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Probability Distributions, Confidence Intervals 

CS 700 
Jana Kosecka 

Review 

•  Statistical Summarization of data 

•  Mean, median, mode, variance, skewness 
•  Quantiles, Percentiles,  
•  Issues of robustness 
•  Suitability of different metrics (harmonic vs, 

arithmethic mean, mean vs. mode) 
•  Histograms  

Continuation 

•  Previous summarization obtained only based on 
some sample of the data from the population 

•  How confident are we in the measurements 
•  Need to understand sources of errors 

•  Typically making some assumption about their 
characteristic probability distributions  

•  Next review of some distribution  
•  Follow up estimation of confidences 
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Review of Probability Concepts 

•  Classical (theoretical) approach:  

•  Empirical approach (relative frequency): 

•  The relative frequency converges to the 
probability for a large number of 
experiments. 

process has to be 
known! 
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Review of Probability Rules 

1.  A probability is a number between 0 and 1 
assigned to an event that is the outcome of an 
experiment:  

2.  Complement of event A. 

3.  If events A and B are mutually exclusive then 
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Review of Probability Rules (cont’d) 

4.  If events A1, …, AN  are mutually exclusive and 
collectively exhaustive then: 

5.  If events A and B are not mutually exclusive then: 
6.  Conditional Probability: 
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Review of Probability Rules (cont’d) 

7.  If events A and B are independent (i.e., P[A] = P[A|
B] and P[B]=P[B|A]) then: 

8.  If events A and B are not independent then 

9.  Theorem of Total Probability: if events A1, …, AN  
are mutually exclusive and collectively exhaustive 
then 

€ 

P[A and B] = P[A,B] = P[A]P[B]
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Discrete Probability Distribution 

•  Distribution: set of all possible values and their 
probabilities. 

•  Cumulative distribution 

€ 

F(x) = Pr[X ≤ x] = P(X = xi) = p(xi)
xi≤x
∑

xi≤x
∑
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Moments of a Discrete Random Variable 

•  Expected Value: 

•  k-th moment: 

€ 

µ = E[X] = Xi
∀i
∑ P[Xi]

€ 

µ = E[X k ] = Xi
k

∀i
∑ P[Xi]

mean 
second moment 
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Central Moments of a Discrete Random Variable 

•  k-th central moment: 

•  The variance is the second central moment: 

€ 

E[(X − X )k ] = (
∀i
∑ Xi − X )k P[Xi]
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Central Moments of a Discrete Random Variable 

variance average 
12 

Properties of the Mean 

•  The mean of the sum is the sum of the means. 

•  If X and Y are independent random variables, then 
the mean of the product is the product of the 
means. 
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Discrete Random Variables 

•  Binomial 
•  Hypergeometric 
•  Negative Binomial 
•  Geometric 
•  Poisson 
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The Binomial Distribution 

•  Distribution: based on carrying out independent 
experiments with two possible outcomes: 
–  Success with probability p and 
–  Failure with probability (1-p). 

•  A binomial r.v. counts the number of successes in n 
trials. 

•  Probability that we get k success in n trials is 
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The Binomial Distribution 
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The Binomial Distribution 

+ 
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Shape of the Binomial Distribution 

p = 0.5  symmetric for any n © 2001 D. A. Menascé. 
All Rights Reserved. 
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Shape of the Binomial Distribution 

p = 0.2 right skewed 
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Shape of the Binomial Distribution 

p = 0.8 left skewed © 2001 D. A. Menascé. 
All Rights Reserved. 
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Moments of the Binomial Distribution 

•  Average: n p 
•  Variance: 
•  Standard Deviation: 
•  Coefficient of Variation: 
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Hypergeometric Distribution 

•  Binomial was based on experiments with equal success 
probability (n-draws with replacements) 

•  Hypergeometric: not all experiments have the same 
success probability (n-draws without replacements) 

•  Given a sample size of n out of a population of size N 
with A known successes in the population, the 
probability of k successes is 

total # of possible samples 

choose (n-k) failures from 
N-A failures in the population 

choose k successes out of A 
successes in the population 

N 
n A 

N-A 
k 

n-k 
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Hypergeometric Distribution 

In Excel: 
Pr[X=k]=HYPGEOMDIST (k,n,A,N) 

© 2001 D. A. Menascé. 
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Moments of the Hypergeometric 

•  Average: 

•  Standard Deviation: 

•  If the sample size is less than 5% of the 
population, the binomial is a good approximation 
for the hypergeometric.   
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Negative Binomial Distribution 

•  Probability of success is equal to p and is the same on 
all trials. 

•  Random variable X counts the number of trials until 
the k-th success and r failures is observed. 

•  Keep on observing until predefined number r of 
failures occurred X ~ NB(r,p)  

•  As opposed to binomial X~B(n,p)  

•  If r is integer waiting time in Bernoulli process 

€ 

P[X = k] =
k + r −1
k −1

 

 
 

 

 
 1− p( )r pk
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Negative Binomial Distribution 

In Excel: 
Pr [X=n] = NEGBINOMDIST (n-k,k,p) 
Pr [X=r+k] = NEGBINOMDIST (r,k,p) © 2001 D. A. Menascé. 

All Rights Reserved. 
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Moments of the Negative Binomial 
Distribution 

•  Average: 

•  Standard Deviation: 

•  Coefficient of Variation: 

© 2001 D. A. Menascé. 
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Geometric Distribution 

•  Special case of the negative binomial with k=1. 
•  Probability of failures until the first success 
•  Probability that the first success occurs after n 

trials is 

€ 

p[X = n] = p(1− p)n−1 n =1,2,...

© 2001 D. A. Menascé. 
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Geometric Distribution 
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Moments of the Geometric Distribution 

•  Average:  

•  Standard Deviation:  

•  Coefficient of Variation:  

© 2001 D. A. Menascé. 
All Rights Reserved. 
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Poisson Distribution 

•  Used to model the number of arrivals over a given 
interval, e.g., 
–  Number of requests to a server 
–  Number of failures of a component  
–  Number of queries to the database. 

•  A Poisson distribution usually arises when arrivals 
come from a large number of independent sources. 

© 2001 D. A. Menascé. 
All Rights Reserved. 
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Poisson Distribution 

•  Distribution: 

•  Parameter λ number of expected events during time 
interval 

•  Counting arrivals in an interval of duration t: 

•  Average = λ 
© 2001 D. A. Menascé. 
All Rights Reserved. 
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Poisson Distribution 

In Excel: 
P[X=k] = POISSON (k,λ,FALSE) 
P[X≤k] = POISSON (k,λ,TRUE) 
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Continuous Random Variables 

© 2001 D. A. Menascé. 
All Rights Reserved. 
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Relevant Functions 

•  Probability density function (pdf) of r.v. X: 

•  Cumulative distribution function (CDF):  

•  Tail of the distribution (reliability function): 
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Continuous Probability Distribution 

•  Distribution provides probability for all possible 
values 

•  Normal distribution, Gaussian distribution, Bell 
curve 

•  Cummulative probability distribution 

€ 

F(x) = Pr[X ≤ x] = f (t)dt
−∞

x

∫
© 2001 D. A. Menascé. 
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Moments 

•  k-th moment: 

•  Expected value (mean): first moment 

•  k-th central moment: 

•  Variance: second central moment 
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The Uniform Distribution 

•  pdf: 

•  Mean: 

•  Variance:  

© 2001 D. A. Menascé. 
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The Uniform Distribution 

0 1 

1 

0.2 0.5 

P[0.2<X<0.5]=(0.5-0.2)x1.0=0.3 

U(0,1) 

© 2001 D. A. Menascé. 
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The Normal Distribution 

•  Many natural phenomena follow a normal distribution. 
•  The normal distribution can be used to approximate the 

binomial and the Poisson distributions. 
•  Two parameters: mean and standard deviation.  

€ 

f (x) = N(µ,σ)

© 2001 D. A. Menascé. 
All Rights Reserved. 
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The Normal Distribution 
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The Standard Normal Distribution 

•  Standard – zero mean and unit variance 
•  To use tables for computing values related to the 

normal distribution, we need to standardize a normal 
r.v. as 

•  Given X, compute a Z value z. 
•  Find the area value in a Table (Prob [0<Z<z]). 

standard normal score 

© 2001 D. A. Menascé. 
All Rights Reserved. 
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Normal CDF 

In Excel: 
FX(x)=NORMDIST(x,µ,σ,TRUE) 
fX(x)=NORMDIST(x,µ,σ,FALSE) 

In Matlab 
X = randn(n) 
P = normcdf(x,mu.sigma) 

© 2001 D. A. Menascé. 
All Rights Reserved. 
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Using Normal Tables 

© 2001 D. A. Menascé. 
All Rights Reserved. 
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The Normal as an Approximation to the 
Binomial Distribution 

•  The normal can approximate the binomial if the 
variance of the binomial (works for large n) 

•  Binomial: 

•  Transformation: 

•   To avoid exact calculations for large n 
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The Normal as an Approximation to the 
Binomial Distribution 

•  Consider a binomial r.v. X with average 50 and 
variance 25. What is  

•  Transformation: 

•  Using the table, the area between 50 and 60 for 
Z=2.0 is 0.4772. So, 

© 2001 D. A. Menascé. 
All Rights Reserved. 
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The Normal as an Approximation to the 
Poisson Distribution 

•  The normal can approximate the Poisson distribution 
if λ > 5.  

•  Poisson: 

•  Transformation: 
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The Lognormal Distribution 

•  It is a random variable such that its natural 
logarithm has a normal distribution. 

•  Suitable for effect which have multiplicative 
factors (e.g. long term discount factor as product of short term 
discounts, attenuation of a wireless channel) 

Y = ln X  (X and Y are r.v.’s)  and Y = N(µ,σ) 

© 2001 D. A. Menascé. 
All Rights Reserved. 
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The Lognormal distribution 

•  Mean: 

•  Standard Deviation:   
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Lognormal CDF 

In Excel: 
FX(x) = LOGNORMDIST(x, µlnx,σlnx) 

50 

Lognormal DF, CDF 

© 2001 D. A. Menascé. 
All Rights Reserved. 
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The Exponential Distribution 

•  Widely used in queuing systems to model the 
inter-arrival time between requests to a system. 

•  If the inter-arrival times are exponentially 
distributed then the number of arrivals in an 
interval t has a Poisson distribution and vice-versa. 

•  CDF 

© 2001 D. A. Menascé. 
All Rights Reserved. 
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The Exponential Distribution 

•  Mean and Standard Deviation: 

•  The COV is 1. The exponential is the only 
continuous r.v. with COV=1. 

•  The exponential distribution is “memoryless.” The 
distribution of the residual time until the next 
arrival is also exponential with the same mean as 
the original distribution. 
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Generation of Random Variables 

•  randomly generate 
   a number u = U(01,) 
•  x = F-1 (u) where 
   F is the CDF 
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Examples of CDFs and Their Inverse 
Functions 
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Confidence Interval for the Mean 

•  The sample mean is an estimate of the population 
mean. 

•  Problem: given k samples of the population (with k 
sample means), get a single estimate of the 
population mean. 

•  Only probabilistic statements can be made: 
•  E.g. we want mean of the population but can get 

only mean of the sample   
•  k samples, k estimates of the mean  
•  Finite size samples, we cannot get the true mean 
•  We can get probabilistic bounds 

56 

Confidence Interval for the Mean  

where, 
   :  confidence interval 

           : significance level 
           : confidence level (usually 90 or 95%) 

       : confidence coefficient. 

How to determine confidence interval ?  
e.g. use 5% and 95% percentiles on sample means as bounds 
Significance level e.g. 0.1 

αµ −=≤≤ 1]Pr[ 21 cc

),( 21 cc

)1(100 α−
α−1

€ 

α
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Confidence for the mean 

•  Issue how to estimate confidence interval ?  

•  E.g. take k samples, estimate k-means, sort them 
in increasing order take  

•  To estimate 90% confidence interval, use 5-
percentile and 95-percentile of the sample means 
as confidence bounds 

•  Possible to estimate it from single sample  
•  Thanks to central limit theorem – statement about  
distribution of sample mean 
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Central Limit Theorem  

•  If the observations in a sample are independent and 
come from the same population that has mean µ and 
standard deviation σ then the sample mean for large 
sample has a  normal distribution with mean µ and 
standard deviation σ/ 
.


•  The standard deviation of the sample mean is called 
the standard error. 

•  Different from standard deviation  
•  As sample size increases the standard error goes down 

n

€ 

x ~ N(µ,σ / n )
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Central Limit Theorem  

Population (N values) 

x1 x2 xM 

. . . 

. . . 

sample (n values) sample (n values) sample (n values) 

Population mean = µ 
Population std deviation = σ 

Average of x1, …, xM = µ 
Standard deviation of x1, …, xM = σ /sqrt(n) 
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Confidence Interval  

)/,/( 2/12/1 nszxnszx αα −− +−

•  100 (1-α)% confidence interval for the population mean: 

    : sample mean 
s: sample standard deviation 
n: sample size 
          : (1-α/2)-quantile of a unit normal variate ( N(0,1)). 

x

2/1 α−z
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Example of Confidence Interval Computation 
CPU 
Time 

(msec)
5.76 n 24
2.67 sample mean 4.51
3.77 sample std 7.56
2.27 alpha 0.1
2.83 conf level 90
1.05 1-(alpha/2) 0.95
2.61 z0.95 1.645  from a Normal Table
1.06
5.78 c1 1.97
3.51 c2 7.04
2.77
1.83 With 90% confidence the population mean
1.77 is in the interval 1.97 7.04
1.19
2.21

24.80
1.80
1.34
1.28
1.21
2.15
1.09
1.34

32.07
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Quantile-Quantile (Q-Q plots) 

•  Used to compare distributions 
•  E.g. compare empirical with theoretical 

distribution 
•  Plot the quantiles against each other 
•  “Equal shape” is equivalent to “linearly related 

quantile functions.” 
•  A Q-Q plot is a plot of the type (Q1(p),Q2(p)) 

where Q1(p) is the quantile function of data set 1 
and Q2(p) is the quantile function of data set 2. 

•  The values of p are (i-0.5)/n where n is the size of 
the smaller data set. 
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Example of a Quantile-Quantile 
Plot 

•  One thousand values are suspected of coming from 
an exponential distribution (see histogram) 

•  The quantile-quantile plot is pretty much linear, 
which confirms the conjecture. 

Histogram
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Data for Quantile-Quantile Plot 

qi yi xi
0.100 0.22 0.21
0.200 0.49 0.45
0.300 0.74 0.71
0.400 1.03 1.02
0.500 1.41 1.39
0.600 1.84 1.83
0.700 2.49 2.41
0.800 3.26 3.22
0.900 4.31 4.61
0.930 4.98 5.32
0.950 5.49 5.99
0.970 6.53 7.01
0.980 7.84 7.82
0.985 8.12 8.40
0.990 8.82 9.21
1.000 17.91 18.42
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y = 0.9642x + 0.016
R2 = 0.9988
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Theoretical Q-Q Plot 

•  Compare one empirical data set with a theoretical 
distribution. 

•  Plot (xi, Q2([i-0.5]/n)) where xi is the  
 [i-0.5]/n quantile of a theoretical distribution 
(F-1([i-0.5]/n)) and Q2([i-0.5]/n) is the i-th 
ordered data point. 

•  If the Q-Q plot is reasonably linear the data set 
is distributed as the theoretical distribution. 
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What if the Inverse of the CDF Cannot be 
Found? 

•  Use approximations or use statistical tables  
–  Quantile tables have been computed and 

published for many important distributions 
•  For example, approximation for N(0,1): 

•  E.g. to compute x for 95% quantile,  

•  For N(µ,σ) the xi values are scaled as 
before plotting 

])1([91.4 14.014.0
iii qqx −−=

€ 

µ +σxi

€ 

qi = 0.95,xi =1.64
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y = 1.0505x + 0.0301
R2 = 0.9978
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intercept: mean
slope: standard deviation
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Normal Probability Plot
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Normal Probability Plot 
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Normal Probability Plot 
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