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Hypothesis Testing 

CS 700 

Previously 

 Comparing systems 
 Using confidence intervals 
 Paired, unpaired observations 
 Analysis of variance ANOVA 

  Next hypothesis testing  

2 

3 

Hypothesis Testing 

 Now need to make decisions  
 Purpose: make inferences about a population 

parameter by analyzing differences between 
observed sample statistics and the results 
one expects to obtain if some underlying 
assumption is true. 

 Null hypothesis: 
 Alternative hypothesis: 
 If the null hypothesis is rejected then the 

alternative hypothesis is accepted 
 Paint drying example (black-board) 
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Actual Situation 

Ho true Ho false 

Accept  Ho Correct decision 
Confidence=1-α


Type II Error: 
Pr[Type II]=β


Reject Ho Type I Error 
P[Type I]=α


Correct Decision 
Power=1-β
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Risks in Decision Making 

 Type I Error occurs if Ho is rejected when it 
is true.  
  Pr [Ho is rejected | true] = α


 Type II Error occurs if Ho is not rejected 
when it is false. 
  Pr[Ho is not rejected | false] = β


 Confidence coefficient: 
  Pr [Ho not rejected | true]= 1- α


 Power of the test: 
  Pr[Ho is rejected |false]= 1-β
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One-sided and two-sided alternatives 
  Traditionally, the null hypothesis is used for a 

hypothesis set up primarily to see if it can be 
rejected 
  When the goal of an experiment is to establish an assertion, 

the negation of the assertion should be taken as the null 
hypothesis, and the assertion becomes the alternative 
hypothesis 

  Alternative hypotheses usually specify that the 
population mean (or whatever other parameter is 
of concern) is not equal to, greater than, or less 
than the value assumed under the null hypothesis 
  Two-sided alternative  
  One-sided alternatives:                 or                    

€ 

H1 :µ >x

€ 

H1 :µ <x
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Critical regions for two-sided and one-sided alternative 
hypotheses – depends on the decision problem 

Alternative 
hypothesis 

Reject null 
hypothesis if: 

µ < µ0 Z < -zα

µ > µ0 Z > zα


µ ≠ µ0 Z < -zα/2 or Z > zα/2 

Note that the critical region for accepting the null hypothesis can  
be used to compute the (1-α)100% confidence intervals for the  
population mean µ, i.e.  

Null hypothesis: µ = µ0 

8 

Test statistic: 

Two-tailed test 

0.0 µ


region of 
rejection 

region of 
rejection 

region of 
non-rejection 

critical values 
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Steps in Hypothesis Testing 

1.  State the null and alternative hypothesis. 
2.  Choose the level of significance α. 
3.  Choose the sample size n. Larger samples allow 

us to detect even small differences between 
sample statistics and true population 
parameters. For a given α, increasing n 
decreases β.


4.  Choose the appropriate statistical technique 
and test statistic to use (Z or t). 
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Steps in Hypothesis Testing 

5.  Determine the critical values that divide the 
regions of acceptance and non-acceptance. 

6.  Collect the data and compute the sample mean 
and the appropriate test statistic (e.g., Z). 

7.  If the test statistic falls in the non-reject 
region, Ho cannot be rejected. Else Ho is 
rejected. 
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Example of Hypothesis Testing 

 A sample of 50 files from a file system is 
selected. The sample mean is 12.3 Kbytes. 
The standard deviation is known to be 0.5 
Kbytes.  
  H0: µ = 12.5 Κbytes 
  H1: µ ≠ 12.5 Κbytes 

   Confidence: 0.95 

12 

0


region of 
rejection=0.025 

region of 
rejection= 0.025 

region of 
non-rejection 

= 0.95 

-1.96 1.96 -2.83 

Reject Ho 

NORMINV(1-0.05/2,0,1) 

If Z falls in the interval -1.96 to 1.96 hypothesis cannot be rejected 
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The null hypothesis is rejected because p (0.0047) is less than the 
level of significance (0.05). 14 

Hypothesis Tests with Unknown σ


  We can estimate the variance by the sample variance 
  For large samples, we can use the Z statistic 
  For small samples, if the population is assumed to be 

normally distributed the sampling distribution for 
the mean follows a t distribution with n-1 degrees of 
freedom 

  t statistic for unknown σ:


        sample standard deviation 

15 

Example of Hypothesis Testing 

 A sample of 5 files from a file system is 
selected.  Assume that file sizes are 
normally distributed. The sample mean is 
12.3 Kbytes. The sample standard 
deviation is 0.5 Kbytes.  
  Ho: µ = 12.35 Κbytes 
  H1: µ ≠ 12.35 Κbytes 

   Confidence: 0.95 

16 

Example 

t = (12.3 - 12.35)/(0.5/√5) = -0.2236 
α = 0.05, degrees of freedom = 4 
tα/2 = 2.776 for 4 degrees of freedom  

In EXCEL, TINV(0.05,4) 

The t test statistic (-0.2236) is between the 
lower and upper critical values (i.e. -2.776 and 
2.776) 
So the null hypothesis should not be rejected. 
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Example of One-Tailed Test 

 A sample of 50 files from a file system is 
selected. The sample mean is 12.35 
Kbytes. The standard deviation is known 
to be 0.5 Kbytes.  
  Ho: µ = 12.3 Κbytes 
  H1: µ < 12.3 Κbytes 

   Confidence: 0.95 

18 

Critical value =  NORMINV(0.05,0,1)  = -1.645. 
Region of non-rejection: Z ≥ −1.645.

So, do not reject Ho. (Z exceeds critical value) 

Example of One-Tailed Test 

Statistic 

19 

0.0 
µ


region of 
rejection 

region of 
non-rejection 

-1.645 (critical value) 

Test statistic: 

0.95 (1 – α) 0.05 (α) 

0.707 (test statistic) 

20 

One-tailed Test 
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Steps in Determining the p-value. 

1.  State the null and alternative hypothesis. 
2.  Choose the level of significance α. 
3.  Choose the sample size n. Larger samples allow 

us to detect even small differences between 
sample statistics and true population 
parameters. For a given α, increasing n 
decreases β.


4.  Choose the appropriate statistical technique 
and test statistic to use (Z or t). 

22 

5.  Collect the data and compute the sample mean 
and the appropriate test statistic (e.g., Z) 
6.  Calculate the p-value based on the test statistic 
7.  Compare the p-value to α

8.  If p ≥ α then do not reject Ho, else reject Ho 

Steps in Determining the p-value. 

23 
The null hypothesis is rejected because p (0.0047) is less than the 
level of significance (0.05). 24 

0


critical values 

-Z Z 

p/2 p/2 

If p ≥ α then do not reject Ho, else reject Ho. 

p/2=F(-z) 
     =NORMDIST(-z,0,1,true) 
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0


critical values 

-Z Z 

p/2 p/2 

Do not reject Ho 

p/2=F(-z) 
     =NORMDIST(-z,0,1,true) 

26 

0


critical values 

-Z Z 

p/2 p/2 

Reject Ho 

p/2=F(-z) 
     =NORMDIST(-z,0,1,true) 

27 

Computing p-values 

The null hypothesis is rejected because p (0.0047) is less than the 
level of significance (0.05). 28 

Hypothesis testing vs estimating 
confidence intervals 
  Textbooks on statistics devote a chapter to 

hypothesis testing 
  Example: Hypothesis test for a zero mean 
  Hypothesis test has a yes-no answer so either a 

hypothesis is accepted or rejected  
  Jain argues that confidence intervals provide more 

information 
•  The difference between two systems has a 

confidence interval of (-100,100) vs a confidence 
interval of (-1,1) 

•  In both cases, the interval includes zero but the 
width of the interval provides additional information 
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Design of Experiments 

CS 700 

30 

Design of Experiments 

  Goals 
  How to find most about the system with minimal 

effort 
  Terminology 
  Full factorial designs 

  m-factor ANOVA 
  Fractional factorial designs 
  Multi-factorial designs 

31 

Recall:  One-Factor ANOVA 

  Separates total variation observed in a 
set of measurements into: 

1.  Variation within one system 
•  Due to random measurement errors 

2.  Variation between systems 
•  Due to real differences + random error 

  Is variation(2) statistically > variation(1)? 
  One-factor experimental design 

32 

ANOVA Summary 

)]1(),1(;1[

22

22

 Tabulated
 Computed

)]1([)1(squareMean 
1)1(1freedom Deg

squares of Sum
TotalErroresAlternativVariation
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Generalized Design of Experiments 

 Goals 
  Isolate effects of each input variable. 
  Determine effects of interactions. 
  Determine magnitude of experimental error 
  Obtain maximum information for given effort 

 Basic idea 
  Expand 1-factor ANOVA to m factors 

34 

Terminology 

 Response variable 
  Measured output value 

•  E.g. total execution time 

 Factors 
  Input variables that can be changed 

•  E.g. cache size, clock rate, bytes transmitted 

 Levels 
  Specific values of factors (inputs) 

•  Continuous (~bytes) or discrete (type of system) 

35 

Terminology 

 Replication 
  Completely re-run experiment with same input 

levels 
  Used to determine impact of measurement 

error 
 Interaction 

  Effect of one input factor depends on level of 
another input factor 

Simplest strategy   

  Vary one factor at the time – ignores interactions 
(e.g. clock time vs cache size) 

  Full factorial design with replications Measure all 
possible input combinations – large number of 
experiments 

  4 factors, 5 possible level 4^5 experiments + 
repetition to gather some statistics  

36 
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One-factor Experiments 
  ANOVA before: only compare types of system 
   Separate variation due to error, variation due to 

alternative 

  Two factors (inputs) 
  A, B 

  Separate total variation in output values into: 
  Effect due to A 
  Effect due to B 
  Effect due to interaction of A and B (AB) 
  Experimental error 
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ANOVA Summary 

)]1(),1(;1[
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 Tabulated
 Computed
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Two-factor Experiments 

  Two factors (inputs) 
  A, B 

  Separate total variation in output values into: 
  Effect due to A 
  Effect due to B 
  Effect due to interaction of A and B (AB) 
  Experimental error 

40 

Example – User Response Time 

  A = degree of 
multiprogramming 

  B = memory size 
  AB = interaction of 

memory size and 
degree of 
multiprogramming 

B (Mbytes) 

A 32 64 128 

1 0.25 0.21 0.15 

2 0.52 0.45 0.36 

3 0.81 0.66 0.50 

4 1.50 1.45 0.70 



9/29/10 

11 

41 

Two-factor ANOVA 

 Factor A – a input levels 
 Factor B – b input levels 
 n measurements for each input combination 
 abn total measurements 

42 

Two Factors, n Replications 

Factor A 

1 2 … j … a 

Factor B 

1 … … … … … … 

2 … … … … … … 

… … … … … … … 

i … … … yijk … … 

… … … … … … … 

b … … … … … … 
n replications 

k-th measurement 

43 

Recall:  One-factor ANOVA 

  Each individual 
measurement is 
composition of 
  Overall mean 
  Effect of 

alternatives 
  Measurement 

errors 
errort measuremen 

A  todueeffect  
mean overall ..

..

=

=

=

++=

ij

i

ijiij

e

y
eyy

α

α
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Two-factor ANOVA 

  Each individual 
measurement is 
composition of 
  Overall mean 
  Effects 
  Interactions 
  Measurement 

errors 
errort measuremen 

B andA  ofn interactio  todueeffect  

B  todueeffect  
A  todueeffect  

mean overall ...

...

=

=

=

=

=

++++=

ijk

ij

j

i

ijkijjiijk

e

y
eyy

γ

β

α

γβα
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Computation of effects 

€ 

yij. = y... +α j + βi + γ ij

α j = y. j . − y...
βi = yi.. − y...
γ ij = yij. − yi.. − y. j . + y...

46 

Sum-of-Squares 

 As before, use sum-of-squares identity 
separate total variation 

SST = SSA + SSB + SSAB + SSE 

 Degrees of freedom 
  df(SSA) = a – 1 
  df(SSB) = b – 1 
  df(SSAB) = (a – 1)(b – 1) 
  df(SSE) = ab(n – 1) 
  df(SST) = abn - 1 

47 

Two-Factor ANOVA 

)]1(),1)(1(;1[)]1(),1(;1[)]1(),1(;1[

222222

2222

 Tabulated
 Computed

)]1([)]1)(1[()1()1(squareMean 
)1()1)(1(11freedom Deg

squares of Sum
ErrorABBA

−−−−−−−−−−

===

−=−−=−=−=

−−−−−

nabbanabbnaba

eababebbeaa

eabba

FFFF
ssFssFssFF

nabSSEsbaSSABsbSSBsaSSAs
nabbaba
SSESSABSSBSSA

ααα

•  Compute variances – mean squared values 
•  We can use F test to compare two variances 
•  If F is statistically significant if it is larger then  
  critical F value  

48 

Need for Replications 

 If n=1 
  Only one measurement of each configuration 

 Can then be shown that 
  SSAB = SST – SSA – SSB 

 Since 
  SSE = SST – SSA – SSB – SSAB 

 We have 
  SSE = 0 
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Need for Replications 

 Thus, when n=1 
  SSE = 0 
 → No information about measurement errors 

 Cannot separate effect due to interactions 
from measurement noise 

 Must replicate each experiment at least 
twice 

50 

Example 

  Output = user 
response time 
(seconds) 

  Want to separate 
effects due to 
  A = degree of 

multiprogramming 
  B = memory size 
  AB = interaction 
  Error 

  Need replications to 
separate error 

B (Mbytes) 

A 32 64 128 

1 0.25 0.21 0.15 

2 0.52 0.45 0.36 

3 0.81 0.66 0.50 

4 1.50 1.45 0.70 

51 

Example 

B (Mbytes) 
A 32 64 128 
1 0.25 0.21 0.15 

0.28 0.19 0.11 
2 0.52 0.45 0.36 

0.48 0.49 0.30 
3 0.81 0.66 0.50 

0.76 0.59 0.61 
4 1.50 1.45 0.70 

1.61 1.32 0.68 

52 

Example 

00.389.349.3 Tabulated
5.295.1052.460 Computed

0024.00720.02576.01238.1squareMean 
12623freedom Deg
0293.04317.05152.03714.3squares of Sum

ErrorABBA

]12,6;95.0[]12,2;95.0[]12,3;95.0[ === FFFF
F
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Conclusions From the Example 

 77.6% (SSA/SST) of all variation in 
response time due to degree of 
multiprogramming 

 11.8% (SSB/SST) due to memory size 
 9.9% (SSAB/SST) due to interaction 
 0.7% due to measurement error 
 95% confident that all effects and 

interactions are statistically significant 

54 

Generalized m-factor Experiments 

effects  total12

nsinteractiofactor -   1

nsinteractiofactor - three
3

nsinteractiofactor - two
2

effectsmain  
factors 

m −

=


























⇒

m
m
m

m

m
m
m

M

Effects for 3 
factors: 

A 
B 
C 
AB 
AC 
BC 
ABC 
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Degrees of Freedom for m-factor 
Experiments 

  df(SSA) = (a-1) 
  df(SSB) = (b-1) 
  df(SSC) = (c-1) 
  df(SSAB) = (a-1)(b-1) 
  df(SSAC) = (a-1)(c-1) 
  … 
  df(SSE) = abc(n-1) 
  df(SSAB) = abcn-1 

56 

Procedure for Generalized  
m-factor Experiments 

1.  Calculate (2m-1) sum of squares terms (SSx) and 
SSE 

2.  Determine degrees of freedom for each SSx 
3.  Calculate mean squares (variances) 
4.  Calculate F statistics 
5.  Find critical F values from table 
6.  If F(computed) > F(table), (1-α) confidence that 

effect is statistically significant 
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A Problem 

 Full factorial design with replication 
  Measure system response with all possible input 

combinations 
  Replicate each measurement n times to 

determine effect of measurement error 
 m factors, v levels, n replications 
→ n vm experiments 

 m = 5 input factors, v = 4 levels, n = 3 
 → 3(45) = 3,072 experiments! 

How to reduce the number of experiments ?  
58 

Fractional Factorial Designs:  n2m 
Experiments 

 Special case of generalized m-factor 
experiments 

 Restrict each factor to two possible values 
  High, low 
  On, off 

 Find factors that have largest impact 
 Full factorial design with only those 

factors 

59 

Finding Sum of Squares Terms 

Sum of n 
measurements with 
(A,B) = (High, Low) 

Factor A Factor B 

yAB High High 

yAb High Low 

yaB Low High 

yab Low Low 

60 

n2m Contrasts 

abaBAbABAB

abaBAbABB

abaBAbABA

yyyyw
yyyyw
yyyyw

+−−=

−+−=

−−+=

•  Difference in systems responses when values are set 
to high and low for A, for B, and when A,B are set to 
different values 
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n2m Experiments 

)]1(2,1;1[)]1(2,1;1[)]1(2,1;1[

222222

2222

 Tabulated
 Computed

)]1(2[111squareMean 
)1(2111freedom Deg
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ErrorABBA
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n2m Sum of Squares 

SSABSSBSSASSTSSE
n
wSSAB

n
wSSB

n
wSSA

m
AB

m
B

m
A

−−−=

=

=

=

2

2

2

2

2

2

Total number on observations at 
all levels 
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To Summarize -- n2m Experiments 

)]1(2,1;1[)]1(2,1;1[)]1(2,1;1[

222222

2222

 Tabulated
 Computed

)]1(2[111squareMean 
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===
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m
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n
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Contrasts for n2m with m = 2 factors -- 
revisited 
Measurements Contrast 

wa wb wab 

yAB + + + 

yAb + - - 

yaB - + - 

yab - - + 

abaBAbABAB

abaBAbABB

abaBAbABA

yyyyw
yyyyw
yyyyw

+−−=

−+−=

−−+=

Table specifying the signs 
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Contrasts for n2m with m = 3 factors 

Meas Contrast 

wa wb wc wab wac wbc wabc 

yabc - - - + + + - 

yAbc + - - - - + + 

yaBc - + - - + - + 

… … … … … … … … 

ABCaBCAbCABcabCaBcAbcabcAC yyyyyyyyw +−+−−+−=
2^8 combinations must be measured 

66 

n2m with m = 3 factors 

n
wSSAC AC
3

2

2
=

  df(each effect) = 1, since only two levels 
measured 

  SST = SSA + SSB + SSC + SSAB + SSAC + SSBC + 
SSABC 

  df(SSE) = (n-1)23 

  Then perform ANOVA as before 
  Easily generalizes to m > 3 factors 

67 

Important Points 

 Experimental design is used to 
  Isolate the effects of each input variable. 
  Determine the effects of interactions. 
  Determine the magnitude of the error 
  Obtain maximum information for given effort 

 Expand 1-factor ANOVA to m factors 
 Use n2m design to reduce the number of 

experiments needed 
  But loses some information 

68 

Still Too Many Experiments with n2m! 

 Plackett and Burman designs (1946) 
  Multifactorial designs 

 Effects of main factors only 
  Logically minimal number of experiments to 

estimate effects of m input parameters 
(factors) 

  Ignores interactions 
 Requires O(m) experiments 

  Instead of O(2m) or O(vm)  
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Plackett and Burman Designs 

  PB designs exist only in sizes that are multiples of 4 
  Requires X experiments for m parameters 

  X = next multiple of 4 ≥ m 

  PB design matrix 
  Rows = configurations of low and highs 
  Columns = parameters’ values in each config 

•  High/low = +1/ -1 
  First row = from P&B paper 
  Subsequent rows = circular right shift of preceding row 
  Last row = all (-1) 

70 

PB Design Matrix 

Config Input Parameters (factors) Response 

A B C D E F G 

1 +1 +1 +1 -1 +1 -1 -1 9 
2 -1 +1 +1 +1 -1 +1 -1 
3 -1 -1 +1 +1 +1 -1 +1 
4 +1 -1 -1 +1 +1 +1 -1 
5 -1 +1 -1 -1 +1 +1 +1 
6 +1 -1 +1 -1 -1 +1 +1 
7 +1 +1 -1 +1 -1 -1 +1 
8 -1 -1 -1 -1 -1 -1 -1 

Effect 

7 factors, 8 experiments 

71 

PB Design Matrix 

Config Input Parameters (factors) Response 

A B C D E F G 

1 +1 +1 +1 -1 +1 -1 -1 9 
2 -1 +1 +1 +1 -1 +1 -1 11 
3 -1 -1 +1 +1 +1 -1 +1 
4 +1 -1 -1 +1 +1 +1 -1 
5 -1 +1 -1 -1 +1 +1 +1 
6 +1 -1 +1 -1 -1 +1 +1 
7 +1 +1 -1 +1 -1 -1 +1 
8 -1 -1 -1 -1 -1 -1 -1 

Effect 

72 

PB Design Matrix 

Config Input Parameters (factors) Response 

A B C D E F G 

1 +1 +1 +1 -1 +1 -1 -1 9 
2 -1 +1 +1 +1 -1 +1 -1 11 
3 -1 -1 +1 +1 +1 -1 +1 2 
4 +1 -1 -1 +1 +1 +1 -1 1 
5 -1 +1 -1 -1 +1 +1 +1 9 
6 +1 -1 +1 -1 -1 +1 +1 74 
7 +1 +1 -1 +1 -1 -1 +1 7 
8 -1 -1 -1 -1 -1 -1 -1 4 

Effect 
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PB Design Matrix 

Config Input Parameters (factors) Response 

A B C D E F G 

1 +1 +1 +1 -1 +1 -1 -1 9 
2 -1 +1 +1 +1 -1 +1 -1 11 
3 -1 -1 +1 +1 +1 -1 +1 2 
4 +1 -1 -1 +1 +1 +1 -1 1 
5 -1 +1 -1 -1 +1 +1 +1 9 
6 +1 -1 +1 -1 -1 +1 +1 74 
7 +1 +1 -1 +1 -1 -1 +1 7 
8 -1 -1 -1 -1 -1 -1 -1 4 

Effect 65 

74 

PB Design Matrix 

Config Input Parameters (factors) Response 

A B C D E F G 

1 +1 +1 +1 -1 +1 -1 -1 9 
2 -1 +1 +1 +1 -1 +1 -1 11 
3 -1 -1 +1 +1 +1 -1 +1 2 
4 +1 -1 -1 +1 +1 +1 -1 1 
5 -1 +1 -1 -1 +1 +1 +1 9 
6 +1 -1 +1 -1 -1 +1 +1 74 
7 +1 +1 -1 +1 -1 -1 +1 7 
8 -1 -1 -1 -1 -1 -1 -1 4 

Effect 65 -45 
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PB Design Matrix 

Config Input Parameters (factors) Response 

A B C D E F G 

1 +1 +1 +1 -1 +1 -1 -1 9 
2 -1 +1 +1 +1 -1 +1 -1 11 
3 -1 -1 +1 +1 +1 -1 +1 2 
4 +1 -1 -1 +1 +1 +1 -1 1 
5 -1 +1 -1 -1 +1 +1 +1 9 
6 +1 -1 +1 -1 -1 +1 +1 74 
7 +1 +1 -1 +1 -1 -1 +1 7 
8 -1 -1 -1 -1 -1 -1 -1 4 

Effect 65 -45 75 -75 -75 73 67 
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PB Design 

 Only magnitude of effect is important 
  Sign is meaningless 

 In example, most → least important 
effects: 
  [C, D, E] → F → G → A → B 
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PB Design Matrix with Foldover 

 Add X additional rows to matrix 
  Signs of additional rows are opposite original 

rows 
 Provides some additional information about 

selected interactions 
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Case Study #1 

  Determine the most significant parameters in a 
processor simulator. 

  [Yi, Lilja, & Hawkins, HPCA, 2003.] 

80 

Determine the Most Significant 
Processor Parameters 

 Problem 
  So many parameters in a simulator 
  How to choose parameter values? 
  How to decide which parameters are most 

important? 
 Approach 

  Choose reasonable upper/lower bounds. 
  Rank parameters by impact on total execution 

time. 
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Simulation Environment 

 SimpleScalar simulator 
  sim-outorder 3.0 

 Selected SPEC 2000 Benchmarks 
  gzip, vpr, gcc, mesa, art, mcf, equake, parser, vortex, bzip2, 

twolf 
 MinneSPEC Reduced Input Sets 
 Compiled with gcc (PISA) at O3 
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Functional Unit Values 
Parameter Low Value High Value 

Int ALUs 1 4 

Int ALU Latency 2 Cycles 1 Cycle 

Int ALU Throughput 1 

FP ALUs 1 4 

FP ALU Latency 5 Cycles 1 Cycle 

FP ALU Throughputs 1 

Int Mult/Div Units 1 4 

Int Mult Latency 15 Cycles 2 Cycles 

Int Div Latency 80 Cycles 10 Cycles 

Int Mult Throughput 1 

Int Div Throughput Equal to Int Div Latency 

FP Mult/Div Units 1 4 

FP Mult Latency 5 Cycles 2 Cycles 

FP Div Latency 35 Cycles 10 Cycles 

FP Sqrt Latency 35 Cycles 15 Cycles 

FP Mult Throughput Equal to FP Mult Latency 

FP Div Throughput Equal to FP Div Latency 

FP Sqrt Throughput Equal to FP Sqrt Latency 
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Memory System Values, Part I 

Parameter Low Value High Value 

L1 I-Cache Size 4 KB 128 KB 

L1 I-Cache Assoc 1-Way 8-Way 

L1 I-Cache Block Size 16 Bytes 64 Bytes 

L1 I-Cache Repl Policy Least Recently Used 

L1 I-Cache Latency 4 Cycles 1 Cycle 

L1 D-Cache Size 4 KB 128 KB 

L1 D-Cache Assoc 1-Way 8-Way 

L1 D-Cache Block Size 16 Bytes 64 Bytes 

L1 D-Cache Repl Policy Least Recently Used 

L1 D-Cache Latency 4 Cycles 1 Cycle 

L2 Cache Size 256 KB 8192 KB 

L2 Cache Assoc 1-Way 8-Way 

L2 Cache Block Size 64 Bytes 256 Bytes 
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Memory System Values, Part II 

Parameter Low Value High Value 
L2 Cache Repl Policy Least Recently Used 

L2 Cache Latency 20 Cycles 5 Cycles 
Mem Latency, First  200 Cycles 50 Cycles 
Mem Latency, Next  0.02 * Mem Latency, First 

Mem Bandwidth 4 Bytes 32 Bytes 
I-TLB Size 32 Entries 256 Entries 

I-TLB Page Size 4 KB 4096 KB 
I-TLB Assoc 2-Way Fully Assoc 

I-TLB Latency 80 Cycles 30 Cycles 
D-TLB Size 32 Entries 256 Entries 

D-TLB Page Size Same as I-TLB Page Size 
D-TLB Assoc 2-Way Fully-Assoc 

D-TLB Latency Same as I-TLB Latency 
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Processor Core Values 

Parameter Low Value High Value 
Fetch Queue Entries 4 32 

Branch Predictor 2-Level Perfect 
Branch MPred Penalty 10 Cycles 2 Cycles 

RAS Entries 4 64 
BTB Entries 16 512 
BTB Assoc 2-Way Fully-Assoc 

Spec Branch Update In Commit In Decode 
Decode/Issue Width 4-Way 

ROB Entries 8 64 
LSQ Entries 0.25 * ROB 1.0 * ROB 
Memory Ports 1 4 
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Determining the Most Significant 
Parameters 

1.  Run simulations to find response 
•  With input parameters at high/low, on/off values 

Config Input Parameters (factors) Response 

A B C D E F G 

1 +1 +1 +1 -1 +1 -1 -1 9 

2 -1 +1 +1 +1 -1 +1 -1 

3 -1 -1 +1 +1 +1 -1 +1 

… … … … … … … … 

Effect 
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Determining the Most Significant 
Parameters 

2.  Calculate the effect of each parameter 
•  Across configurations 

Config Input Parameters (factors) Response 

A B C D E F G 

1 +1 +1 +1 -1 +1 -1 -1 9 

2 -1 +1 +1 +1 -1 +1 -1 

3 -1 -1 +1 +1 +1 -1 +1 

… … … … … … … … 

Effect 65 
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Determining the Most Significant 
Parameters 
3.  For each benchmark 

 Rank the parameters in descending order of effect 
 (1=most important, …) 

Parameter Benchmark 1 Benchmark 2 Benchmark 3 

A 3 12 8 

B 29 4 22 

C 2 6 7 

… … … … 
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Determining the Most Significant 
Parameters 

4.  For each parameter 
 Average the ranks 

Parameter Benchmark 1 Benchmark 2 Benchmark 3 Average 

A 3 12 8 7.67 

B 29 4 22 18.3 

C 2 6 7 5 

… … … … … 
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Most Significant Parameters 

Number Parameter gcc gzip art Average 
1 ROB Entries 4 1 2 2.77 
2 L2 Cache Latency 2 4 4 4.00 
3 Branch Predictor Accuracy 5 2 27 7.69 
4 Number of Integer ALUs 8 3 29 9.08 
5 L1 D-Cache Latency 7 7 8 10.00 
6 L1 I-Cache Size 1 6 12 10.23 
7 L2 Cache Size 6 9 1 10.62 
8 L1 I-Cache Block Size 3 16 10 11.77 
9 Memory Latency, First 9 36 3 12.31 
10 LSQ Entries 10 12 39 12.62 
11 Speculative Branch Update 28 8 16 18.23 
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General Procedure 

 Determine upper/lower bounds for 
parameters 

 Simulate configurations to find response 
 Compute effects of each parameter for 

each configuration 
 Rank the parameters for each benchmark 

based on effects 
 Average the ranks across benchmarks 
 Focus on top-ranked parameters for 

subsequent analysis 
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Summary 

 Design of experiments 
  Isolate effects of each input variable. 
 Determine effects of interactions. 
 Determine magnitude of experimental error 

 m-factor ANOVA (full factorial design) 
 All effects, interactions, and errors 
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Summary 

 n2m designs  
  Fractional factorial design 

 All effects, interactions, and errors 
 But for only 2 input values 

  high/low  
  on/off 
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Summary 

 Plackett and Burman (multi-factorial 
design) 

 O(m) experiments 
 Main effects only 

  No interactions 
 For only 2 input values (high/low, on/off) 
 Examples – rank parameters, group 

benchmarks, overall impact of an 
enhancement 


