

Comparing alternatives

- Next: comparing two alternatives > use confidence intervals
\square Comparing more than two alternatives
> ANOVA
- Analysis of Variance
> Will discuss later this semester

Inferences concerning two means (cont'd)

- For small samples, if the population variances are unknown, we can test for equality of the two means using the t-statistic below, provided we can assume that both populations are normal with equal variances

$$
t=\frac{\bar{X}_{1}-\bar{X}_{2}}{S_{p} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}}
$$

, t is a random variable having the t-distribution with n_{1} + $n_{2}-2$ degrees of freedom and S_{p} is the square root of the pooled estimate of the variance of the two samples

$$
S_{p}^{2}=\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{\left(n_{1}-1\right)+\left(n_{2}-1\right)}
$$

Unpaired Observations (\dagger-test)

1. Size of samples for A and $B: n_{A}$ and n_{B}
2. Compute sample means:

$$
\begin{aligned}
& \bar{x}_{A}=\frac{1}{n_{A}} \sum_{i=1}^{n_{A}} x_{i A} \\
& \bar{x}_{B}=\frac{1}{n_{B}} \sum_{i=1}^{n_{B}} x_{i B}
\end{aligned}
$$

Unpaired Observations (t-test)

3. Compute the sample standard deviations:

$$
\begin{aligned}
& s_{A}=\sqrt{\frac{\left(\sum_{i=1}^{n_{A}} x_{i A}^{2}\right)-n_{A}\left(\bar{x}_{A}\right)^{2}}{n_{A}-1}} \\
& s_{B}=\sqrt{\frac{\left(\sum_{i=1}^{n_{B}} x_{i B}^{2}\right)-n_{B}\left(\bar{x}_{B}\right)^{2}}{n_{B}-1}}
\end{aligned}
$$

Unpaired Observations (\dagger-test)

7. Compute the confidence interval for the mean difference:

$$
\left(\bar{x}_{a}-\bar{x}_{b}\right) \pm t_{[1-\alpha / 2, v]} \times s
$$

8. If the confidence interval includes zero, the difference is not significant at $100(1-\alpha) \%$ confidence level.

Unpaired Observations (t-test)

4. Compute the mean difference: $\bar{x}_{a}-\bar{x}_{b}$
5. Compute the standard deviation of the mean difference:

$$
s=\sqrt{\frac{s_{a}^{2}}{n_{a}}+\frac{s_{b}^{2}}{n_{b}}}
$$

6. Compute the effective number of degrees of freedom.

$$
v=\frac{\left(s_{a}^{2} / n_{a}+s_{b}^{2} / n_{b}\right)^{2}}{\frac{1}{n_{a}-1}\left(\frac{s_{a}^{2}}{n_{a}}\right)^{2}+\frac{1}{n_{b}-1}\left(\frac{s_{b}^{2}}{n_{b}}\right)^{2}}
$$

Example of Unpaired Observations

\square Two cache replacement policies A and B are compared under similar workloads. Is A better than B ?

Workload	Cache Hit Ratio	
	Policy A	Policy B
1	0.35	0.49
2	0.23	0.33
3	0.29	0.33
4	0.21	0.55
5	0.21	0.65
6	0.15	0.18
7	0.42	0.29
8		0.35
		0.44
Mean	0.2657	0.4011
St. Dev	0.0934	0.1447

Non-parametric tests
The unpaired t-tests can be used if we assume that the data in the two samples being compared are taken from normally distributed populations

- What if we cannot make this assumption?
, We can make some normalizing transformations on the two samples and then apply the t-test
> Some non-parametric procedure such as the Wilcoxon rank sum test that does not depend upon the assumption of normality of the two populations can be used

Rank-sum (Wilcoxon test)

- Non-parameteric test, i.e., does not depend upon distribution of population, for comparing two samples
- Example:
- Suppose the time between two successive crashes are recorded for two competing computer systems as follows (time in weeks): System I: 0.630 .170 .350 .490 .180 .430 .120 .200 .47 1.360 .510 .450 .840 .320 .40 System II: 1.130 .540 .960 .260 .390 .880 .920 .531 .01 0.480 .891 .071 .110 .58
> The problem is to determine if the two populations are the same or if one is likely to produce larger observations than the other

Rank-sum test (cont'd)

- The values in the first sample occupy ranks $1,2,3,4,6,7,9,10,11,12,14,15,19,20$ and 29
- The sum of the ranks for the two samples, $W_{1}=162$ and $W_{2}=273$
\square The U-test is based on the statistics

$$
\begin{aligned}
& U_{1}=W_{1}-\frac{n_{1}\left(n_{1}+1\right)}{2} \\
& \text { or } \\
& U_{2}=W_{2}-\frac{n_{2}\left(n_{2}+1\right)}{2}
\end{aligned}
$$

or on the statistic U which is the smaller of the two

Rank-sum test (cont'd)

\square U-test is a non-parameteric alternative to the paired and unpaired t-tests
\square First step in the U-test is to rank the data jointly, in increasing order of magnitude
0.120 .170 .180 .200 .260 .320 .350 .390 .400 .43

I I I I II I I II I I 0.450 .470 .480 .490 .510 .530 .540 .580 .630 .84 I I II I I II II II I I 0.880 .890 .920 .961 .011 .071 .111 .131 .36 II II II II II II II II I

- Assign each data item a rank in this order
- If there are ties among values, the rank assigned to each observation is the mean of the ranks which they jointly occupy

Rank-sum test (cont'd)

- Under the null hypothesis that the two samples come from identical populations, it can be shown that the mean and variance of the sampling distribution of U_{1} are

$$
\begin{aligned}
& \mu_{U_{1}}=\frac{n_{1} n_{2}}{2} \\
& \text { and } \\
& \sigma_{U_{1}}^{2}=\frac{n_{1} n_{2}\left(n_{1}+n_{2}+1\right)}{12}
\end{aligned}
$$

\square Numerical studies have shown that the sampling distribution of U1 can be approximated closely by the normal distribution when n 1 and n 2 are both greater than 8
Rank-sum test (cont'd)
- Thus, the test of the null hypothesis that both samples
come from identical populations can be based on

$$
Z=\frac{U_{1}-\mu_{U_{1}}}{\sigma_{U_{1}}}
$$

which is a random variable having approximately the standard normal distribution

- The alternative hypothesis is either:
> Two-sided test (Populations are not identical)
- We reject the null hypothesis if $Z\left\langle-z_{\alpha / 2}\right.$ or $\left.Z\right\rangle z_{\alpha / 2}$
> One-sided test
- Population 2 is stochastically larger than Population 1
- We reject the null hypothesis if $\mathrm{Z}<-\mathrm{Z}_{a}$
- Or, Population 1 is stochastically larger than Population 2

$$
\text { - We reject the null hypothesis if } \mathrm{Z}>\mathrm{z}_{\alpha}
$$

Example cont'd

At the 0.01 level of significance, test the null hypothesis that the two samples in our example come from the same population

- Alternative hypothesis, populations are not identical
- For $\alpha=0.01$, we can reject the null hypothesis if Z < 2.575 or $\mathrm{Z}>2.575$
- Calculations: $n 1=15, n 2=14, W 1=162$
$\mathrm{U} 1=162-15 \times 16 / 2=42$
$\mathrm{Z}=(42-15 \times 14 / 2) / J((15 \times 14 \times 30) / 12)=-2.75$
$>$ Since Z is less than -2.575 , we reject the null hypothesis; we conclude there is a difference between the two systems

Comparing alternatives

- Comparing two alternatives > use confidence intervals
\square Comparing more than two alternatives
> ANOVA
- Analysis of Variance

One-Factor Analysis of Variance (ANOVA)

- Very general technique
> Look at total variation in a set of measurements
> Divide into meaningful components
- Also called
> One-way classification
> One-factor experimental design
- Introduce basic concept with one-factor ANOVA
- Generalize later with design of experiments

One-Factor Analysis of Variance (ANOVA)

- Separates total variation observed in a set of measurements into:

1. Variation within one system

- Due to random measurement errors

2. Variation between systems

- Due to real differences + random error
- Is variation(2) statistically > variation(1)?
- Want to determine whether variation on component (1) is larger then component (2)

ANOVA

- Make n measurements of k alternatives
$\square y_{i j}=i$-th measurment on j-th alternative
\square Assumes errors are:
> Independent
> Gaussian (normal)

Column Means

- Column means are average values of all measurements within a single alternative
- Average performance of one alternative

$$
\bar{y}_{. j}=\frac{\sum_{i=1}^{n} y_{i j}}{n}
$$

Column Means						
Measurem ents	1	2	...	j	..'	k
1	y_{11}	y_{12}	.'.	$y_{1 j}$...	$y_{k 1}$
2	y_{21}	y_{22}	...	$y_{2 j}$..'	$y_{2 k}$
...	\ldots	\ldots	...	\ldots	...	\ldots
i	y_{11}	y_{12}	..'	$y_{i j}$..'	$y_{i k}$
...	\ldots	\ldots	..'	\ldots	...	\ldots
n	$y_{n 1}$	$y_{n 2}$...	$y_{\text {ri }}$..'	$y_{\text {nk }}$
Col mean	y_{1}	y_{2}	..'	y_{j}	..'	y_{k}
Effect	α_{1}	α_{2}	.'*	α_{j}	..'	α_{k}

Overall Mean

Average of all measurements made of all alternatives

$$
\bar{y}_{. .}=\frac{\sum_{j=1}^{k} \sum_{i=1}^{n} y_{i j}}{k n}
$$

Deviation From Column Mean

For each column, we can write deviation from its
that alternative's mean

$y_{i j}$	$=\bar{y}_{. j}+e_{i j}$
$e_{i j}$	$=$ deviation of $y_{i j}$ from column mean
	$=$ error in measurements

Error $=$ Deviation From Column Mean						
	Alternatives					
Measurem ents	1	2	...	j	...	k
1	y_{11}	y_{12}	...	$y_{1 /}$...	$y_{k 1}$
2	y_{21}	y_{22}	\ldots	$\left\langle y_{2 \mathrm{j}}\right\rangle$	\ldots	$y_{2 k}$
...	\ldots	\cdots	...	\cdots	...	\cdots
i	$y_{i 1}$	$y_{i 2}$...	$y_{i j}$...	$y_{\text {ik }}$
...	\cdots	...	\cdots
n	$y_{n 1}$	$y_{n 2}$	\ldots	x_{n}	\ldots	$y_{n k}$
Col mean	y_{1}	y_{2}	\ldots	y_{j}	...	y_{k}
Effect	α_{1}	α_{2}	\cdots	α_{j}	...	α_{k}

Deviation From Overall Mean

- For each column mean, we can write deviation from it's the total mean
$\bar{y}_{. j}=\bar{y}_{. .}+\alpha_{j}$
$\alpha_{j}=$ deviation of column mean from overall mean
$=$ effect of alternative j

Effects and Errors

- Combining the two we can write each measurements as

$$
y_{i j}=\bar{y}_{. .}+\alpha_{j}+e_{i j}
$$

- Effect is distance from overall mean
> Horizontally across alternatives
- Error is distance from column mean
> Vertically within one alternative
> Error across alternatives, too

Sum of Squares of Differences: SSE

Sum of Squares of Differences: SSA
\square We can split the measurements due to the total

- Variation due to alternatives variation into two components - effect of alternatives and variation due to errors
- Variation due to errors

$$
\begin{aligned}
& y_{i j}=\bar{y}_{. j}+e_{i j} \\
& e_{i j}=y_{i j}-\bar{y}_{. j} \\
& S S E=\sum_{j=1}^{k} \sum_{i=1}^{n}\left(e_{i j}\right)^{2}=\sum_{j=1}^{k} \sum_{i=1}^{n}\left(y_{i j}-\bar{y}_{. j}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \bar{y}_{. j}=\bar{y}_{. .}+\alpha_{j} \\
& \alpha_{j}=\bar{y}_{. j}-\bar{y}_{. .} \\
& S S A=n \sum_{j=1}^{k}\left(\alpha_{j}\right)^{2}=n \sum_{j=1}^{k}\left(\bar{y}_{. j}-\bar{y}_{. .}\right)^{2}
\end{aligned}
$$

Sum of Squares of Differences: SST

- Total variation

$$
\begin{aligned}
& y_{i j}=\bar{y}_{. .}+\alpha_{j}+e_{i j} \\
& t_{i j}=\alpha_{j}+e_{i j}=y_{i j}-\bar{y}_{. .} \\
& S S T=\sum_{j=1}^{k} \sum_{i=1}^{n}\left(t_{i j}\right)^{2}=\sum_{j=1}^{k} \sum_{i=1}^{n}\left(y_{i j}-\bar{y}_{. .}\right)^{2}
\end{aligned}
$$

Sum of Squares of Differences

$$
\begin{aligned}
& S S A=n \sum_{j=1}^{k}\left(\bar{y}_{. j}-\bar{y}_{. .}\right)^{2} \\
& S S E=\sum_{j=1}^{k} \sum_{i=1}^{n}\left(y_{i j}-\bar{y}_{. j}\right)^{2} \\
& S S T=\sum_{j=1}^{k} \sum_{i=1}^{n}\left(y_{i j}-\bar{y}_{. .}\right)^{2}
\end{aligned}
$$

ANOVA - Fundamental Idea

- Separates variation in measured values into:

1. Variation due to effects of alternatives SSA - variation across columns
2. Variation due to errors

SSE - variation within a single column

- If differences among alternatives are due to real differences, SSA should be statistically > SSE

Variances from Sum of Squares (Mean Square Value)

- Estimate variances of SSA and SSE

$$
\begin{aligned}
& s_{a}^{2}=\frac{S S A}{k-1} \\
& s_{e}^{2}=\frac{S S E}{k(n-1)}
\end{aligned}
$$

F-test
If $F_{\text {computed }}$ > $F_{\text {table }}$
\rightarrow We have $(1-\alpha) * 100 \%$ confidence that
variation due to actual differences in
alternatives, SSA, is statistically greater
than variation due to errors, SSE.

Degrees of Freedom

- Note that
$\square d f(S S A)=k-1$, since k alternatives
$\square d f(S S E)=k(n-1)$, since k alternatives, each with $(n-1) d f$
$\square d f(S S T)=d f(S S A)+d f(S S E)=k n-1$

Degrees of Freedom for Errors

	Alternatives					
Measurem ents	1	2	...	j	...	k
1	y_{11}	y_{12}	...	y	...	$y_{k 1}$
2	y_{21}	y_{22}	...	$\Rightarrow y_{2 j}$...	$y_{2 k}$
.-	\ldots	\ldots	...	\cdots	...	\ldots
i	$y_{i 1}$	$y_{i 2}$...	$y_{i j}$...	$y_{i k}$
\cdots	\ldots	\cdots	\ldots		\ldots	\cdots
n	$y_{n 1}$	$y_{n 2}$...	$y_{n j}$...	$y_{n k}$
Col mean	y_{1}	y_{2}	...	y_{j}	...	$y_{\text {k }}$
Effect	α_{1}	α_{2}	...	α_{j}	...	α_{k}

ANOVA Example					
Alternatives Measurements $\mathbf{1}$ $\mathbf{2}$ $\mathbf{3}$ $\mathbf{1}$ 0.0972 0.1382 0.7966 $\mathbf{2}$ 0.0971 0.1432 0.5300 $\mathbf{3}$ 0.0969 0.1382 0.5152 $\mathbf{4}$ 0.1954 0.1730 0.6675 $\mathbf{5}$ 0.0974 0.1383 0.5298 Column mean 0.1168 0.1462 0.6078 Effects -0.1735 -0.1441 0.3175				$.$	
:---					

59

ANOVA Summary

Variation	Alternatives	Error	Total
Sum of squares	$S S A$	$S S E$	$S S T$
Deg freedom	$k-1$	$k(n-1)$	$k n-1$
Mean square	$s_{a}^{2}=S S A /(k-1)$	$s_{e}^{2}=S S E /[k(n-1)]$	
Computed F	s_{a}^{2} / s_{e}^{2}		
Tabulated F	$F_{[1-\alpha ;(k-1), k(n-1)]}$		

Conclusions from example	
\square SSA/SST $=0.7585 / 0.8270=0.917$	
$\rightarrow 91.7 \%$ of total variation in measurements is due to differences among alternatives	
\square SSE $/$ SST $=0.0685 / 0.8270=0.083$ $\rightarrow 8.3 \%$ of total variation in measurements is due to noise in measurements	
- Computed Fstatistic > tabulated Fstatistic $\rightarrow 95 \%$ confidence that differences among alternatives are statistically significant.	
	${ }_{61}$

Contrasts

- ANOVA tells us that there is a statistically significant difference among alternatives
But it does not tell us where difference is
- Use method of contrasts to compare subsets of alternatives
> A vs B
$>\{A, B\}$ vs $\{C\}$
> Etc.

Contrasts
a Contrast = linear combination of effects of alternatives Contrast can be used to compare the effects of alternatives
$\qquad c=\sum_{j=1}^{k} w_{j} \alpha_{j}$
$\qquad \sum_{j=1}^{k} w_{j}=0$

Contrasts

- E.g. Compare effect of system 1 to effect of system 2 - choose the weights appropriately

$$
\begin{aligned}
w_{1} & =1 \\
w_{2} & =-1 \\
w_{3} & =0 \\
c & =(1) \alpha_{1}+(-1) \alpha_{2}+(0) \alpha_{3} \\
& =\alpha_{1}-\alpha_{2}
\end{aligned}
$$

Construct confidence interval for contrasts
a Need
> Estimate of variance
> Appropriate value from ttable
a Compute confidence interval as before
a If interval includes 0
> Then no statistically significant difference
exists between the alternatives included in the
contrast

Variance of random variables
\square Recall that, for independent random variables X_{1} and X_{2}

$$
\operatorname{Var}\left[X_{1}+X_{2}\right]=\operatorname{Var}\left[X_{1}\right]+\operatorname{Var}\left[X_{2}\right]
$$

$$
\operatorname{Var}\left[a X_{1}\right]=a^{2} \operatorname{Var}\left[X_{1}\right]
$$

Confidence interval for contrasts

$$
\begin{aligned}
& \left(c_{1}, c_{2}\right)=c \mp t_{1-\alpha / 2 ; k(n-1)} s_{c} \\
& s_{c}=\sqrt{\frac{\sum_{j=1}^{k}\left(w_{j}^{2} s_{e}^{2}\right)}{k n}} \\
& s_{e}^{2}=\frac{S S E}{k(n-1)}
\end{aligned}
$$

Example
a 90% confidence interval for contrast of [Sys1- Sys2]
$\alpha_{1}=-0.1735$
$\alpha_{2}=-0.1441$
$\alpha_{3}=0.3175$
$c_{[1-2]}=-0.1735-(-0.1441)=-0.0294$
$s_{c}=s_{e} \sqrt{\frac{1^{2}+(-1)^{2}+0^{2}}{3(5)}}=0.0275$
$90 \%:\left(c_{1}, c_{2}\right)=(-0.0784,0.0196)$

Summary

Use one-factor ANOVA to separate total variation into:

- Variation within one system
- Due to random errors
- Variation between systems
- Due to real differences (+ random error)
- Is the variation due to real differences statistically greater than the variation due to errors?
- Use contrasts to compare effects of subsets of alternatives

