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Comparing Systems Using Sample 
Data 
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Comparing alternatives 

  Next: comparing two alternatives 
  use confidence intervals 

  Comparing more than two alternatives 
  ANOVA 

•  Analysis of Variance 
  Will discuss later this semester 
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Comparing Two Alternatives 

 Suppose you want to compare two cache 
replacement policies under similar 
workloads. 

 Metric of interest: cache hit ratio. 
 Types of comparisons: 

  Paired observations 
  Unpaired observations. 
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Paired Observations 

System A System B 

input values 

paired output 
values 
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Example of Paired Observations 
  Six similar workloads were used to compare the 

cache hit ratio obtained under object 
replacement policies A and B on a Web server. Is 
A better than B? 
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Example of Paired Observations 

In Excel: 
TINV(1-0.9,5) 

0.02 

0.0743 

6 

2.015 
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Example of Paired Observations 

In Excel: 
TINV(1-0.9,5) 

The interval includes zero, so we cannot say that policy A is better 
than policy B. 
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Unpaired Observations 

System A System B 

input values 
for A 

unpaired output 
values 

input values 
for B 
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Inferences concerning two means 

  For large samples, we can statistically test the 
equality of the means of two samples by using the 
statistic 

  Z is a random variable having the standard normal 
distribution.  

  We need to check if the confidence interval of Z at a 
given level includes zero 

  We can approximate the population variances above with 
sample variances when n1 and n2 are greater than 30 
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Inferences concerning two means 
(cont’d) 

  For small samples, if the population variances are 
unknown, we can test for equality of the two 
means using the t-statistic below, provided we 
can assume that both populations are normal with 
equal variances 

  t is a random variable having the t-distribution with n1 + 
n2 - 2 degrees of freedom and Sp is the square root of 
the pooled estimate of the variance of the two samples 
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Inferences concerning two means 
(cont’d) 

 The pooled-variance t test can be used if 
we assume that the two population 
variances are equal 
  In practice, we can use it if one sample 

variance is less than 4 times the variance of 
the other sample 

 If this is not true, we need another test  
  Smith-Satterthwaite test described on the 

following slides 
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Unpaired Observations (t-test) 

1.  Size of samples for A and B: 
2.  Compute sample means:  

    and 
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Unpaired Observations (t-test) 

3.  Compute the sample standard deviations: 

14 

Unpaired Observations (t-test) 

4.  Compute the mean difference: 
5.  Compute the standard deviation of the 

mean difference: 

6.  Compute the effective number of 
degrees of freedom. 
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Unpaired Observations (t-test) 

7.  Compute the confidence interval for the 
mean difference: 

8.  If the confidence interval includes zero, 
the difference is not significant at 

      100(1-α)% confidence level. 

16 

Example of Unpaired Observations 
  Two cache replacement policies A and B are 

compared under similar workloads. Is A better 
than B? 
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Example of Unpaired Observations 

In Excel: TINV(1-0.9,13-1) 

At a 90% confidence level the two policies are not identical since 
zero is not in the interval. With 90% confidence, the cache hit ratio  
for policy A is smaller than that for policy B. So, policy B is better 
at that confidence level. 

13 
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Approximate Visual Test 

A A 

A 

B 

B 

B 

CIs do not overlap: 
  A is higher than B 

CIs overlap and mean 
   of A is in B’s CI: 
  A and B are similar 

CIs overlap and mean 
   of A is not in B’s CI: 
  need to do t-test 

19 

Example of Visual Test 

CIs overlap but mean of A is  
not in CI of B and vice-versa.  
Need to do a t-test. 

20 

Non-parametric tests 

  The unpaired t-tests can be used if we assume 
that the data in the two samples being compared 
are taken from normally distributed populations 

  What if we cannot make this assumption? 
  We can make some normalizing transformations on the 

two samples and then apply the t-test 
  Some non-parametric procedure such as the Wilcoxon 

rank sum test that does not depend upon the assumption 
of normality of the two populations can be used 
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Rank-sum (Wilcoxon test) 
 Non-parameteric test, i.e., does not depend upon 

distribution of population, for comparing two 
samples 

 Example: 
  Suppose the time between two successive crashes are 

recorded for two competing computer systems as 
follows (time in weeks): 
System I: 0.63 0.17 0.35 0.49 0.18 0.43 0.12 0.20 0.47 
1.36 0.51 0.45 0.84 0.32 0.40 
System II: 1.13 0.54 0.96 0.26 0.39 0.88 0.92 0.53 1.01 
0.48 0.89 1.07 1.11 0.58 

   The problem is to determine if the two 
populations are the same or if one is likely to 
produce larger observations than the other 
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Rank-sum test (cont’d) 

 U-test is a non-parameteric alternative to the paired 
and unpaired t-tests 

 First step in the U-test is to rank the data jointly, in 
increasing order of magnitude 

   0.12 0.17 0.18 0.20 0.26 0.32 0.35 0.39 0.40 0.43 
  I     I      I       I     II     I      I      II    I       I 
0.45 0.47 0.48 0.49 0.51 0.53 0.54 0.58 0.63 0.84 
   I    I      II     I      I      II     II    II     I      I 
0.88 0.89 0.92 0.96 1.01 1.07 1.11 1.13 1.36 
   II   II    II    II    II   II    II   II    I  

  Assign each data item a rank in this order 
  If there are ties among values, the rank assigned to each observation is the 

mean of the ranks which they jointly occupy 
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Rank-sum test (cont’d) 

 The values in the first sample occupy 
ranks 1, 2,3,4,6,7,9,10,11,12,14,15,19,20 
and 29 

 The sum of the ranks for the two samples, 
W1 = 162 and W2 = 273 

 The U-test is based on the statistics 

or on the statistic U which is the smaller 
of the two 

24 

Rank-sum test (cont’d) 
 Under the null hypothesis that the two samples 

come from identical populations, it can be shown 
that the mean and variance of the sampling 
distribution of U1 are 

 Numerical studies have shown that the sampling 
distribution of U1 can be approximated closely by 
the normal distribution when n1 and n2 are both 
greater than 8 
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Rank-sum test (cont’d) 
 Thus, the test of the null hypothesis that both samples 

come from identical populations can be based on  

which is a random variable having approximately the 
standard normal distribution 

 The alternative hypothesis is either: 
  Two-sided test (Populations are not identical) 

•  We reject the null hypothesis if Z < -zα/2   or Z > zα/2 
  One-sided test 

•  Population 2 is stochastically larger than Population 1 
–  We reject the null hypothesis if Z < -zα 

•  Or, Population 1 is stochastically larger than Population 2 
–  We reject the null hypothesis if Z > zα 
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Example cont’d 

 At the 0.01 level of significance, test the null 
hypothesis that the two samples in our 
example come from the same population 
  Alternative hypothesis, populations are not 

identical 
  For α = 0.01, we can reject the null hypothesis if Z 

< -2.575 or Z > 2.575 
•  Calculations: n1 = 15, n2 = 14, W1 = 162 

U1 = 162 - 15x16/2 = 42 
Z = (42 - 15x14/2)/√((15x14x30)/12) = -2.75 

  Since Z is less than -2.575, we reject the null 
hypothesis; we conclude there is a difference 
between the two systems 

ANOVA- Analysis of Variance 

28 

Comparing alternatives 

  Comparing two alternatives 
  use confidence intervals 

  Comparing more than two alternatives 
  ANOVA 

•  Analysis of Variance 
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Comparing More Than Two Alternatives 

 Naïve approach 
  Compare confidence intervals 

30 

One-Factor Analysis of Variance (ANOVA) 

  Very general technique 
  Look at total variation in a set of 

measurements 
  Divide into meaningful components 

  Also called 
  One-way classification 
  One-factor experimental design 

  Introduce basic concept with one-factor 
ANOVA 

  Generalize later with design of experiments 
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One-Factor Analysis of Variance (ANOVA) 

  Separates total variation observed in a 
set of measurements into: 

1.  Variation within one system 
•  Due to random measurement errors 

2.  Variation between systems 
•  Due to real differences + random error 

  Is variation(2) statistically > variation(1)? 
  Want to determine whether variation on 

component (1) is larger then component (2) 

32 

ANOVA 

 Make n measurements of k alternatives 
 yij = i-th measurment on j-th alternative 
 Assumes errors are: 

  Independent 
  Gaussian (normal) 
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Measurements for All Alternatives 

Alternatives 

Measurem
ents 

1 2 … j … k 

1 y11 y12 … y1j … yk1 

2 y21 y22 … y2j … y2k 

… … … … … … … 

i yi1 yi2 … yij … yik 

… … … … … … … 

n yn1 yn2 … ynj … ynk 

Col mean y.1 y.2 … y.j … y.k 

Effect α1 α2 … αj … αk 

Organize in a table 

34 

Column Means 

  Column means are average values of all 
measurements within a single alternative 
  Average performance of one alternative 

n
y

y
n

i ij
j
∑ == 1

.
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Column Means 

Alternatives 

Measurem
ents 

1 2 … j … k 

1 y11 y12 … y1j … yk1 

2 y21 y22 … y2j … y2k 

… … … … … … … 

i yi1 yi2 … yij … yik 

… … … … … … … 

n yn1 yn2 … ynj … ynk 

Col mean y.1 y.2 … y.j … y.k 

Effect α1 α2 … αj … αk 

36 

Overall Mean 

  Average of all measurements made of all 
alternatives 

kn

y
y

k

j

n

i ij∑ ∑= == 1 1
..
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Deviation From Column Mean 

tsmeasuremenin error  

meancolumn  from  ofdeviation  
.

=

=

+=

ijij

ijjij

ye
eyy

  For each column, we can write deviation from its 
that alternative’s mean 

38 

Error = Deviation From Column Mean 

Alternatives 

Measurem
ents 

1 2 … j … k 

1 y11 y12 … y1j … yk1 

2 y21 y22 … y2j … y2k 

… … … … … … … 

i yi1 yi2 … yij … yik 

… … … … … … … 

n yn1 yn2 … ynj … ynk 

Col mean y.1 y.2 … y.j … y.k 

Effect α1 α2 … αj … αk 
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Overall Mean 

Alternatives 

Measurem
ents 

1 2 … j … k 

1 y11 y12 … y1j … yk1 

2 y21 y22 … y2j … y2k 

… … … … … … … 

i yi1 yi2 … yij … yik 

… … … … … … … 

n yn1 yn2 … ynj … ynk 

Col mean y.1 y.2 … y.j … y.k 

Effect α1 α2 … αj … αk 

40 

Deviation From Overall Mean 

j

yy

j

jj

 ealternativ ofeffect  

mean overall frommean column  ofdeviation  
...

=

=

+=

α

α

  For each column mean, we can write deviation 
from it’s the total mean 
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Effect = Deviation From Overall Mean 

Alternatives 

Measurem
ents 

1 2 … j … k 

1 y11 y12 … y1j … yk1 

2 y21 y22 … y2j … y2k 

… … … … … … … 

i yi1 yi2 … yij … yik 

… … … … … … … 

n yn1 yn2 … ynj … ynk 

Col mean y.1 y.2 … y.j … y.k 

Effect α1 α2 … αj … αk 

42 

Effects and Errors 

  Effect is distance from overall mean 
  Horizontally across alternatives 

  Error is distance from column mean 
  Vertically within one alternative 
  Error across alternatives, too 

ijjij eyy ++= α..

  Combining the two we can write each 
measurements as 
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Sum of Squares of Differences:  SSE 
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  We can split the measurements due to the total 
variation into two components – effect of 
alternatives and variation due to errors 

  Variation due to errors 
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Sum of Squares of Differences:  SSA 
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  Variation due to alternatives 
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Sum of Squares of Differences:  SST 
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  Total variation 
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Sum of Squares of Differences 
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47 

Sum of Squares of Differences 

  SST = differences between each measurement 
and overall mean 

  SSA = variation due to effects of alternatives 
  SSE = variation due to errors in measurments 

SSESSASST +=

48 

ANOVA – Fundamental Idea 

  Separates variation in measured values 
into: 

1.  Variation due to effects of alternatives 
 SSA – variation across columns 

2.  Variation due to errors 
  SSE – variation within a single column 

  If differences among alternatives are 
due to real differences, SSA should be 
statistically > SSE 
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Comparing SSE and SSA 

 Simple approach – find the ratios 
  SSA / SST = fraction of total variation 

explained by differences among alternatives 
  SSE / SST = fraction of total variation due to 

experimental error 
 But is it statistically significant? 
  Need a statistical test F-test 

50 

Variances from Sum of Squares (Mean 
Square Value) 

)1(

1
2

2

−
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=

nk
SSEs

k
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e

a

•  Estimate variances of SSA and SSE  

51 

Comparing Variances 

  Use F-test to compare ratio of variances 

 valuescritical tabulated)](),(;1[

2

2

=

=

− denomdfnumdf

e

a

F
s
sF

α

52 

F-test 

 If Fcomputed > Ftable 

 → We have (1 – α) * 100% confidence that 
variation due to actual differences in 
alternatives, SSA, is statistically greater 
than variation due to errors, SSE. 
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F-test 

 If Fcomputed > Ftable 

 → We have (1 – α) * 100% confidence that 
variation due to actual differences in 
alternatives, SSA, is statistically greater 
than variation due to errors, SSE. 

54 

Degrees of Freedom 

 Note that  
 df(SSA) = k – 1, since k alternatives  
 df(SSE) = k(n – 1), since k alternatives, 

each with (n – 1) df 
 df(SST) = df(SSA) + df(SSE) = kn - 1 

55 

Degrees of Freedom for Effects 

Alternatives 

Measurem
ents 

1 2 … j … k 

1 y11 y12 … y1j … yk1 

2 y21 y22 … y2j … y2k 

… … … … … … … 

i yi1 yi2 … yij … yik 

… … … … … … … 

n yn1 yn2 … ynj … ynk 

Col mean y.1 y.2 … y.j … y.k 

Effect α1 α2 … αj … αk 

56 

Degrees of Freedom for Errors 

Alternatives 

Measurem
ents 

1 2 … j … k 

1 y11 y12 … y1j … yk1 

2 y21 y22 … y2j … y2k 

… … … … … … … 

i yi1 yi2 … yij … yik 

… … … … … … … 

n yn1 yn2 … ynj … ynk 

Col mean y.1 y.2 … y.j … y.k 

Effect α1 α2 … αj … αk 
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Degrees of Freedom for Errors 

Alternatives 

Measurem
ents 

1 2 … j … k 

1 y11 y12 … y1j … yk1 

2 y21 y22 … y2j … y2k 

… … … … … … … 

i yi1 yi2 … yij … yik 

… … … … … … … 

n yn1 yn2 … ynj … ynk 

Col mean y.1 y.2 … y.j … y.k 

Effect α1 α2 … αj … αk 

58 

ANOVA Summary 

)]1(),1(;1[

22

22

 Tabulated
 Computed

)]1([)1(squareMean 
1)1(1freedom Deg

squares of Sum
TotalErroresAlternativVariation
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−−−

nkk
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nkSSEskSSAs
knnkk
SSTSSESSA

α
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ANOVA Example 

Alternatives 

Measurements 1 2 3 Overall mean 

1 0.0972 0.1382 0.7966 

2 0.0971 0.1432 0.5300 

3 0.0969 0.1382 0.5152 

4 0.1954 0.1730 0.6675 

5 0.0974 0.1383 0.5298 

Column mean 0.1168 0.1462 0.6078 0.2903 

Effects -0.1735 -0.1441 0.3175 
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ANOVA Example 

89.3 Tabulated
4.660057.03793.0 Computed

0057.03793.0squareMean 
14112)1(21freedom Deg

8270.00685.07585.0squares of Sum
TotalErroresAlternativVariation

]12,2;95.0[

22

=

=

==

=−=−=−

===

FF
F

ss
knnkk
SSTSSESSA

ea



9/21/10 

16 

61 

Conclusions from example 

  SSA/SST = 0.7585/0.8270 = 0.917 
→ 91.7% of total variation in measurements is due to 

differences among alternatives 

  SSE/SST = 0.0685/0.8270 = 0.083 
→ 8.3% of total variation in measurements is due to noise in 

measurements 

  Computed F statistic > tabulated F statistic 
→ 95% confidence that differences among alternatives are 

statistically significant. 
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Contrasts 

 ANOVA tells us that there is a 
statistically significant difference among 
alternatives 

 But it does not tell us where difference is 
 Use method of contrasts to compare 

subsets of alternatives 
  A vs B 
  {A, B} vs {C} 
  Etc. 

63 

Contrasts 

  Contrast = linear combination of effects of 
alternatives 

  Contrast can be used to compare the effects of 
alternatives 
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Contrasts 

  E.g. Compare effect of system 1 to effect of  
 system 2 – choose the weights appropriately 
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Construct confidence interval for contrasts 

 Need  
  Estimate of variance 
  Appropriate value from t table 

 Compute confidence interval as before 
 If interval includes 0 

  Then no statistically significant difference 
exists between the alternatives included in the 
contrast 

66 

Variance of random variables 

  Recall that, for independent random variables X1 
and X2 
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Variance of a contrast c 
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  Assumes variation due to errors is equally 
distributed among kn total measurements 
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Confidence interval for contrasts 
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Example 

  90% confidence interval for contrast of [Sys1- Sys2] 
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Summary 

  Use one-factor ANOVA to separate total 
variation into: 
–  Variation within one system 

•  Due to random errors 
–  Variation between systems 

•  Due to real differences (+ random error) 
  Is the variation due to real differences 

statistically greater than the variation due to 
errors? 

  Use contrasts to compare effects of subsets of 
alternatives 


