Probability Distributions, Confidence Intervals

CS 700 Jana Kosecka

Review

- Statistical Summarization of data
- Mean, median, mode, variance, skewness
- Quantiles, Percentiles,
- Issues of robustness
- Suitability of different metrics (harmonic vs, arithmethic mean, mean vs. mode)
- Histograms

Continuation

- Previous summarization obtained only based on some sample of the data from the population
- How confident are we in the measurements
- Need to understand sources of errors
- Typically making some assumption about their characteristic probability distributions
- Next review of some distribution
- Follow up estimation of confidences

Review of Probability Concepts

• Classical (theoretical) approach:

Total Number of Events

No. Ways Event A Can Occur process has to be . known!

4

• Empirical approach (relative frequency):

No. Times Result A Occurred in the Experiment Total Number of Observations

• The relative frequency converges to the probability for a large number of experiments.

<list-item><equation-block><equation-block><equation-block><equation-block><equation-block>

Discrete Random Variables

- Binomial
- Hypergeometric
- Negative Binomial
- Geometric
- Poisson

The Binomial Distribution

- Distribution: based on carrying out independent experiments with two possible outcomes:
 - Success with probability *p* and
 - Failure with probability (1-p).
- A binomial r.v. counts the number of successes in n trials.
- Probability that we get k success in n trials is

$$P[X = k] = \binom{n}{k} p^{k} (1-p)^{n-k} = \frac{n!}{k!(n-k)!} p^{k} (1-p)^{n-k}$$

Shape of the Binomial Distribution 1.0 0.9 Probability Distribution 8.0 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 0 4 5 6 7 8 9 10 3 p = 0.2 right skewed © 2001 D. A. Menascé. All Rights Reserved. 18

Moments of the Hypergeometric	
• Average: $\frac{nA}{N}$	
• Standard Deviation: $\sqrt{\frac{nA(N-A)}{N^2}}\sqrt{\frac{N-n}{N-1}}$	
• If the sample size is less than 5% of the population, the binomial is a good approximation for the hypergeometric.	
© 2001 D. A. Menascé. All Rights Reserved.	23

Negative Binomial Distribution

- Probability of success is equal to *p* and is the same on all trials.
- Random variable X counts the number of trials until the *k*-th success and r failures is observed.
- Keep on observing until predefined number r of failures occurred X ~ NB(r,p)
- As opposed to binomial X~B(n,p)

$$P[X = k] = \binom{k+r-1}{k-1} (1-p)^r p^k$$

• If r is integer waiting time in Bernoulli process

Geometric Distribution • Special case of the negative binomial with k=1. • Probability of failures until the first success • Probability that the first success occurs after n trials is $p[X = n] = p(1 - p)^{n-1}$ n = 1, 2, ...

© 2001 D. A. Menascé. All Rights Reserved.

$$P[k \text{ arrivals in } [0, t)] = \frac{\langle \lambda I \rangle e}{k!} \quad k = 0, 1, ..., \infty$$
• Average = λ
© 2001 D. A. Menascé.

Poisson Distribution 0.002f 0.0101 0.0293 0.0671 0.1301 0.2202 0.3328 0.4579 0.5830 0.6968 0.7916 0.8645 0.9165 0.9165 0.9153 0.9730 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0 0.0189 0.0378 0.0630) 1251) 1251) 1137 0 1 2 3 4 5 8 9 10 11 12 13 14 Distribution DCDF In Excel: P[X=k] = POISSON (k,λ,FALSE) P[X≤k] = POISSON (k,λ,TRUE) © 2001 D. A. Menascé. All Rights Reserved. 32

Moments	
• k-th moment: $E[X^k] = \int_{-\infty}^{+\infty} x^k f_X(x) dx$	
• Expected value (mean): first moment	
$\mu = E[X] = \int_{-\infty}^{+\infty} x f_X(x) dx$	
 k-th central moment: 	
$E[(X-\mu)^k] = \int_{-\infty}^{+\infty} (x-\mu)^k f_X(x) dx$	
Variance: second central moment	
$\sigma^{2} = E[(X - \mu)^{2}] = \int_{-\infty}^{+\infty} (x - \mu)^{2} f_{X}(x) dx$	
© 2001 D. A. Menascé. All Rights Reserved.	36

The Normal Distribution

- Many natural phenomena follow a normal distribution.
- The normal distribution can be used to approximate the binomial and the Poisson distributions.
- Two parameters: mean and standard deviation.

$$f(x)=N(\mu,\sigma)$$

39

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-(1/2)[(x-\mu)/\sigma]^2}$$

© 2001 D. A. Menascé. All Rights Reserved.

$$P[50 \le X \le 60]?$$

• Transformation:
$$Z = \frac{X - 50}{\sqrt{25}} = \frac{60 - 50}{5} = 2.0$$

- Using the table, the area between 50 and 60 for Z=2.0 is 0.4772. So,

$$P[50 \le X \le 60] = 0.4772$$

The Normal as an Approximation to the Poisson Distribution

- The normal can approximate the Poisson distribution if $\lambda > 5.$

46

• Poisson:
$$\mu = \lambda$$

$$\sigma = \sqrt{\lambda}$$

Transformation:

$$Z = \frac{X - \lambda}{\sqrt{\lambda}}$$

© 2001 D. A. Menascé. All Rights Reserved.

45

The Lognormal Distribution

• It is a random variable such that its natural logarithm has a normal distribution.

$$f_X(x) = \frac{1}{x\sqrt{2\pi}\sigma_{\ln x}} e^{-(1/2)[(\ln x - \mu_{\ln x})/\sigma_{\ln x}]} \qquad x > 0$$

Y = In X (X and Y are r.v.'s) and Y = N($\mu,\sigma)$

• Suitable for effect which have multiplicative factors (e.g. long term discount factor as product of short term discounts, attenuation of a wireless channel)

• Mean: $E[X] = e^{\mu_{\ln X} + \sigma_{\ln X}^2/2}$ • Standard Deviation: $\sigma = \sqrt{e^{2\mu_{\ln X} + \sigma_{\ln X}^2} \cdot (e^{\sigma_{\ln X}^2} - 1)}$

The Lognormal distribution

The Exponential Distribution

- Widely used in queuing systems to model the inter-arrival time between requests to a system.
- If the inter-arrival times are exponentially distributed then the number of arrivals in an interval *t* has a Poisson distribution and vice-versa.

$$f_X(x) = \lambda e^{-\lambda x}$$

• CDF

$$F_{\chi}(x) = 1 - e^{-\lambda \cdot x} \qquad x \ge 0$$

© 2001 D. A. Menascé. All Rights Reserved. 51

The Exponential Distribution

• Mean and Standard Deviation:

$$\mu = \sigma = 1/\lambda$$

- The COV is 1. The exponential is the only continuous r.v. with COV=1.
- The exponential distribution is "memoryless." The distribution of the residual time until the next arrival is also exponential with the same mean as the original distribution.

© 2001 D. A. Menascé. All Rights Reserved.

Confidence Interval for the Mean

- The sample mean is an estimate of the population mean.
- Problem: given k samples of the population (with k sample means), get a single estimate of the population mean.
- Only probabilistic statements can be made:
- E.g. we want mean of the population but can get only mean of the sample
- k samples, k estimates of the mean
- Finite size samples, we cannot get the true mean
- We can get probabilistic bounds

55

Confidence Interval for the Mean

$$\Pr[c_1 \le \mu \le c_2] = 1 - \alpha$$

where,

- (c₁, c₂): confidence interval
 α : significance level
- $100(1-\alpha)$: confidence level (usually 90 or 95%) $1-\alpha$: confidence coefficient.

How to determine confidence interval ? e.g. use 5% and 95% percentiles on sample means as bounds Significance level e.g. 0.1

- Issue how to estimate confidence interval ?
- E.g. take k samples, estimate k-means, sort them in increasing order take
- To estimate 90% confidence interval, use 5percentile and 95-percentile of the sample means as confidence bounds
- Possible to estimate it from single sample
- Thanks to central limit theorem statement about distribution of sample mean

Central Limit Theorem

• If the observations in a sample are independent and come from the same population that has mean μ and standard deviation σ then the sample mean for large sample has a normal distribution with mean μ and standard deviation $\sigma/\sqrt{n}.$

$$\overline{x} \sim N(\mu, \sigma/\sqrt{n})$$

- The standard deviation of the sample mean is called the *standard error*.
- Different from standard deviation
- As sample size increases the standard error goes down

58

60

Confidence Interval

• 100 (1- α)% confidence interval for the population mean:

$$(\overline{x} - z_{1-\alpha/2}s / \sqrt{n}, \overline{x} + z_{1-\alpha/2}s / \sqrt{n})$$

 \overline{x} : sample mean

s: sample standard deviation

n: sample size

 $z_{1-\alpha/2}$: (1- $\alpha/2$)-quantile of a unit normal variate (N(0,1)).

Quantile-Quantile (Q-Q plots)

- Used to compare distributions
- E.g. compare empirical with theoretical distribution
- Plot the quantiles against each other
- "Equal shape" is equivalent to "linearly related quantile functions."
- A Q-Q plot is a plot of the type (Q₁(p),Q₂(p)) where Q₁(p) is the quantile function of data set 1 and Q₂(p) is the quantile function of data set 2.
- The values of p are (i-0.5)/n where n is the size of the smaller data set.

62

• ~ ~ ~ ~ ~ ~ ~

Bin

63

Data for Quantile-Quantile Plot ai xi 0.100 0.22 0.2⁴ 0.45 0.7⁴ 1.02 1.39 0.300 0.74 1.03 1.4 2.49 3.20 4.3 4.90 5.49 6.5 0.600 0.700 2.41 3.22 4.61 5.32 5.99 7.01 0.900 0.930 7.82 8.40 9.21 0.980 7.8 0.990 8.82 1.00 17 0 18.42 64

What if the Inverse of the CDF Cannot be Found?

- Use approximations or use statistical tables - Quantile tables have been computed and published for many important distributions
- For example, approximation for N(0,1): (c, ^{0.14}] 0.14

$$x_i = 4.91[q_i^{0.14} - (1 - q_i)^{0.14}]$$

- E.g. to compute x for 95% quantile, $q_i = 0.95, x_i = 1.64$
- For N(μ , σ) the x_i values are scaled as $\mu + \sigma x_i$ before plotting

