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Previously   

•  Simulation, sampling  
•  Monte Carlo Simulations 
•  Inverse cdf method 
•  Rejection sampling 

•  Today: sampling cont.,  
•  Bayesian inference via sampling 
•  Eigenvalues and Eigenvectors 
•  Markov processes, PageRank alg. 
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Previously Monte Carlo Integration 
•  Compute  
1.  Draw               from U(0,1) 
2.  Approximate integral as  

Now to arbitrary integral from on interval (a,b) 

This is interpreted as expected value of RV  
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How to sample from  

•  Inversion Method, where      is cdf of  
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Rejection sampling 

1.  Generate      from  
2.  Draw      from   
3.  Accept if   
4.  The accepted   follows 
Problems many samples can get rejected if        is 

too different from 
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Importance sampling 

•  Suppose you have        and       
•  But do not know the scale M  
•  Sample from  
•  Calculate weight for each sample 

•  Mass for each sample is   
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Importance Sampling 

•  The weights are biggest when the 
distributions agree 
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Importance Sampling in 1D 

7 Image Frank Deallert 

Bayes calculations 

•  Recall 
•  We can do rejection sampling from posterior, 

but no guarantee that  

•  Idea, sample from        , and give each 
sample importance weight  
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Bayesian inference via sampling 

•  Robot example 
•  Probability of robot’s position in 2D 
•  Different representations of probability 
•  Histograms 
•  Mixture of Gaussians  
•  Does not scale up to higher dimensions 
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Monte Carlo Expected Value 
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•  Prior – sample from mixture of Gaussians 
•  Compute expected value of the bearing (angle) 
•  to origin   

Image Frank Deallert 
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Rejection sampling example 

11 Image Frank Deallert 

Importance Sampling Example 
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Linear algebra  - digression 

•  Previously  
•  Rank of a matrix  
•  Determinant of a matrix 
•  Matrix inverse  
•  Matrix pseudo-inverse 
•  Solving system of equations  
•  Solving linear least squares problems 
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Determinants 

•  If                   then matrix is invertible 
•  If                   then matrix is not invertible 
•  A is rank deficient  
•  Focus was on solving matrix inversion 

problems 
•  Now we look at other properties of matrices 
•  Useful when A represents a transformations 

•  Or A simply represents data 
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Eigenvalues and Eigenvectors 

•  For square matrices 

•  We look for the solutions  
•  of the following type exponentials 

•    Motivated by solution to differential equations 

For scalar ODE’s 

Substitute back to the equation Behavior varies 
If a > 0 unstable 
   a = 0 neutrally stable 
   a < 0 stable 
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u(t) = [v(t) w(t)]T

Eigenvalues and Eigenvectors 

eigenvector 
eigenvalue 

Solve the equation: 

x – is in the null space of  
λ is chosen such that                       has a null space 

(1) 

For larger matrices – alternative ways of computation 

Computation of eigenvalues and eigenvectors (for dim 2,3) 
1.  Compute determinant 
2.  Find roots (eigenvalues) of the polynomial such that determinant = 0 
3.  For each eigenvalue solve the equation (1) 
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Eigenvalues and Eigenvectors 
For the previous example 

We will get special solutions to ODE 

Their linear combination is also a solution (due to the linearity of             ) 

In the context of diff. equations – special meaning  
Any solution can be expressed as linear combination 

Individual solutions correspond to modes  

Eigenvalues and Eigenvectors 

Only special vectors are eigenvectors  
 - such vectors whose direction  will not be changed 
    by the transformation  A (only scale) 
-   they correspond to normal modes of the system 
    act independently 

Examples 

 2, 3 

eigenvalues eigenvectors 

Whatever A does to an arbitrary vector is fully  
determined by its eigenvalues and eigenvectors 
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Eigenvalues and Eigenvectors - 
Diagonalization 
•  Given a square matrix A and its eigenvalues and 

eigenvectors – matrix can be diagonalized  

Matrix of eigenvectors Diagonal matrix of eigenvalues 

•  If some of the eigenvalues are the same, eigenvectors 
  are not independent 
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AS = SΛ

Diagonalization 

•  If there are no zero eigenvalues – matrix is  invertible 
•  If there are no repeated eigenvalues – matrix is diagonalizable  
•  If all the eigenvalues are different then eigenvectors are 

linearly independent 

For Symmetric Matrices 

If A is symmetric 

orthonormal matrix of eigenvectors 

i.e. for a covariance matrix 

Diagonal matrix of eigenvalues 

or some matrix B = A^TA 



11 

Dimensionality Reduction 

•  Next:  

•  Many dimensions are often interdependent 
(correlated); 

We can: 

•  Reduce the dimensionality of problems; 

•  Transform interdependent coordinates into 
significant and independent ones; 


