
1

1

Simulation

2

Types of simulation

  Emulation
 JVM, terminal emulator, Windows emulator
  Monte-Carlo simulation

  No notion of time
  Used to model probabilistic phenomena that do not change

characteristics with time
  Trace-driven simulations

  Inputs are event traces collected from a real system
  Used for tuning resource management algorithms
  (paging, cache management – use trace of resource demand)

  Discrete-event simulation
  Uses a discrete-model of the system being simulated
  Model global changes as function of time

2

3

Components of a Simulation Model

  Event Generation:
  Trace-driven
  Distribution-driven
  Hybrid

  Event Processing
  Calendar of Events
  Event-handling procedures
  Order of arrival must be recorded

  Transaction List (with parameters)
  Queues
  Simulation Clock
  Computation of Statistics

4

Discrete-event Simulation Example: Single
Queue
  Events:

  Arrival of a customer
  Service completion

  Statistics:
  Total number of arrivals
  Total departures
  Total server busy time
  Total waiting time
  Total departures from queue
  Total squares of waiting time

3

5

Simulation Example
Generate new arrival event

Add arrival event to CE

Remove first event from CE and update clock

Event type?

Add request to queue

server
idle?

Generate svc. time

Add completion event to CE

Remove request from queue

Update Statistics

Remove first request from queue

Generate svc. time

Add completion event to CE

arrival service
completion

yes
no

6

Calendar of Events

Event Type Event Time Event Parameters
arrival
arrival

completion

10.5
12.8
13.1

…..
…..
…..

… … …

•  The calendar of events is ordered in increasing chronological order.
•  Parameters may include the transaction Id associated with the event.

4

7

Common Mistakes in Simulation

  Inappropriate level of detail:
  Too detailed: more development time and higher

likelihood of bugs
  Should start with a less detailed model first and increase

complexity as needed.
  Unverified Models:

  Simulation programs are usually large and complex
programs and may have bugs that invalidate the results.

  Invalid Models:
  Incorrect assumptions may be used. Need to validate

through analytic models, measurements, and or intuition.

8

Common Mistakes in Simulation

 Improperly Handled Initial Conditions:
  Should discard first part of run: transient

behavior.

  In case of continuous time systems transient
behaviors are important and can be analyzed

time

discard

5

9

Common Mistakes in Simulation

  Improper simulation length.
  Poor Random Number Generator.
  Improper Selection of Seeds

  Validation techniques
  Check assumptions
  Input values and distributions
  Output values and conclusions

10

Verifying Simulation Models

  Trace Analysis: examine traces of a few
transactions as they go through the system.

  Continuity Test: small variations in the input
should show small variations in the output.

  Check Extreme Values: extreme values (e.g., low
loads or very high loads) should be easy to verify
by crude analytic models

  The validity is tested by using
 expert intuition
 real-time system measurements
 some known theoretical results

6

11

Verifying Simulation Models

  Check for Basic Relationships: verify if results
satisfy basic laws (e.g., Little’s Law).

  Bound validation: use, if possible, existing analytic
models for situations that are known to be upper
or lower bounds

  Trend verification: check if the trends shown by
the model match your intuition.

  Numeric range validation: check if the numerical
results are within expected numerical ranges.

12

Transient Elimination with Independent
Runs

 Run m runs of the simulation with a different
seed for each run.

 Each run has n observations.
 Let be the j-th observation in the i-th

run.
jix ,

run 1
1 2 3 j n

run m
1 2 3 j n

. . . .

7

13

Transient Elimination with Independent
Runs

Step 1: compute average of j-th observation over all runs.

∑
=

=
m

i
jij x

m
x

1
,

1

Step 2: compute the overall average.

∑
=

=
n

j
jxn

x
1

1

Step 3: Set the number of deleted observation, k, equal to 1.
Step 4: Compute the overall mean without the first k observations.

∑
+=−

=
n

kj
jk x

kn
x

1

1

14

Transient Elimination with Independent
Runs

Step 5: compute the relative change Δ

x
xxk −=Δ

Step 6: If |Δκ-Δκ-1| > threshold then do k ← k + 1 and go to step 4.

Step 7: Remove the first k observations and use as the
 average.

kx

8

15

Transient Elimination with Batch Means

 Single run with N observations.
 Divide the run into m sub-samples called

batches of size .
  Let be the j-th observation in the i-th

batch.
€

n = N /m 

€

xi, j

batch 1 batch 2 batch m . . .
N/m N/m N/m

batch i

N/m

. . .

16

Transient Elimination with Batch Means

Step 2: compute the average of the i-th batch.

∑
=

=
n

j
jii x

n
x

1
,

1

Step 3: compute the overall average.

∑
=

=
m

i
ixm

x
1

1

Step 4: Compute the variance of the batch means:
2

1
)(

1
1)(xx
m

xVar
m

i
i −−

= ∑
=

Step 1: Set n = 2

9

17

Transient Elimination with Batch Means

Step 5: Increase n by 1 and repeat steps 2-4 and plot the
 variance as a function of n. The point at which the
 variance starts to decreases is the length of the transient
 interval.

batch size n

variance of
batch means

size of transient interval.

18

Stopping Criteria: Independent Runs

 Run m runs of the simulation with a
different seed for each run.

 Each run has observations where is
the size of the transient phase.

 The number n is increased until the
precision in the confidence interval reaches
a desired value.

onn + on

10

19

Stopping Criteria
Independent Runs

Step 1: compute the mean for each replication.

∑
+=

=
n

nj
jii x

n
x

1
,

0

1

Step 0: Initialization: n = 100.

20

Stopping Criteria
Independent Runs

Step 2: compute the overall mean for all replications.

∑
=

=
m

i
ixm

x
1

1

Step 3: compute the variance of the replicate means.
2

1
)(

1
1)(Var xx
m

x
m

i
i −−

= ∑
=

Step 4: compute the confidence interval for the mean as:

m
x

tx m
)(Var

]1,2/1[−−± α

11

21

Stopping Criteria - Independent Runs

Step 5: compute the accuracy r as.

Step 6: If r > desired value (e.g., 5) then n = n + 100 and
 go to Step 1, else STOP.

100

)(Var
]1,2/1[

×











=
−−

x
m
xt

r
mα

22

Stopping Criteria: Independent Runs

 Number of discarded observations:
 To reduce the number of wasted

observations use a small value of m.
onm×

12

23

Stopping Criteria: Batch Means

 Single run with observations where
is the size of the transient phase.

onN + on

Step 1: compute the mean for each batch.

∑
=

=
n

j
jii x

n
x

1
,

1

Step 0: Start with a small value of n (e.g., 1).

24

Stopping Criteria
Batch Means
Step 2: compute the overall mean for all batches.

∑
=

=
m

i
ixm

x
1

1

Step 3: compute the variance of the batch means.
2

1
)(

1
1)(Var xx
m

x
m

i
i −−

= ∑
=

Step 4: compute the confidence interval for the mean as:

m
xtx m
)(Var

];2/1[α−±

13

25

Stopping Criteria
Batch Means
Step 5: compute the auto-covariance

Step 6: Check for proper batch size: If
 then stop. Otherwise, double n and go to step 1.

26

Seed Selection

 Never use zero as a seed.
 Avoid even values.
 Reuse seed for repeatability of

experiments.
 Do not use random seeds (e.g., system

time) if the simulation is to be repeated.

14

27

Generation of Random Variables

 Assume that u is a value uniformly
distributed between 0 and 1.

 Method of the inverse of the CDF:

0

1

x

F(x)

28

Generation of Random Variables

 Assume that u is a value uniformly
distributed between 0 and 1.

 CDF for the exponential:
  Inverse of the CDF: -a ln(u)

 CDF for the Pareto distribution:
  Inverse of the CDF: 1/u 1/a

axe /1 −−

ax−−1

