Workload Characterization

1

Objective

- To observe the key characteristics of a workload, and develop a workload model that can be used to test multiple alternatives
 - > Both analytical models and simulations require a workload model
- □ Example: modeling a web server
 - > Inter-arrival process, service demands
 - Need information about distributions, not just summary statistics
 - > Classes of requests

Wokload characterization techniques

- Select components and parameters
- Techniques: Averaging, Single Parameters Histogram, Fitting distribution to data, Multiple-parameters histogram, Principal Component analysis, Markov Models
- Clustering, Minimum Spanning tree
- Example of workload parameters: transaction types, instructions, packet sizes, page-reference pattern, sourcedestination of a packet

3

Workload Characterization

- □ Choose parameters that depend on the workload (e.g. type of requests) not system (elapsed time, CPU time)
- Example characteristics of service request
 - arrival time
 - type or request
 - duration of request
 - quantity of the resource demanded

Characterizing Data

- Previously: Averaging, histograms, multiparameter histograms, fitting distributions to the data
- □ Fitting distribution to data: hypothesizing what family of distributions, e.g. Poisson, normal, is appropriate without worrying yet about the specific parameters for the distribution
 - Have to consider the shape of the distribution

5

Heuristics for hypothesizing a distribution

- Summary statistics can provide some information
 - > Coefficient of variation (CV)
 - CV = 1 for exponential distribution, CV > 1 for hyperexponential, CV < 1 for hypo-exponential, erlang
 - But CV not useful for all distributions, e.g., $N(0,\sigma^2)$
 - > For discrete distributions, Lexis ratio τ = σ^2/μ has the same role that CV does for continuous distributions
 - τ = 1 for Poisson, τ < 1 for binomial, τ > 1 for negative binomial

Heuristics cont'd

Histograms

- Break up the data into k disjoint adjacent intervals of the same width and compute the proportion of data points that lie in each interval
 - Sturge's rule of thumb $k = \lfloor 1 + \log_2 n \rfloor$ Given n data points
- Visually compare the shape of the histogram to that of known distributions

7

Estimation of Parameters

- □ After hypothesizing a distribution, next step is to specify their parameters so that we can have a completely specified distribution
- Several techniques have been developed
 - Method of moments, Maximum likelihood estimators, Least-squares estimators

Method of moments

- Compute the first k moments of the sample data
- Equate the first few population moments with the corresponding sample moments to obtain as many equations as there are unknown parameters
 - Solve these equations simultaneously to obtain the required estimates
 - > Example

9

Maximum Likelihood Estimation

Suppose we have hypothesized a discrete distribution for our data that has one unknown parameter θ . Let $p_{\theta}(x)$ denote the pmf for this distribution. If we have observed the data $X_1, X_2, ..., X_n$, we define the likelihood function $L(\theta)$ as follows: $L(\theta) = p_{\theta}(X_1)p_{\theta}(X_2)....p_{\theta}(X_n)$

The MLE of θ is defined to be the value of θ that maximizes L(θ)

For continuous distributions, $L(\theta)$ is defined analogously

MLE for exponential distribution

$$p(\beta) = 1/\beta e^{-x/\beta}$$

$$L(\beta) = (1/\beta e^{-X_1/\beta})(1/\beta e^{-X_2/\beta})....(1/\beta e^{-X_n/\beta})$$

$$= \beta^{-n} \exp(-\frac{1}{\beta} \sum_{i=1}^{n} X_i)$$

Taking logs on both sides, we have

$$\ln L(\beta) = -n \ln \beta - \frac{1}{\beta} \sum_{i=1}^{n} X_i$$

It can be shown through standard differential calculus by setting the derivative to 0 and solving for β that the value of β that maximizes L(β) is given by

$$\beta = (\sum_{i=1}^{n} X_i)/n = \overline{X}(n)$$

11

<u>Determining how representative the</u> <u>fitted distributions are</u>

- Both heuristic procedures and statistical techniques can be used for this
- Heuristics (Graphical/Visual techniques)
 - Density/Histogram Overplots and Frequency Comparisons
 - Q-Q plots
 - > Probability plots (P-P plots)
 - > Distribution Function Difference Plots

Statistical techniques

- □ Goodness-of-fit tests
 - > Chi-square tests
 - > Kolmogorov-Smirnov (KS) tests
 - > Anderson-Darling (AD) tests
 - > Poisson-process test

13

Chi-square tests

- ☐ First divide the entire range of the fitted distribution into k adjacent intervals
- $\hfill\Box$ Tally the number of data points in each interval o_i
- $lue{}$ Compute the expected proportion of data points in each interval e_i
- Compute
 - D has a chi-square distribution with k-1 degrees of freedom
 - > If the computed D less than $\chi^2(1-\alpha,k-1)$ then the observations come from the specified distribution
- Example

Chi-square tests cont'd

- Cell sizes should be chosen so that the expected probabilities e; are all equal
- ☐ If the parameters of the hypothesized distribution are estimated from the sample then the degrees of freedom for the chi-square statistic should be reduced to k-r-1, where r is the number of estimated parameters
- ☐ For continuous distributions and for small sample sizes, the chi-square test is an approximation

15

Other tests

- Kolmogorov-Smirnov
 - > Based on the observation that the difference between the observed CDF $F_o(x)$ and the expected CDF $F_e(x)$ should be small
- Anderson-Darling
 - More powerful in detecting differences in the tails of distributions

Fitting distributions to data in practice

- Use distribution-fitting software!
 - > ExpertFit software from Averill Law
 - > BestFit software
 - Download software and try it out on random data that you generate or data in exercises
 - · See links on class web site

17

Principal Component Analysis

- □ Given set of workload parameters, determine set of factors
- Use weighted sum of parameters to classify the components $y = \sum_{i=1}^{n} a_i x_i$
- □ PCA assigned weights to components such that they are maximally discriminative, weights are determined via PCA
- Principal components are ordered, first principal component explains highest variance

Example

 $\hfill \square$ Number of packets send and received $x_{s},\!x_{r}$ by stations in local area network

Obs.	Variables		Normalize	Normalized Variables		Principal Factors	
No.	x_s	x_r	x'_s	x'_r	y_1	y_2	
1	7718	7258	1.359	1.717	2.175	-0.253	
2	6958	7232	0.922	1.698	1.853	-0.549	
3	8551	7062	1.837	1.575	2.413	0.186	
4	6924	6526	0.903	1.186	1.477	-0.200	
5	6298	5251	0.543	0.262	0.570	0.199	
6	6120	5158	0.441	0.195	0.450	0.174	
7	6184	5051	0.478	0.117	0.421	0.255	
8	6527	4850	0.675	-0.029	0.457	0.497	
9	5081	4825	-0.156	-0.047	-0.143	-0.077	
10	4216	4762	-0.652	-0.092	-0.527	-0.396	
17	3644	3120	-0.981	-1.283	-1.601	0.213	
18	2020	2946	-1.914	-1.409	-2.349	-0.357	
$\sum x$	96336	88009	0.000	0.000	0.000	0.000	
$\sum x^2$	567119488	462661024	17.000	17.000	32.565	1.435	
Mean	5352.0	4889.4	0.000	0.000	0.000	0.000	
Std. Dev.	1741.0	1379.5	1.000	1.000	1.384	0.290	

Example

- ☐ Find correlation matrix
- $lue{}$ Find eigenvalues of the correlation matrix
- □ Sort them in decreasing order
- □ Find corresponding eigenvectors

PCA example

Compute correlation

$$R_{x_s,x_r} = \frac{\frac{1}{n} \sum_{i=1}^{n} (x_{si} - \bar{x}_s)(x_{ri} - \bar{x}_r)}{s_{x_s} s_{x_r}} = 0.916$$

Create correlation matrix

$$\mathbf{C} = \left[\begin{array}{cc} 1.000 & 0.916 \\ 0.916 & 1.000 \end{array} \right]$$

Covariance vs. correlations

$$\rho_{ij} = \frac{\text{cov}(X_i, X_j)}{\delta_i \delta_j}$$

21

- $\rho_{ij} = \frac{\text{cov}(X_i, X_j)}{\delta_i \delta_j}$
- □ Eigenvalues of the correlation matrix C
- □ Are 1.916 and 0.084
- Eigenvectors

$$\mathbf{q}_1 = \left[\begin{array}{c} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{array} \right] \quad \mathbf{q}_2 = \left[\begin{array}{c} \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} \end{array} \right]$$

□ Values of principal factors

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \frac{x_s - 5352}{1741} \\ \frac{x_r - 4889}{1380} \end{bmatrix}$$

PCA Example

□ First factor explains 95.7% of variations (sum of squares of principal factor 1 gives the percentage of variation explained by that factor)

 Second factor explains only 4.3% of the variations and can be ignored

- Can only use the first principal components to rank systems/ servers
- lacksquare Value of y_1 can rank systems into low, medium or high-load stations

23

Clustering

- Many workloads consist of multiple classes of customers/requests
- Clustering is a technique used for classifying requests into multiple groups where members of one group are as "similar" as possible
 - Intragroup variance should be as small as possible whereas intergroup variance should be as large as possible
 - Non-hierarchical clustering: start with k clusters, move members around until intragroup variance is minimized
 - > Hierarchical clustering: agglomerative and divisive

Clustering

- □ Take a sample of workload data
- □ Select workload parameters
- □ Select distance measure
- □ Remove outliers
- Scale observations
- □ Perform Clustering
- ☐ Interpret results

Minimum spanning tree method

- Agglomerative hierarchical clustering technique
- Algorithm
 - Start with k = n clusters
 - Find the centroid of the ith cluster. The centroid has parameter values equal to the average of all points in the cluster
 - 3. Compute the intercluster distance matrix (distance between centroids)
 - 4. Find the smallest nonzero element of the distance matrix. Merge the two clusters with the smallest distance and any other clusters with the same distance
 - 5. Repeat steps 2 to 4 until all components are in the same cluster

27

Minimum spanning tree method cont'd

- Results of the clustering process can be represented as a spanning tree (a dendrogram) where each branch of the tree represents a cluster and is drawn at a height where the cluster merges with the neighboring cluster
- Given any maximum allowable intracluster distance, by drawing a horizontal line at the specified height we can obtain the desired clusters

Example

Consider a workload with five components and two parameters

Program	CPU time	Disk I/O
Α	2	4
В	3	5
С	1	6
D	4	3
Е	5	2

29

Example cont'd

First iteration:

	Α	В	С	D	Е
Α	0	20.5	5 ^{0.5}	5 0.5	130.5
В		0	5 ^{0.5}	5 ^{0.5}	130.5
С			0	18 ^{0.5}	320.5
D				0	20.5
Ε					0

Minimum inter-cluster distance is between A and B, and D and E. The two pairs are merged

Example cont'd

- Second iteration:
 - > Centroid of AB is {(2+3)/2),(4+5/2)}, I.e. {2.5,4.5}. Similarly for DE it is {4.5,2.5}

		AB	С	DE
	AB	0	4.5 ^{0.5}	8 ^{0.5}
	С		0	24.5 ^{0.5}
> Merge AB and C	DE			0

31

Example cont'd

 $lue{}$ Third iteration: merge ABC and DE to get a single cluster ABCDE

Additional Reading

- □ Articles on workload characterization by Calzorossa and Feitelson
 - > On class web site
- More detailed discussion on clustering algorithms next week