lower 

dimensional space  
•  For small dimensions visualize the coordinates 

40 
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Multidimensional scaling 

•  Given (dis) similarity between more general objects  
•  Find coordinates where distances are preserved 
•  Example: given systems A … to … F rate their similarity at 

1 to 10 scale  
•  For three systems it is easy to rank them in 1D to see the 

similarities  
•  With many systems more dimensions are needed 
•  Key is to define distance/similarity measure 
•  This depends of the type of data 

41 

Non-linear dimensionality reduction 

•  MDS relies of distance measurements  
•  Discover true, linear structure of the data 
•  PCA finds low-dimensional embedding 
•  MDS finds embedding which preserves distances 
•  If distances are Euclidean MDS is equivalent to PCA 

42 
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MultiDimensional Scaling.. 
•  Multidimensional scaling 
•  Here we are given pairwise distances instead of 

the actual data points. 
•  First convert the pairwise distance matrix into the 

dot product matrix  
•  After that same as PCA. 

If we preserve the 
pairwise distances do 
we preserve the 
structure?? 

€ 

XXT

Example of MDS… Example Multidimensional scaling 
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How to get dot product matrix from pairwise 
distance matrix? 

k j 

i 

Distances and inner products 

MDS.. 

•  MDS—origin as one of the points and orientation 
arbitrary 

•  How to compute the matrix of inner products 
•  Can be computed from distances  

•  In matrix form  

From distances to inner products 
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B =
1
2
(I − uTu)D(I − uuT )
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u =
1
n
(1,L,1)

€ 

B = XXT
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bij = xi
T x j
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Non-linear dimensionality reduction 

•  MDS relies of distance measurements  
•  Discover true, linear structure of the data 
•  PCA finds low-dimensional embedding 
•  MDS finds embedding which preserves distances 
•  If distances are Euclidean MDS is equivalent to PCA 
•  But – we can have two points close by but being at 

completely different part of the surface 
•  Idea: discover non-linear nature of the complex 

observations 
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Multidimensional Scaling 

•  Need only notion of similarity 
•  This can be defined to different types of data 

differently 
•  Quantitative data 
•  Ordinal data (some product is better then another) 
•  Interval scale data – when differences are meaningful 
•  General idea – dissimilarities are treated as 

Euclidean distances 

48 
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Isomap 

•  Estimate the geodesic distance between faraway 
points. 

•  For neighboring points Euclidean distance is a 
good approximation to the geodesic distance 

•  Combine advantages of PCA and MDS 
•  For farway points estimate the distance by a 

series of short hops between neighboring points. 
–  Find shortest paths in a graph with edges connecting 

neighboring data points 

Non-linear dimensionality reduction 

Locally Linear Embedding 
•   Manifold is a topological space which is locally Euclidean.” 

Fit Locally , Think Globally 



26 

Isomap - Algorithm 

•  Determine the neighbors. 
–  All points in a fixed radius. 
–  K nearest neighbors 

•   Construct a neighborhood graph. 
–  Each point is connected to the other if it is a K nearest neighbor. 
–  Edge Length equals the Euclidean distance 

•  Compute the shortest paths between two nodes 
–  Floyd’s Algorithm 
–  Dijkstra’s ALgorithm 

•  Construct a lower dimensional embedding. 
Classical MDS 
See http://isomap.stanford.edu/ for more details 

ISOMAP algorithms 

Isomap 
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Residual Variance 

Face Images 
SwisRoll 

Hand Images 2 
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•  We expect each data point and its  
•  neighbours to lie on or close 
•  to a locally linear patch of the 
•  manifold. 
•  Each point can be written 
as a linear combination of its 
neighbors. 
•  The weights chosen to 
minimize the reconstruction 
error. 

Fit Locally… Locally Linear Embedding 

Important property... 

•  The weights that minimize the reconstruction errors 
are invariant to rotation, rescaling and translation of 
the data points. 
•  Invariance to translation is enforced by adding the 

constraint that the weights sum to one. 
•  The same weights that reconstruct the datapoints in 

D dimensions should reconstruct it in the manifold in 
d dimensions. 
•  The weights characterize the intrinsic geometric 

properties of each neighborhood. 

Locally Linear Embedding 



30 

Think Globally… Locally Linear Embedding 
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Grolliers Encyclopedia 

Summary.. 

ISOMAP LLE 

Do MDS on the geodesic distance 
matrix. 

Model local neighborhoods as 
linear a patches and then embed 
in a lower dimensional manifold. 

Global approach Local aproach 

Dynamic programming 
approaches 

Computationally efficient..sparse 
matrices 

Convergence limited by the 
manifold curvature and number of 
points. 

Good representational capacity 
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Short Circuit Problem??? 

Unstable? 
Only free parameter is 
How many neighbours? 
•  How to choose 

neighborhoods. 
•  Susceptible to short-

circuit errors if 
neighborhood is larger 
than the folds in the 
manifold. 

•  If small we get isolated 
patches. 
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Manifolds of Perception..Human Visual System 

You never see the  
same face twice. 

Preceive constancy when 
raw sensory inputs are in flux.. 

MDS is more general.. 

•  Instead of pairwise 
distances we can use 
paiwise “dissimilarities”. 

•  When the distances are 
Euclidean MDS is 
equivalent to PCA. 

•  Eg. Face recognition, 
wine tasting 

•  Can get the significant 
cognitive dimensions. 


