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Comparing Systems Using Sample 
Data 
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Comparing alternatives 

  Next: comparing two alternatives 
  use confidence intervals 

  Comparing more than two alternatives 
  ANOVA 

•  Analysis of Variance 
  Will discuss later this semester 
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Comparing Two Alternatives 

 Suppose you want to compare two cache 
replacement policies under similar 
workloads. 

 Metric of interest: cache hit ratio. 
 Types of comparisons: 

  Paired observations 
  Unpaired observations. 
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Paired Observations 

System A System B 

input values 

paired output 
values 
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Example of Paired Observations 
  Six similar workloads were used to compare the 

cache hit ratio obtained under object 
replacement policies A and B on a Web server. Is 
A better than B? 
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Example of Paired Observations 

In Excel: 
TINV(1-0.9,5) 

0.02 

0.0743 

6 

2.015 
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Example of Paired Observations 

In Excel: 
TINV(1-0.9,5) 

The interval includes zero, so we cannot say that policy A is better 
than policy B. 
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Unpaired Observations 

System A System B 

input values 
for A 

unpaired output 
values 

input values 
for B 
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Inferences concerning two means 

  For large samples, we can statistically test the 
equality of the means of two samples by using the 
statistic 

  Z is a random variable having the standard normal 
distribution.  

  We need to check if the confidence interval of Z at a 
given level includes zero 

  We can approximate the population variances above with 
sample variances when n1 and n2 are greater than 30 
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Inferences concerning two means 
(cont’d) 

  For small samples, if the population variances are 
unknown, we can test for equality of the two 
means using the t-statistic below, provided we 
can assume that both populations are normal with 
equal variances 

  t is a random variable having the t-distribution with n1 + 
n2 - 2 degrees of freedom and Sp is the square root of 
the pooled estimate of the variance of the two samples 
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Inferences concerning two means 
(cont’d) 

 The pooled-variance t test can be used if 
we assume that the two population 
variances are equal 
  In practice, we can use it if one sample 

variance is less than 4 times the variance of 
the other sample 

 If this is not true, we need another test  
  Smith-Satterthwaite test described on the 

following slides 
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Unpaired Observations (t-test) 

1.  Size of samples for A and B: 
2.  Compute sample means:  

    and 
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Unpaired Observations (t-test) 

3.  Compute the sample standard deviations: 
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Unpaired Observations (t-test) 

4.  Compute the mean difference: 
5.  Compute the standard deviation of the 

mean difference: 

6.  Compute the effective number of 
degrees of freedom. 
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Unpaired Observations (t-test) 

7.  Compute the confidence interval for the 
mean difference: 

8.  If the confidence interval includes zero, 
the difference is not significant at 

      100(1-α)% confidence level. 

16 

Example of Unpaired Observations 
  Two cache replacement policies A and B are 

compared under similar workloads. Is A better 
than B? 
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Example of Unpaired Observations 

In Excel: TINV(1-0.9,13-1) 

At a 90% confidence level the two policies are not identical since 
zero is not in the interval. With 90% confidence, the cache hit ratio  
for policy A is smaller than that for policy B. So, policy B is better 
at that confidence level. 

13 
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Approximate Visual Test 

A A 

A 

B 

B 

B 

CIs do not overlap: 
  A is higher than B 

CIs overlap and mean 
   of A is in B’s CI: 
  A and B are similar 

CIs overlap and mean 
   of A is not in B’s CI: 
  need to do t-test 
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Example of Visual Test 

CIs overlap but mean of A is  
not in CI of B and vice-versa.  
Need to do a t-test. 

20 

Non-parametric tests 

  The unpaired t-tests can be used if we assume 
that the data in the two samples being compared 
are taken from normally distributed populations 

  What if we cannot make this assumption? 
  We can make some normalizing transformations on the 

two samples and then apply the t-test 
  Some non-parametric procedure such as the Wilcoxon 

rank sum test that does not depend upon the assumption 
of normality of the two populations can be used 
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Rank-sum (Wilcoxon test) 
 Non-parameteric test, i.e., does not depend upon 

distribution of population, for comparing two 
samples 

 Example: 
  Suppose the time between two successive crashes are 

recorded for two competing computer systems as 
follows (time in weeks): 
System I: 0.63 0.17 0.35 0.49 0.18 0.43 0.12 0.20 0.47 
1.36 0.51 0.45 0.84 0.32 0.40 
System II: 1.13 0.54 0.96 0.26 0.39 0.88 0.92 0.53 1.01 
0.48 0.89 1.07 1.11 0.58 

   The problem is to determine if the two 
populations are the same or if one is likely to 
produce larger observations than the other 
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Rank-sum test (cont’d) 

 U-test is a non-parameteric alternative to the paired 
and unpaired t-tests 

 First step in the U-test is to rank the data jointly, in 
increasing order of magnitude 

   0.12 0.17 0.18 0.20 0.26 0.32 0.35 0.39 0.40 0.43 
  I     I      I       I     II     I      I      II    I       I 
0.45 0.47 0.48 0.49 0.51 0.53 0.54 0.58 0.63 0.84 
   I    I      II     I      I      II     II    II     I      I 
0.88 0.89 0.92 0.96 1.01 1.07 1.11 1.13 1.36 
   II   II    II    II    II   II    II   II    I  

  Assign each data item a rank in this order 
  If there are ties among values, the rank assigned to each observation is the 

mean of the ranks which they jointly occupy 
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Rank-sum test (cont’d) 

 The values in the first sample occupy 
ranks 1, 2,3,4,6,7,9,10,11,12,14,15,19,20 
and 29 

 The sum of the ranks for the two samples, 
W1 = 162 and W2 = 273 

 The U-test is based on the statistics 

or on the statistic U which is the smaller 
of the two 

24 

Rank-sum test (cont’d) 
 Under the null hypothesis that the two samples 

come from identical populations, it can be shown 
that the mean and variance of the sampling 
distribution of U1 are 

 Numerical studies have shown that the sampling 
distribution of U1 can be approximated closely by 
the normal distribution when n1 and n2 are both 
greater than 8 
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Rank-sum test (cont’d) 
 Thus, the test of the null hypothesis that both samples 

come from identical populations can be based on  

which is a random variable having approximately the 
standard normal distribution 

 The alternative hypothesis is either: 
  Two-sided test (Populations are not identical) 

•  We reject the null hypothesis if Z < -zα/2   or Z > zα/2 
  One-sided test 

•  Population 2 is stochastically larger than Population 1 
–  We reject the null hypothesis if Z < -zα 

•  Or, Population 1 is stochastically larger than Population 2 
–  We reject the null hypothesis if Z > zα 
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Example cont’d 

 At the 0.01 level of significance, test the null 
hypothesis that the two samples in our 
example come from the same population 
  Alternative hypothesis, populations are not 

identical 
  For α = 0.01, we can reject the null hypothesis if Z 

< -2.575 or Z > 2.575 
•  Calculations: n1 = 15, n2 = 14, W1 = 162 

U1 = 162 - 15x16/2 = 42 
Z = (42 - 15x14/2)/√((15x14x30)/12) = -2.75 

  Since Z is less than -2.575, we reject the null 
hypothesis; we conclude there is a difference 
between the two systems 

ANOVA- Analysis of Variance 

28 

Comparing alternatives 

  Comparing two alternatives 
  use confidence intervals 

  Comparing more than two alternatives 
  ANOVA 

•  Analysis of Variance 
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Comparing More Than Two Alternatives 

 Naïve approach 
  Compare confidence intervals 

30 

One-Factor Analysis of Variance (ANOVA) 

  Very general technique 
  Look at total variation in a set of 

measurements 
  Divide into meaningful components 

  Also called 
  One-way classification 
  One-factor experimental design 

  Introduce basic concept with one-factor 
ANOVA 

  Generalize later with design of experiments 
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One-Factor Analysis of Variance (ANOVA) 

  Separates total variation observed in a 
set of measurements into: 

1.  Variation within one system 
•  Due to random measurement errors 

2.  Variation between systems 
•  Due to real differences + random error 

  Is variation(2) statistically > variation(1)? 
  Want to determine whether variation on 

component (1) is larger then component (2) 

32 

ANOVA 

 Make n measurements of k alternatives 
 yij = i-th measurment on j-th alternative 
 Assumes errors are: 

  Independent 
  Gaussian (normal) 
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Measurements for All Alternatives 

Alternatives 

Measurem
ents 

1 2 … j … k 

1 y11 y12 … y1j … yk1 

2 y21 y22 … y2j … y2k 

… … … … … … … 

i yi1 yi2 … yij … yik 

… … … … … … … 

n yn1 yn2 … ynj … ynk 

Col mean y.1 y.2 … y.j … y.k 

Effect α1 α2 … αj … αk 

Organize in a table 

34 

Column Means 

  Column means are average values of all 
measurements within a single alternative 
  Average performance of one alternative 

n
y

y
n

i ij
j
∑ == 1

.
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Column Means 

Alternatives 

Measurem
ents 

1 2 … j … k 

1 y11 y12 … y1j … yk1 

2 y21 y22 … y2j … y2k 

… … … … … … … 

i yi1 yi2 … yij … yik 

… … … … … … … 

n yn1 yn2 … ynj … ynk 

Col mean y.1 y.2 … y.j … y.k 

Effect α1 α2 … αj … αk 

36 

Overall Mean 

  Average of all measurements made of all 
alternatives 

kn

y
y

k

j

n

i ij∑ ∑= == 1 1
..
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Deviation From Column Mean 

tsmeasuremenin error  

meancolumn  from  ofdeviation  
.

=

=

+=

ijij

ijjij

ye
eyy

  For each column, we can write deviation from its 
that alternative’s mean 

38 

Error = Deviation From Column Mean 

Alternatives 

Measurem
ents 

1 2 … j … k 

1 y11 y12 … y1j … yk1 

2 y21 y22 … y2j … y2k 

… … … … … … … 

i yi1 yi2 … yij … yik 

… … … … … … … 

n yn1 yn2 … ynj … ynk 

Col mean y.1 y.2 … y.j … y.k 

Effect α1 α2 … αj … αk 
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Overall Mean 

Alternatives 

Measurem
ents 

1 2 … j … k 

1 y11 y12 … y1j … yk1 

2 y21 y22 … y2j … y2k 

… … … … … … … 

i yi1 yi2 … yij … yik 

… … … … … … … 

n yn1 yn2 … ynj … ynk 

Col mean y.1 y.2 … y.j … y.k 

Effect α1 α2 … αj … αk 
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Deviation From Overall Mean 

j

yy

j

jj

 ealternativ ofeffect  

mean overall frommean column  ofdeviation  
...

=

=

+=

α

α

  For each column mean, we can write deviation 
from it’s the total mean 
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Effect = Deviation From Overall Mean 

Alternatives 

Measurem
ents 

1 2 … j … k 

1 y11 y12 … y1j … yk1 

2 y21 y22 … y2j … y2k 

… … … … … … … 

i yi1 yi2 … yij … yik 

… … … … … … … 

n yn1 yn2 … ynj … ynk 

Col mean y.1 y.2 … y.j … y.k 

Effect α1 α2 … αj … αk 
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Effects and Errors 

  Effect is distance from overall mean 
  Horizontally across alternatives 

  Error is distance from column mean 
  Vertically within one alternative 
  Error across alternatives, too 

ijjij eyy ++= α..

  Combining the two we can write each 
measurements as 
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Sum of Squares of Differences:  SSE 
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  We can split the measurements due to the total 
variation into two components – effect of 
alternatives and variation due to errors 

  Variation due to errors 

44 

Sum of Squares of Differences:  SSA 

( ) ( )
2

1
...

2

1

...

...

∑∑
==

−==

−=

+=

k

j
j

k

j
j

jj

jj

yynnSSA

yy
yy

α

α

α

  Variation due to alternatives 
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Sum of Squares of Differences:  SST 
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  Total variation 
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Sum of Squares of Differences 
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Sum of Squares of Differences 

  SST = differences between each measurement 
and overall mean 

  SSA = variation due to effects of alternatives 
  SSE = variation due to errors in measurments 

SSESSASST +=

48 

ANOVA – Fundamental Idea 

  Separates variation in measured values 
into: 

1.  Variation due to effects of alternatives 
 SSA – variation across columns 

2.  Variation due to errors 
  SSE – variation within a single column 

  If differences among alternatives are 
due to real differences, SSA should be 
statistically > SSE 
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Comparing SSE and SSA 

 Simple approach – find the ratios 
  SSA / SST = fraction of total variation 

explained by differences among alternatives 
  SSE / SST = fraction of total variation due to 

experimental error 
 But is it statistically significant? 
  Need a statistical test F-test 

50 

Variances from Sum of Squares (Mean 
Square Value) 

)1(
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•  Estimate variances of SSA and SSE  
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Comparing Variances 

  Use F-test to compare ratio of variances 

 valuescritical tabulated)](),(;1[

2

2

=

=

− denomdfnumdf

e

a

F
s
sF

α
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F-test 

 If Fcomputed > Ftable 

 → We have (1 – α) * 100% confidence that 
variation due to actual differences in 
alternatives, SSA, is statistically greater 
than variation due to errors, SSE. 
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F-test 

 If Fcomputed > Ftable 

 → We have (1 – α) * 100% confidence that 
variation due to actual differences in 
alternatives, SSA, is statistically greater 
than variation due to errors, SSE. 

54 

Degrees of Freedom 

 Note that  
 df(SSA) = k – 1, since k alternatives  
 df(SSE) = k(n – 1), since k alternatives, 

each with (n – 1) df 
 df(SST) = df(SSA) + df(SSE) = kn - 1 

55 

Degrees of Freedom for Effects 

Alternatives 

Measurem
ents 

1 2 … j … k 

1 y11 y12 … y1j … yk1 

2 y21 y22 … y2j … y2k 

… … … … … … … 

i yi1 yi2 … yij … yik 

… … … … … … … 

n yn1 yn2 … ynj … ynk 

Col mean y.1 y.2 … y.j … y.k 

Effect α1 α2 … αj … αk 
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Degrees of Freedom for Errors 

Alternatives 

Measurem
ents 

1 2 … j … k 

1 y11 y12 … y1j … yk1 

2 y21 y22 … y2j … y2k 

… … … … … … … 

i yi1 yi2 … yij … yik 

… … … … … … … 

n yn1 yn2 … ynj … ynk 

Col mean y.1 y.2 … y.j … y.k 

Effect α1 α2 … αj … αk 
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Degrees of Freedom for Errors 

Alternatives 

Measurem
ents 

1 2 … j … k 

1 y11 y12 … y1j … yk1 

2 y21 y22 … y2j … y2k 

… … … … … … … 

i yi1 yi2 … yij … yik 

… … … … … … … 

n yn1 yn2 … ynj … ynk 

Col mean y.1 y.2 … y.j … y.k 

Effect α1 α2 … αj … αk 
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ANOVA Summary 

)]1(),1(;1[

22

22

 Tabulated
 Computed

)]1([)1(squareMean 
1)1(1freedom Deg

squares of Sum
TotalErroresAlternativVariation
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−−−
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SSTSSESSA

α
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ANOVA Example 

Alternatives 

Measurements 1 2 3 Overall mean 

1 0.0972 0.1382 0.7966 

2 0.0971 0.1432 0.5300 

3 0.0969 0.1382 0.5152 

4 0.1954 0.1730 0.6675 

5 0.0974 0.1383 0.5298 

Column mean 0.1168 0.1462 0.6078 0.2903 

Effects -0.1735 -0.1441 0.3175 

60 

ANOVA Example 

89.3 Tabulated
4.660057.03793.0 Computed

0057.03793.0squareMean 
14112)1(21freedom Deg

8270.00685.07585.0squares of Sum
TotalErroresAlternativVariation
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Conclusions from example 

  SSA/SST = 0.7585/0.8270 = 0.917 
→ 91.7% of total variation in measurements is due to 

differences among alternatives 

  SSE/SST = 0.0685/0.8270 = 0.083 
→ 8.3% of total variation in measurements is due to noise in 

measurements 

  Computed F statistic > tabulated F statistic 
→ 95% confidence that differences among alternatives are 

statistically significant. 
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Contrasts 

 ANOVA tells us that there is a 
statistically significant difference among 
alternatives 

 But it does not tell us where difference is 
 Use method of contrasts to compare 

subsets of alternatives 
  A vs B 
  {A, B} vs {C} 
  Etc. 
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Contrasts 

  Contrast = linear combination of effects of 
alternatives 

  Contrast can be used to compare the effects of 
alternatives 
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Contrasts 

  E.g. Compare effect of system 1 to effect of  
 system 2 – choose the weights appropriately 
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Construct confidence interval for contrasts 

 Need  
  Estimate of variance 
  Appropriate value from t table 

 Compute confidence interval as before 
 If interval includes 0 

  Then no statistically significant difference 
exists between the alternatives included in the 
contrast 

66 

Variance of random variables 

  Recall that, for independent random variables X1 
and X2 

]Var[]Var[

]Var[]Var[]Var[

1
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1
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XXXX

=

+=+
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Variance of a contrast c 
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  Assumes variation due to errors is equally 
distributed among kn total measurements 
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Confidence interval for contrasts 
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Example 

  90% confidence interval for contrast of [Sys1- Sys2] 

)0196.0,0784.0(),(:%90
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Summary 

  Use one-factor ANOVA to separate total 
variation into: 
–  Variation within one system 

•  Due to random errors 
–  Variation between systems 

•  Due to real differences (+ random error) 
  Is the variation due to real differences 

statistically greater than the variation due to 
errors? 

  Use contrasts to compare effects of subsets of 
alternatives 


