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Hypothesis Testing

€s 700

Previously

0 Comparing systems

0 Using confidence intervals

0 Paired, unpaired observations
0 Analysis of variance ANOVA

O Next hypothesis testing

Hypothesis Testing

0 Now heed to make decisions

0 Purpose: make inferences about a population
parameter by analyzing differences between
observed sample statistics and the results
one expects to obtain if some underlying
assumption is true.

0 Null hypothesis: Hy:u =x

0 Alternative hypothesis: H;:u = x

O If the null hypothesis is rejected then the
alternative hypothesis is accepted

O Paint drying example (black-board)

Actual Situation

H, true H, false

Accept H, Correct decision
Confidence=1-a

Type II Error:
Pr[Type II]=p

Reject Hy Type I Error Correct Decision
P[Type I]=a Power=1-f
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Risks in Decision Making

0 Type I Error occurs if H, is rejected when it
is frue.
> Pr[H, is rejected | true] = a

0 Type IT Error occurs if H, is not rejected
when it is false.
> Pr[H, is not rejected | false] = §

0 Confidence coefficient:
> Pr [H, not rejected | truel= 1- a

O Power of the test:
> Pr[H, is rejected |false]= 1-B

One-sided and two-sided alternatives

0 Traditionally, the null hypothesis is used for a
hypothesis set up primarily to see if it can be
rejected

> When the goal of an experiment is o establish an assertion,
the negation of the assertion should be taken as the null
hypothesis, and the assertion becomes the alternative
hypothesis

0 Alternative hypotheses usually specify that the
population mean (or whatever other parameter is
of concern) is not equal to, greater than, or less
than the value assumed under the null hypothesis

» Two-sided alternative Hj:u = x
> One-sided alternatives: H, :u>x or H,:u<x

Critical regions for two-sided and one-sided alternative
hypotheses - depends on the decision problem

Null hypothesis: w = pg

Alternative Reject null
hypothesis hypothesis if:
W< Z<-z,
w> g Z>z,
W= U Z<-2yp0r Z> 2y

Note that the critical region for accepting the null hypothesis can
be used to compute the (1-a)100% confidence intervals for the
population mean u, i.e. & - s
X =2z X+ Z T
1 1-a/2 \/;

s
- :ﬁ’

Two-tailed test /
/

N

W
region of region of region of
rejection non-rejection rejection

critical values

I
I
=

Test statistic: 7 =

e
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Steps in Hypothesis Testing

1. State the null and alternative hypothesis.
Choose the level of significance a.

3. Choose the sample size n. Larger samples allow
us to detect even small differences between
sample statistics and true population
parameters. For a given o, increasing n

Steps in Hypothesis Testing

5. Determine the critical values that divide the
regions of acceptance and non-acceptance.

6. Collect the data and compute the sample mean
and the appropriate test statistic (e.g., Z).

7. If the test statistic falls in the non-reject
region, H, cannot be rejected. Else H, is

decreases f. rejected.
4. Choose the appropriate statistical technique
and test statistic to use (Z or t).
9 10
Example of Hypothesis Testing egionof region of

0 A sample of 50 files from a file system is
selected. The sample mean is 12.3 Kbytes.
The standard deviation is known to be 0.5
Kbytes.

Ho: u=12.5 Kbytes
Hy u=12.5 Kbytes

Confidence: 0.95

rejection= 0.025

rcjccti0n=(m25>/ §<

-2.83  -1.96 0 1.96

—
NORMINV(1-0.05/2,0,1)

region of
non-rejection
=0.95
z- % =283 Reject H,

V50

If Z falls in the interval -1.96 to 1.96 hypothesis cannot be rejected
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Z Test of Hypothesis for the Mean

Null Hypothesis U= 12.5
Level of Significance 0.05
Population Standard Deviation 0.5
Sample Size 50

ple Mean 12.3
Standard Error of the Mean 0.070710678
Z Test Statistic -2.828427125

Two-Tailed Test
Lower Critical Value
Upper Critical Value
p-Value

-1.959961082

Reject the null hypothesis

1.959961082
0.00467786

The null hypothesis is rejected because p (0.0047) is less than the

level of significance (0.05).

13

Hypothesis Tests with Unknown o

0O We can estimate the variance by the sample variance
0 For large samples, we can use the Z statistic

0 For small samples, if the population is assumed to be
normally distributed the sampling distribution for
the mean follows a t distribution with n-1 degrees of
freedom

O t statistic for unknown o:

sample standard deviation

Example of Hypothesis Testing

0 A sample of 5 files from a file system is
selected. Assume that file sizes are
normally distributed. The sample mean is
12.3 Kbytes. The sample standard

deviation is 0.5 Kbytes.
Ho: u = 12.35 Kbytes
H;: u=12.35 Kbytes

Confidence: 0.95

Example

t=(12.3 - 12.35)/(0.5//5) = -0.2236

a =0.05, degrees of freedom = 4

tas2 = 2.776 for 4 degrees of freedom
In EXCEL, TINV(0.05,4)

The t test statistic (-0.2236) is between the
lower and upper critical values (i.e. -2.776 and
2.776)

So the null hypothesis should not be rejected.
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Example of One-Tailed Test

0 A sample of 50 files from a file system is
selected. The sample mean is 12.35
Kbytes. The standard deviation is known
to be 0.5 Kbytes.

Ho: u=12.3 Kbytes
H;: u<12.3 Kbytes
Confidence: 0.95

Example of One-Tailed Test

X-p 1235-123

7= bbb
o/vn 0.5/4/50

-0.707 Statistic

Critical value = NORMINV(0.05,0,1) =-1.645.
Region of non-rejection: Z = —1.645.
So, do not reject H,. (Z exceeds critical value)

0.05 (@) 0.95 (1 - )
/ N\
. 0.707 (test statistic)
region of region of
rejection

non-rejection
-1.645 (critical value)

z-XoH

Test statistic:

Sk

One-tailed Test

Z Test of Hypothesis for the Mean

Null Hypothesis U= 12.3
Level of Significance 0.05
Populati dard Deviati 0.5
Sample Size 50
Sample Mean 12.35

Standard Error of the Mean
Z Test Statistic

0.070710678
0.707106781| «——————

Lower-Tail Test

Lower Critical Value -1.644853| «—

p-Value 0.760250013
Do not reject the null hypothesis
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Steps in Determining the p-value.

1. State the null and alternative hypothesis.
Choose the level of significance a.

3. Choose the sample size n. Larger samples allow
us to detect even small differences between
sample statistics and true population
parameters. For a given o, increasing n
decreases p.

4. Choose the appropriate statistical technique
and test statistic to use (Z or t).

Steps in Determining the p-value.

5. Collect the data and compute the sample mean
and the appropriate test statistic (e.g., Z)

6. Calculate the p-value based on the test statistic
7. Compare the p-value to a
8. If p = o then do not reject H,, else reject H,

Y
N

Z Test of Hypothesis for the Mean

Null Hypothesis u= | 12.5
Level of Significance 0.05
Population Standard Deviation 0.5
Sample Size 50

ple Mean 12.3
Standard Error of the Mean 0.070710678
Z Test Statistic -2.828427125

Two-Tailed Test

Lower Critical Value
Upper Critical Value
p-Value

-1.959961082

Reject the null hypothesis

1.959961082
0.00467786

The null hypothesis is rejected because p (0.0047) is less than the

level of significance (0.05).

23

p/2

p/2=F(-z)
=NORMDIST(-z,0,1,true)

critical values

If p = o then do not reject H,, else reject H,,.
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p/2

p/2=F(-z)
=NORMDIST(-z,0,1,truc)

critical values

Do not reject H,

p/2

p/2=F(-z)
=NORMDIST(-z,0,1,true)

critical values

Reject H,

Computing p-values

Z Test of Hypothesis for the Mean

Null Hypothesis M= 12.5
Level of Significance 005 « —
F i Deviati 0.5
Sample Size 50
Sample Mean 12.3
Standard Error of the Mean 0.070710678
Z Test Statistic -2.828427125
Two-Tailed Test
Lower Critical Value -1.959961082
Upper Critical Value 1.959961082
p-Value 0.00467786| «————————

Reject the null hypothesis

The null hypothesis is rejected because p (0.0047) is less than the
level of significance (0.05). 2

Hypothesis testing vs estimating
confidence intervals

0O Textbooks on statistics devote a chapter to
hypothesis testing
> Example: Hypothesis test for a zero mean
> Hypothesis test has a yes-no answer so either a
hypothesis is accepted or rejected

> Jain argues that confidence intervals provide more
information
* The difference between two systems has a
confidence interval of (-100,100) vs a confidence
interval of (-1,1)
+ Inboth cases, the interval includes zero but the
width of the interval provides additional information
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Design of Experiments

€s 700

Design of Experiments

0 Goals

0 How to find most about the system with minimal
effort

0 Terminology
Q Full factorial designs
» m-factor ANOVA
0 Fractional factorial designs
0 Multi-factorial designs

Recall: One-Factor ANOVA

O Separates total variation observed in a
set of measurements into:
1. Variation within one system
Due to random measurement errors
2. Variation between systems
Due to real differences + random error
O Is variation(2) statistically > variation(1)?

Q One-factor experimental design

ANOVA Summary

Variation Alternatives Error Total
Sum of squares 8§54 SSE SST
Deg freedom k-1 k(n-1) kn-1
Meansquare 5. = SSA/(k-1) s’ = SSE/[k(n-1)]
Computed F s52/s?

Tabulated F Fi_aininny)
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Generalized Design of Experiments

0 Goals
> Isolate effects of each input variable.
> Determine effects of interactions.
> Determine magnitude of experimental error
> Obtain maximum information for given effort
0 Basic idea
> Expand 1-factor ANOVA to m factors

33

Terminology

0 Response variable
> Measured output value
- E.g. total execution time
Q Factors
» Input variables that can be changed
+ E.g. cache size, clock rate, bytes transmitted
O Levels
> Specific values of factors (inputs)
+ Continuous (~bytes) or discrete (type of system)

Terminology

0 Replication

> Completely re-run experiment with same input
levels

> Used to determine impact of measurement
error

O Interaction

> Effect of one input factor depends on /eve/ of
another input factor

Simplest strategy

0 Vary one factor at the time - ighores interactions
(e.g. clock time vs cache size)

0 Full factorial design with replications Measure all
possible input combinations - large number of
experiments

Q 4 factors, 5 possible level 4”5 experiments +
repetition to gather some statistics
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One-factor Experiments

0 ANOVA before: only compare types of system

0O Separate variation due to error, variation due o
alternative

ANOVA Summary

Variation Alternatives Error Total
O Two factors (inputs) Sum of squares SSA SSE SST
> A, B Deg freedom k-1 k(n-1) kn-1
O Separate total variation in output values into: Mean square s, = SSA/(k-1) s} = SSE/[k(n-1)]
» Effect due to A Computed F 52 /s
» Effect due to B Tabulated /' F_ ooy koo
» Effect due to interaction of A and B (AB)
> Experimental error
37 38
Two-factor Experiments Example - User Response Time
0O Two factors (inputs) QA= Qegree of . B (Mbytes)
AR multiprogramming
' L ) 0 B = memory size 32 64 128
0 Separate total variation in output values into: O AR = interaction of
» Effect due to A memory size and 0.25|0.21|0.15
» Effect due to B ‘ degr.ee of ) 052 | 045 | 036
» Effect due to interaction of A and B (AB) multiprogramming
» Experimental error 0.81 | 0.66 | 0.50
150 | 1.45 | 0.70

39

10
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Two-factor ANOVA

0 Factor A - ainput levels
0 Factor B - b input levels
0 n measurements for each input combination
Q abn total measurements

Two Factors, nReplications

%

n replications

k-th measurement “

Recall: One-factor ANOVA

0 Each individual
measurement is

composition of Yi=Yy to, +e;
» Overall mean

> Effect of y =overallmean
alternatives
> Measurement Qa; = effect due to A
errors
e; = measurement error

43

Two-factor ANOVA

0 Each individual
measurement is

composition of Vip =V OBy, Hey
» Overall mean y_=overallmean
-~ Effects a, = effect due to A

> Interactions

. g‘iﬁzrement v, =effect due to interaction of A and B

B, =effectdueto B

€y = measurement error

11
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Computation of effects

y,.j.=y____+aj+ﬁl.+yij
aj=7j_—y____
Bi=y.-y.
Yo=Yy = Y=Yt

Sum-of-Squares

O As before, use sum-of-squares identity
separate total variation

SST=SSA + SSB + SSAB + SSE

0 Degrees of freedom
> dA(SSA)=a-1
> df(SSB)= b-1
> dA(SSAB) = (a- 1)(b-1)
> df(SSE) = ab(n-1)
> dA(SST) = abn- 1

46

4

Two-Factor ANOVA Need for Replications

+ Compute variances - mean squared values

» We can use F test to compare two variances OIfn=1

« If F is statistically significant if it is larger then > Only one measurement of each configuration

critical F value Y 9
O Can then be shown that
> SSAB=SST-SSA-SSB
A B AB Error

Sum of squares 554 SSB SSAB SSE Q Since

Deg freedom a-1 b-1 (a-1)(b-1) ab(n-1) - _ - -

Meansquare s, = SSA/(a-1) s, =SSB/(b-1) s, =SSAB[[(a-1)(b-1)] s =SSE/[ab(n-1)] » SSE = SST - SSA - SSB - SSAB
Computed - F,=si/s]  Fy=si/s} Fy =5k /s 0 We have

Tabulated F* Fiaananin-m e X SSE -0

48

12
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Need for Replications Example
Q Thus, when n=1 O Output = user B (Mbytes)
_ response time
- SSE=0 (seconds) A | 32 64 128
» — No information about measurement errors 0 Want to separate
QO Cannot separate effect due to interactions effec:s due ';0 1 [025]021|015
. » A=degreeo
from meas‘ur‘emenf noise maltiprogramming > 1052 05 038
0 Must replicate each experiment at least > B=memory size
twice - AB = inferaction 3 | 081066050
» Error
0O Need replications to 4 150 | 1.45 | 0.70
separate error ’ ’ ’
49 0
Example Example
B (Mbytes)
A 32 64 128
1 A B AB Error
Sum of squares 33714 0.5152 04317 0.0293
2 Deg freedom 3 2 6 12
Mean square 1.1238 0.2576 0.0720 0.0024
3 Computed F 4602 1055 295
Tabulated F' Fooss10 =349 Fogsn1 =389 Fposgry =3.00
4
1.61 1.32 0.68

13



9/29/10

Conclusions From the Example

077.6% (SSA/SST) of all variation in
response time due to degree of
multiprogramming

0 11.8% (SSB/SST) due to memory size

09.9% (SSAB/SST) due to interaction

0 0.7% due to measurement error

0 95% confident that all effects and
interactions are statistically significant

Generalized m-factor Experiments

m factors = Effects for 3
m main effects factors:
(m) two - factor interactions A
2
B
m
( 5 ) three - factor interactions C
AB
AC
m . ) BC
=1 m-factor interactions
v abc

2" -1 total effects

Degrees of Freedom for m-factor
Experiments

0 df(SSA) = (a-1)

0 df(SSB) = (b-1)

0 df(SSC) = (c-1)

0 df(SSAB) = (a-1)(b-1)
0 df(SSAC) = (a-1)(c-1)
Q..

0 df(SSE) = abe(n-1)

0 df(SSAB) = aben-1

Procedure for Generalized
m-factor Experiments

1. Calculate (2™-1) sum of squares terms (SSx) and
SSE

Determine degrees of freedom for each SSx
Calculate mean squares (variances)

Calculate F statistics

Find critical F values from table

If F(computed) > F(table), (1- a) confidence that
effect is statistically significant

oo s wnN

14
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A Problem

Q Full factorial design with replication

> Measure system response with all possible input
combinations

> Replicate each measurement n times to
determine effect of measurement error

0 m factors, v levels, n replications
— n v" experiments

0O m= 5 input factors, v=4 levels, n=3
> — 3(45) = 3,072 experiments!

How fo reduce the number of experiments ?

Fractional Factorial Designs: n2m
Experiments

O Special case of generalized m-factor
experiments

O Restrict each factor to two possible values
> High, low
» On, of f

O Find factors that have largest impact

Q Full factorial design with only those
factors

Finding Sum of Squares Terms

Sum of n Factor A Factor B
measurements with
(A.B) = (High, Low)
Yag High High
Yab High Low
Y& Low High
Yab Low Low

n2m Contrasts

+ Difference in systems responses when values are set
to high and low for A, for B, and when A,B are set to
different values

Wy=Yust Vo = Var = Var
W =Yg = Var T Vap = Var

Wi =Vap = Vap =V T Vap

15
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n2m Experiments

A B AB Error
Sum of squares MY SSB SSAB SSE
Deg freedom 1 1 1 2"(n-1)
Meansquare s> =SSA/l s} =SSB/1 s, =SSAB/1 s =SSE/[2"(n-1)]
Compued ' F,=s[s Fy=sifst Fy=si/s’
Tabulated F FEl-u.LZ’”(N-I)] F[l-a.].z'”w-n] FEI-uJ.Z”’(H-I)]

n2m Sum of Squares

2
554 = 4

n2" ——_, Total number on observations at
2 all levels

WB

n2"
2

WAB

n2m

SSE = SST - SSA - SSB - SSAB

SSB =

SSAB =

Contrasts for n2m with m = 2 factors --

To Summarize -- n2™ Experiments

revisited

A B AB Error
Sum of squares MY SSB SSAB SSE
Deg freedom 1 1 1 2"(n-1)
Meansquare s> =SSA/l s} =SSB/1 s =SSAB/1 s =SSE/[2"(n-1)]
Compued ' F,=s[s Fy=sifst Fy=sifs’
Tabulated £ FEI-(LLZ”’(N-I)] FEl-a.l,z”‘w-n] FEI-uJ.Z”’(H-I)]

Measurements Contrast
Wq Wp Wab
Yas + + +
Yab + - -
Y8 - * -
Yab - - *

We=VaptVap =V = Var
W =YVup = Vart Vap = Var
Wap =Vap = Vap = Vas * Var

Table specifying the signs

16
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Contrasts for n2m with m = 3 factors

Meas Contrast

Wq Wy We Wap Wac Whe | Wabe
Yabe - - - * * +
Yabe * + +
YaBe - * - - * - +

28 combinations must be measured

Wic = Vave = Vave T Vape = Varc = Vape ¥ Vase = Yapc T Vasc

65

n2mwith m= 3 factors

2
w

SSAC =<
2°n
0 df(each effect) = 1, since only two levels
measured

0 SST=SSA+ SSB+ SSC+ SSAB + SSAC + SSBC +
SSABC

0 df(SSE) = (n-1)23
0 Then perform ANOVA as before
Q Easily generalizes to m > 3 factors

Important Points

0 Experimental design is used to
> Isolate the effects of each input variable.
» Determine the effects of interactions.
> Determine the magnitude of the error
> Obtain maximum information for given effort
0 Expand 1-factor ANOVA to m factors
0 Use n2m design to reduce the number of
experiments needed
> But loses some information

Still Too Many Experiments with n2ml

0 Plackett and Burman designs (1946)
> Multifactorial designs
0 Effects of main factors only

> Logically minimal number of experiments to
estimate effects of minput parameters
(factors)

> Ignores interactions
0 Requires O(m) experiments
» Instead of O(2™) or O(v")

17
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Plackett and Burman Designs

PB Design Matrix

0 PB designs exist only in sizes that are multiples of 4 Config Input Parameters (factors) Response
0 Requires X experiments for m parameters A B c D E F G
> X= i >
X = next multiple of 4> m T e e} ) ) 1 ] -l 9
0 PB design matrix 2 -1 +1 + +1 -1 +1 -1
» Rows = configurations of low and highs 3 -1 -1 +1 +1 +1 -1 +1
» Columns = parameters’ values in each config 4 +1 -1 -1 +1 1 +1 -1
- High/low = +1/ -1 5 -1 +1 -1 -1 +1 +1 +1
» First row = from P&B paper 6 il -l il ! -l il bl
. . . . 7 +1 +1 -1 +1 -1 -1 +1
> Subsequent rows = circular right shift of preceding row . | | . | . N |
> =all (-1 - - - - - - -
Last row = all (-1) pv—
P 7 factors, 8 experiments 70
PB Design Matrix PB Design Matrix
Config Input Parameters (factors) Response Config Input Parameters (factors) Response
A B c D E F G A B c D E F G
1 +1 +1 +1 -1 +1 -1 -1 9 1 +1 +1 +1 -1 +1 -1 -1 9
3 -1 -1 +1 +1 +1 -1 +1 3 -1 -1 +1 +1 +1 -1 +1 2
4 +1 -1 -1 +1 +1 +1 -1 4 +1 -1 -1 +1 +1 +1 -1 1
5 -1 +1 1 -1 +1 +1 +1 5 i +1 -1 -1 +1 +1 +1 9
6 +1 -1 +1 -1 -1 +1 +1 6 +1 -1 +1 il il +1 +1 74
7 +1 +1 -1 +1 -1 -1 +1 7 +1 +1 -1 +1 -1 -1 +1 7
8 -1 -1 -1 -1 -1 -1 -1 8 -1 -1 -1 -1 -1 -1 -1 4
Effect Effect

71

18
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PB Design Matrix

PB Design Matrix

Config Input Parameters (factors) Response Config Input Parameters (factors) Response
A B C D E F G A B C D E F G
1 a5l +1 +1 -1 +1 -1 -1 9 1 +1 4l +1 -1 +1 -1 -1 9
2 +1 +1 +1 -1 +1 -1 2 -1 +1 +1 -1 +1 -1
3 -1 -1 +1 +1 +1 -1 +1 2 3 -1 -1 +1 +1 +1 -1 +1 2
4 +1 -1 -1 +1 +1 +1 -1 1 4 +1 -l -1 +1 +1 +1 -1 1
5 -1 +1 -1 -1 +1 +1 +1 9 5 -1 +1 -1 -1 +1 +1 +1 9
6 +1 -1 +1 -1 -1 +1 +1 74 6 +1 -1 +1 -1 -1 +1 +1 74
7 +1 +1 -1 +1 -1 -1 +1 7 7 +1 +1 -1 +1 -1 -1 +1 7
8 -1 -1 -1 -1 -1 -1 -1 4 8 -1 -1 -1 -1 -1 -1 -1 4
73 74
PB Design Matrix PB Design
Config Input Parameters (factors) Response 0 Only magnitude of effect is important
A B ¢ D E F G > Sign is meaningless
I O a | o [ 0 [ a | a B 5 0 Inexample, most — least important
2 -1 +1 +1 +1 -1 +1 -1 11 effects:
3 -1 -1 +1 +1 +1 -1 +1 2
- Fr->6c0—->A—
4 +1 -1 -1 +1 +1 +1 -1 1 »[C, D, E] F—-6 A B
5 -1 +1 -1 -1 +1 +1 +1 9
6 +1 -1 +1 -1 -1 +1 +1 74
7 +1 +1 -1 +1 -1 -1 +1 7
8 -1 -1 -1 -1 -1 -1 -1 4
Effect 65 -45 75 -75 -75 73 67

75

19
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PB Design Matrix with Foldover

0 Add X additional rows to matrix
> Signs of additional rows are opposite original
rows
0 Provides some additional information about
selected interactions

Case Study #1

0 Determine the most significant parameters in a
processor simulator.
a [Yi, Lilja, & Hawkins, HPCA, 2003.]

Determine the Most Significant
Processor Parameters

Q Problem
> So many parameters in a simulator
> How to choose parameter values?
> How to decide which parameters are most
important?
0 Approach
> Choose reasonable upper/lower bounds.
» Rank parameters by impact on total execution
time.

Simulation Environment

0 SimpleScalar simulator
» sim-outorder 3.0

Q Selected SPEC 2000 Benchmarks

> gzip, vpr, gcc, mesa, art, mcf, equake, parser, vortex, bzip2,
twolf

0 MinneSPEC Reduced Input Sets
0 Compiled with gcc (PISA) at O3

20
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Functional Unit Values

Memory System Values, Part I

Parameter Low Value High Value
Int ALUs 1 hd Parameter Low Value High Value
It A Latocy 20res 1orce L1 I-Cache Size 4KB 128 KB
Tnt ALU Throughpat [
FP ALUs 1 4 L1 I-Cache Assoc 1-Way 8-Way
7P ALU Latency 5 Cycles Loyde L1 I-Cache Block Size 16 Bytes 64 Bytes
ude mnum_m : L1 I-Cache Repl Policy Least Recently Used
Int Mlt/Div Units [ +
ot Mol Latency 15 Cyees 2 ordes L1 I-Cache Latency 4 Cycles 1Cycle
It D Latency 80 Cyces 10.Cycks L1 D-Cache Size 4K 128 KB
ot Ml Throughput ! L1 D-Cache Assoc 1-Way 8-Way
ot Div Throughput Equal o Int Div Latency
FP Mult/Div Units 1 4 L1 D-Cache Block Size 16 Bytes 64 Bytes
FP Mt Latency 5 Cycles 2 Cycles L1 D-Cache Repl Policy Least Recently Used
7P Div Latency 35 cycles 10 cycles L1 D-Cache Latency 4 Cyeles Topde
FP Sqrt Latency 35 Cycles 15 Cycles
FP Mult Throughpat Equal 0 FP Mult Latency L2 Cache Size 256 KB 8192 KB
7P Div Throughput Equal 1o PP Div Latency L2 Cache Assoc 1-Way 8-Way
o oo S o P oy L2 Cache Block Size 64 Bytes 256 Bytes
82 3
Memory System Values, Part IT Processor Core Values
Parameter Low Value [ High Value Parameter Low Value High Value
L2 Cache Repl Policy Least Recently Used Fetch Queue Entries 2 32
L2 Cache Latency 20 Cycles [ 5 Cycles Branch Predi 2 Level P
Mem Latency, First 200 Cycles 50 Cycles ranch Predictor “Level erfect
Branch MPred Penalty 10 Cycles 2 Cycles
Mem Bandwidth 4 Bytes 32 Bytes RAS Entries 4 64
I-TLB Size 32 Entries 256 Entries BTB Entries 16 512
L-TLB Page Size 4 K8 4096 kB BTB Assoc 2-Way Fully-Assoc
I-TLB Assoc 2-Way Fully Assoc e B h Undat Inc i In Decod
I-TLB Latency 80 Cycles 30 Cycles pec Branch pdate N Commi n Decode
D-TLB Size 32 Entries 256 Entries Decode/Issue Width 4-Way
D-TLB Page Size Same as I-TLB Page Size ROB Entries 8 64
D-TLB Assoc 2-Way Fully-Assoc
D-TLB Latency Same as I-TLB Latency Memory Ports 1 4
84 85

21
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Determining the Most Significant
Parameters

1. Run simulations to find response
With input parameters at high/low, on/off values

Determining the Most Significant
Parameters

2. Calculate the effect of each parameter
Across configurations

Config Input Parameters (factors) Response Config Input Parameters (factors) Response
A B C D E F G B C D E F G
1 +1 +1 +1 -1 +1 -1 -1 9 1 +1 +1 +1 -1 +1 -1 -1 9
2 -1 +1 +1 +1 -1 +1 -1 2 -1 +1 +1 +1 -1 +1 -1
3 -1 -1 +1 +1 +1 -1 +1 3 -1 -1 +1 +1 +1 -1 +1
Effect errect [JNGSN
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Determining the Most Significant Determining the Most Significant
Parameters Parameters
3. For each benchmark ) } 4. For each par‘amefer‘
Rank the parameters in descending order of effect
(1=most important, .) Average the ranks
Parameter Benchmark 1 | Benchmark 2 | Benchmark 3 Parameter Benchmark 1 | Benchmark 2 | Benchmark 3 Average
A 3 12 8 A 3 12 8 7.67
B 29 4 22 B 29 4 22 18.3
c 2 6 7 [4 2 6 7 5
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Most Significant Parameters

Number Parameter gcc | gzip | art | Average

1 ROB Entries 4 1 2 2.77

L2 Cache Latency 2 4 4.00
3 Branch Predictor Accuracy 5 2 27 7.69
4 Number of Integer ALUs 8 3 29 9.08
5 L1 D-Cache Latency 7 7 8 10.00
6 L1 I-Cache Size 1 6 12 10.23
7 L2 Cache Size 6 9 1 10.62
8 L1 I-Cache Block Size 3 16 10 1177
9 Memory Latency, First 9 36 3 1231
10 LSQ Entries 10 12 39 12.62
11 Speculative Branch Update 28 8 16 18.23
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General Procedure

0 Determine upper/lower bounds for
parameters

O Simulate configurations to find response

0 Compute effects of each parameter for
each configuration

Q Rank the parameters for each benchmark
based on effects

Q Average the ranks across benchmarks
0 Focus on top-ranked parameters for
subsequent analysis
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Summary

0 Design of experiments

> Isolate effects of each input variable.

> Determine effects of interactions.

> Determine magnitude of experimental error
0 m-factor ANOVA (full factorial design)

> All effects, interactions, and errors

111

Summary

a n2™ designs

» Fractional factorial design
Q All effects, interactions, and errors
Q But for only 2 input values

> high/low

> on/off

112
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Summary

O Plackett and Burman (multi-factorial
design)

0 O(m) experiments

0 Main effects only
> No interactions

Q For only 2 input values (high/low, on/off)

0 Examples - rank parameters, group
benchmarks, overall impact of an
enhancement
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