Comparing Systems Using Sample Data

Comparing alternatives

- Next: comparing two alternatives
 > use confidence intervals
- Comparing more than two alternatives
 - > ANOVA
 - Analysis of Variance
 - > Will discuss later this semester

Comparing Two Alternatives

 Suppose you want to compare two cache replacement policies under similar workloads.

- □ Metric of interest: cache hit ratio.
- Types of comparisons:
 - > Paired observations
 - > Unpaired observations.

Inferences concerning two means (cont'd)

- The pooled-variance t test can be used if we assume that the two population variances are equal
 - In practice, we can use it if one sample variance is less than 4 times the variance of the other sample
- If this is not true, we need another test
 Smith-Satterthwaite test described on the following slides

Unpaired Observations (t-test)

- 1. Size of samples for A and B: n_A and n_B
- 2. Compute sample means:

$$\overline{x}_A = \frac{1}{n_A} \sum_{i=1}^{n_A} x_{iA}$$
$$\overline{x}_B = \frac{1}{n_B} \sum_{i=1}^{n_B} x_{iB}$$

Unpaired Observations (t-test)

7. Compute the confidence interval for the mean difference:

$$(\overline{x}_a - \overline{x}_b) \pm t_{[1-\alpha/2,\nu]} \times s$$

 If the confidence interval includes zero, the difference is not significant at 100(1-α)% confidence level.

Example of Unpaired Observations

Two cache replacement policies A and B are compared under similar workloads. Is A better than B?

Norkload	Cache H	lit Ratio
	Policy A	Policy B
1	0.35	0.49
2	0.23	0.33
3	0.29	0.33
4	0.21	0.55
5	0.21	0.65
6	0.15	0.18
7	0.42	0.29
8		0.35
9		0.44
Mean	0.2657	0.4011
St. Dev	0.0934	0.1447

15

Rank-sum (Wilcoxon test)

Non-parameteric test, i.e., does not depend upon distribution of population, for comparing two samples

Example:

Suppose the time between two successive crashes are recorded for two competing computer systems as follows (time in weeks):
 System I: 0.63 0.17 0.35 0.49 0.18 0.43 0.12 0.20 0.47 1.36 0.51 0.45 0.84 0.32 0.40
 System II: 1.13 0.54 0.96 0.26 0.39 0.88 0.92 0.53 1.01 0.48 0.89 1.07 1.11 0.58
 The problem is to determine if the two

populations are the same or if one is likely to produce larger observations than the other

21

23

Rank-sum test (cont'd)

U-test is a non-parameteric alternative to the paired and unpaired t-tests

First step in the U-test is to rank the data jointly, in increasing order of magnitude
 0.12 0.17 0.18 0.20 0.26 0.32 0.35 0.39 0.40 0.43

 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I
 I

- I I II I I I II II II I I 0.88 0.89 0.92 0.96 1.01 1.07 1.11 1.13 1.36 II II II II II II II II II I
- Assign each data item a rank in this order
 If there are ties among values, the rank assigned to each observation is the mean of the ranks which they jointly occupy

22

Rank-sum test (cont'd)

- The values in the first sample occupy ranks 1, 2,3,4,6,7,9,10,11,12,14,15,19,20 and 29
- \square The sum of the ranks for the two samples, W_1 = 162 and W_2 = 273
- **The U-test is based on the statistics** $U_{\rm I} = W_{\rm I} \frac{n_{\rm I}(n_{\rm I}+1)}{2}$

$$U_2 = W_2 - \frac{n_2(n_2 + 1)}{2}$$

or

or on the statistic U which is the smaller of the two

Bank-sum test (cont'd) • The prior of the populations, it can be shown that the mean and variance of the sampling distribution of U are: $\mu_{th} = \frac{n_{t}n_{2}}{2}$ and $\sigma_{t_{1}}^{2} = \frac{n_{t}n_{2}(n_{1} + n_{2} + 1)}{12}$ • Numerical studies have shown that the sampling distribution of U1 can be approximated closely by the normal distribution when n1 and n2 are both greater than 8

Comparing alternatives

- Comparing two alternatives
 > use confidence intervals
- Comparing more than two alternatives
 - > ANOVA
 - Analysis of Variance

One-Factor Analysis of Variance (ANOVA)

- Separates total variation observed in a set of measurements into:
 - 1. Variation within one system
 - Due to random measurement errors
 - 2. Variation between systems
 - Due to real differences + random error
- □ Is variation(2) statistically > variation(1)?
- Want to determine whether variation on component (1) is larger then component (2)

31

ANOVA

- \Box Make *n* measurements of *k* alternatives
- \Box y_{ij} = *i*-th measurment on *j*-th alternative
- Assumes errors are:
 - > Independent
 - > Gaussian (normal)

Organize	: in a ta	ble			
			Alteri	natives	
Measurem ents	1	2		j	 k
1	Y 11	<i>Y</i> ₁₂		y 1j	 y _{k1}
2	Y ₂₁	Y ₂₂		<i>Y</i> _{2j}	 Y _{2k}
i i	y _{i1}	y i2		\mathbf{y}_{ij}	 Y _{ik}
n	y _{n1}	Y _{n2}		y nj	 Ynk
Col mean	Y .1	У .2		Y .j	 У. _к
Effect	α1	α2		α	 α _k

			Altern	natives	
Measurem ents	1	2		j	 k
1	y ₁₁	<i>Y</i> ₁₂		y 1j	 y _{k1}
2	y ₂₁	Y 22		<i>Y</i> 2j	 y _{2k}
i i	Y _{i1}	y i2		y ij	 Yik
n	y _{n1}	Y _{n2}		Y nj	 y _{nk}
Col mean	Y .1	У.2		У .ј	 y,k
Effect	α ₁	α2		α	 α _k

Error = Deviation From Column Mean Alt 2 k **y**₁₁ **y**₁₂ y_{k1} Y1 **y**₂₁ *Y*₂₂ y_{2k} **y**_{i1} y_{i2} $y_{\rm ik}$ y_{ij} y_{n1} y_{n2} $y_{\rm nk}$ n Col mean **Y**,1 **У**,2 *У*.,к **Y**.j Effect α_k α_1 α_{2} $\boldsymbol{\alpha}_{j}$ 38

			Alterr	natives	
Measurem ents	1	2		j	 k
1	Y 11	<i>y</i> ₁₂		<i>Y</i> 1j	 y k1
2	y 21	Y22		<i>Y</i> 2j	 y _{2k}
i	y _{i1}	y _{i2}		y ij	 Yik
n	Y _{n1}	Y _{n2}		y nj	 Y nk
Col mean	Y .1	У.2		<u>У.</u> ј	 <i>У</i> .к
Effect	α1	α2		α	 α _k

Deviation From Overall Mean

For each column mean, we can write deviation from it's the total mean

$$\overline{y}_{.j} = \overline{y}_{..} + \alpha_j$$

- α_i = deviation of column mean from overall mean
 - = effect of alternative *j*

			Alter	natives	
Neasurem ents	1	2		j	 k
1	y ₁₁	<i>y</i> ₁₂		<i>Y</i> 1j	 y _{k1}
2	<i>Y</i> ₂₁	Y ₂₂		<i>Y</i> _{2j}	 Y _{2k}
i	y _{i1}	y _{i2}		Y _{ij}	 Yik
n	Y _{n1}	Y _{n2}		y nj	 Y _{nk}
Col mean	Y ,1	У _{.2}		<i>У</i> .j	 У. _к
Effect	α	1α2		α	 ακ

Sum of Squares of Differences: SSE

- We can split the measurements due to the total variation into two components - effect of alternatives and variation due to errors
- Variation due to errors

$$y_{ij} = \overline{y}_{.j} + e_{ij}$$

$$e_{ij} = y_{ij} - \overline{y}_{.j}$$

$$SSE = \sum_{j=1}^{k} \sum_{i=1}^{n} (e_{ij})^{2} = \sum_{j=1}^{k} \sum_{i=1}^{n} (y_{ij} - \overline{y}_{.j})^{2}$$

$$4^{3}$$

Sum of Squares of Differences: SSA

Variation due to alternatives

$$\overline{y}_{.j} = \overline{y}_{..} + \alpha_j$$

$$\alpha_j = \overline{y}_{.j} - \overline{y}_{..}$$

$$SSA = n \sum_{j=1}^k (\alpha_j)^2 = n \sum_{j=1}^k (\overline{y}_{.j} - \overline{y}_{..})^2$$
44

Sum of Squares of Differences

$$SSA = n \sum_{j=1}^{k} \left(\overline{y}_{.j} - \overline{y}_{..}\right)^{2}$$

$$SSE = \sum_{j=1}^{k} \sum_{i=1}^{n} \left(y_{ij} - \overline{y}_{..}\right)^{2}$$

$$SST = \sum_{j=1}^{k} \sum_{i=1}^{n} \left(y_{ij} - \overline{y}_{..}\right)^{2}$$

Sum of Squares of Differences

- SST = differences between each measurement and overall mean
- SSA = variation due to effects of alternatives
- SSE = variation due to errors in measurments

$$SST = SSA + SSE$$

47

ANOVA - Fundamental Idea

2

- Separates variation in measured values into:
 - 1. Variation due to effects of alternatives SSA - variation across columns
 - Variation due to errors SSE - variation within a single column
- If differences among alternatives are due to real differences, SSA should be statistically > SSE

Comparing Variances

Use F-test to compare ratio of variances

$$F = \frac{s_a^2}{s_e^2}$$

 $F_{[1-\alpha;df(num),df(denom)]}$ = tabulated critical values

51

F-test

If F_{computed} > F_{table}
 → We have (1 - α) * 100% confidence that variation due to actual differences in alternatives, SSA, is statistically greater than variation due to errors, SSE.

F-test

Г

$\Box \ \mathrm{If} \ F_{\mathit{computed}} \mathrel{\scriptstyle{\succ}} F_{\mathit{table}}$

 \rightarrow We have $(1 - \alpha) * 100\%$ confidence that variation due to actual differences in alternatives, SSA, is statistically greater than variation due to errors, SSE.

53

Degrees of Freedom

Note that
 df(SSA) = k - 1, since k alternatives
 df(SSE) = k(n - 1), since k alternatives, each with (n - 1) df
 df(SST) = df(SSA) + df(SSE) = kn - 1

			Altern	atives		
Neasurem ents	1	2		j		k
1	y ₁₁	y ₁₂		Y 1j		y _{k1}
2	y ₂₁	y 22		<i>Y</i> 2j		Y 2k
<i>i</i>	Y i1	y i2		Y _{ij}		Yik
n	<i>Y</i> _{n1}	Y _{n2}		Y nj		Ynk
Col mean	Y.1	Y.2		У.ј		y.k
Effect	a	α2		Å	>	α _k

			Alter	matives	
Measurem ents	1	2		j	 k
1	Y 11	y ₁₂		1	 y_{k1}
2	<i>Y</i> ₂₁	Y ₂₂		Y _{2j}	 y _{2k}
i i	y _{i1}	y _{i2}		γ_{ij}	 Yik
n	Y _{n1}	y _{n2}		Y nj	 Ynk
Col mean	Y ,1	У _{.2}		<i>Y</i> .j	 Y.k
Effect	α.	α,		α,	 a

ANOVA S	ummary		
Variation	Alternatives	Error	Total
Sum of squares	SSA	SSE	SST
Deg freedom	k-1	k(n-1)	<i>kn</i> – 1
Mean square	$s_a^2 = SSA/(k-1)$	$s_e^2 = SSE/[k(n-1)]$	
Computed F	s_a^2/s_e^2		
Tabulated F	$F_{[1-\alpha;(k-1),k(n-1)]}$		
			58

		Alternatives	:	
Measurements	1	2	3	Overall mean
1	0.0972	0.1382	0.7966	
2	0.0971	0.1432	0.5300	
3	0.0969	0.1382	0.5152	
4	0.1954	0.1730	0.6675	
5	0.0974	0.1383	0.5298	
Column mean	0.1168	0.1462	0.6078	0.2903
Effects	-0.1735	-0.1441	0.3175	

ANOVA	Example		
Variation	Alternatives	Error	Total
Sum of squares	SSA = 0.7585	SSE = 0.0685	SST = 0.8270
Deg freedom	k - 1 = 2	k(n-1) = 12	kn - 1 = 14
Mean square	$s_a^2 = 0.3793$	$s_e^2 = 0.0057$	
Computed F	0.3793/0.0057 = 66.4		
Tabulated F	$F_{[0.95;2,12]} = 3.89$		
			60

- □ SSA/SST = 0.7585/0.8270 = 0.917
 - \rightarrow 91.7% of total variation in measurements is due to differences among alternatives
- □ SSE/SST = 0.0685/0.8270 = 0.083
 - \rightarrow 8.3% of total variation in measurements is due to noise in measurements
- Computed F statistic > tabulated F statistic
 - \rightarrow 95% confidence that differences among alternatives are statistically significant.

63

Contrasts

- ANOVA tells us that there is a statistically significant difference among alternatives
- □ But it does *not* tell us *where* difference is
- Use method of contrasts to compare subsets of alternatives
 - > A vs B
 - > {A, B} vs {C}
 - ≻ Etc.

- Contrast = linear combination of *effects* of alternatives
- Contrast can be used to compare the effects of alternatives

$$c = \sum_{j=1}^{k} w_j \alpha_j$$
$$\sum_{j=1}^{k} w_j = 0$$

Contrasts

- E.g. Compare effect of system 1 to effect of system 2 - choose the weights appropriately
 - $w_1 = 1$ $w_2 = -1$ $w_3 = 0$ $c = (1)\alpha_1 + (-1)\alpha_2 + (0)\alpha_3$ $= \alpha_1 - \alpha_2$

64

Variance of random variables

 $\hfill\square$ Recall that, for independent random variables X_1 and X_2

$$Var[X_1 + X_2] = Var[X_1] + Var[X_2]$$
$$Var[aX_1] = a^2 Var[X_1]$$

Variance of a contrast c $Var[c] = Var[\sum_{j=1}^{k} (w_j \alpha_j)] \qquad s_c^2 = \frac{\sum_{j=1}^{k} (w_j^2 s_e^2)}{kn}$ $= \sum_{j=1}^{k} Var[w_j \alpha_j] \qquad s_e^2 = \frac{SSE}{k(n-1)}$ $df(s_c^2) = k(n-1)$ • Assumes variation due to errors is equally distributed among kn total measurements

Confidence interval for contrasts

$$(c_{1}, c_{2}) = c \mp t_{1-\alpha/2;k(n-1)}s_{c}$$

$$s_{c} = \sqrt{\frac{\sum_{j=1}^{k} (w_{j}^{2}s_{e}^{2})}{kn}}$$

$$s_{e}^{2} = \frac{SSE}{k(n-1)}$$
⁶⁵

Example

90% confidence interval for contrast of [Sys1- Sys2]

$$\begin{aligned} &\alpha_1 = -0.1735 \\ &\alpha_2 = -0.1441 \\ &\alpha_3 = 0.3175 \\ &c_{[1-2]} = -0.1735 - (-0.1441) = -0.0294 \\ &s_c = s_e \sqrt{\frac{1^2 + (-1)^2 + 0^2}{3(5)}} = 0.0275 \\ &90\%: (c_1, c_2) = (-0.0784, 0.0196) \end{aligned}$$

