Previously

- · Simulation, sampling
- Monte Carlo Simulations
- Inverse cdf method
- Rejection sampling
- · Today: sampling cont.,
- · Bayesian inference via sampling
- Eigenvalues and Eigenvectors
- Markov processes, PageRank alg.

1

Previously Monte Carlo Integration

- Compute $\int_{0}^{1} f(x)dx$
- 1. Draw u_1, \cdots, u_n from U(0,1)
- 2. Approximate integral as

$$\hat{I} = \frac{1}{n} (f(u_1) + \dots + f(u_n))$$

Now to arbitrary integral from on interval (a,b)

$$\int_{a}^{b} f(x)dx \qquad \hat{I} = \frac{(b-a)}{n} (f(u_1) + \dots + f(u_n))$$

This is interpreted as expected value of RV

$$\hat{I} = E[(b-a)f(x)])$$

How to sample from f(x)

• Inversion Method, where F is cdf of f(x)

$$X = F^{-1}(U)$$

3

Rejection sampling

Image by MacKay

- 1. Generate x from g(x)
- 2. Draw u from unif(0,1)
- 3. Accept if u < f(x)/Mg(x)
- 4. The accepted follows f(x)

Problems many samples can get rejected if g(x) is too different from f(x)

Importance sampling

- Suppose you have g(x) and f(x)
- · But do not know the scale M
- Sample from g(x) $x_1,...,x_n$
- Calculate weight for each sample

$$w_i = f(x_i)/g(x_i)$$

Mass for each sample is

$$q_i = w_i / \sum_{i=1}^n w_i$$

5

Importance Sampling

 The weights are biggest when the distributions agree

Image by MacKay

Bayes calculations

- Recall $p(x \mid z) \propto l(x;z)p(x)$
- We can do rejection sampling from posterior, but no guarantee that

$$p(x) >= p(x \mid z)$$

• Idea, sample from p(x), and give each sample importance weight $w_i = p(z \mid x_i)$

$$q_i = w_i / \sum_{i=1}^n w_i$$

Bayesian inference via sampling

- Robot example
- Probability of robot's position in 2D
- Different representations of probability
- Histograms
- Mixture of Gaussians
- · Does not scale up to higher dimensions

9

Monte Carlo Expected Value

- Prior sample from mixture of Gaussians
- Compute expected value of the bearing (angle)
- to origin

Linear algebra - digression

- Previously
- Rank of a matrix
- Determinant of a matrix
- Matrix inverse
- Matrix pseudo-inverse
- Solving system of equations
- Solving linear least squares problems

13

Determinants

- If $det(A) \neq 0$ then matrix is invertible
- If det(A) = 0 then matrix is not invertible
- · A is rank deficient
- Focus was on solving matrix inversion problems
- Now we look at other properties of matrices
- Useful when A represents a transformations

$$y = Ax$$

· Or A simply represents data

Eigenvalues and Eigenvectors

- · Motivated by solution to differential equations
 - For square matrices $A \in \Re^{n \times n}$ $\dot{\mathbf{u}} = A\mathbf{u}$ $A = \begin{bmatrix} 4 & -5 \\ 2 & -3 \end{bmatrix}$

· We look for the solutions

For scalar ODE's

• of the following type exponentials
$$\dot{u} = au$$

$$u = au$$

$$u(t) = e^{at}u(0)$$

$$v(t) = e^{\lambda t}y$$

$$u(t) = [v(t) w(t)]^{T}$$

$$w(t) = e^{\lambda t}z$$

Behavior varies

If a > 0 unstable
 a = 0 neutrally stable
 a < 0 stable

Substitute back to the equation

$$\lambda e^{\lambda t} y = 4e^{\lambda t} y - 5e^{\lambda t} z$$
$$\lambda e^{\lambda t} z = 2e^{\lambda t} y - 3e^{\lambda t} z$$

$$\mathbf{x} = \begin{bmatrix} y \\ z \end{bmatrix} \qquad \lambda \mathbf{x} = \begin{bmatrix} 4 & -5 \\ 2 & -3 \end{bmatrix} \mathbf{x}$$

Eigenvalues and Eigenvectors

$$\lambda \mathbf{x} = \begin{bmatrix} 4 & -5 \\ 2 & -3 \end{bmatrix} \mathbf{x} \qquad A\mathbf{x} = \lambda \mathbf{x}$$
 eigenvector eigenvalue

(1)

Solve the equation: $(A - \lambda I)\mathbf{x} = 0$

x – is in the null space of $(A - \lambda I)$ λ is chosen such that $(A - \lambda I)$ has a null space

Computation of eigenvalues and eigenvectors (for dim 2,3)

- 1. Compute determinant
- 2. Find roots (eigenvalues) of the polynomial such that determinant = 0
- 3. For each eigenvalue solve the equation (1)

For larger matrices – alternative ways of computation

Eigenvalues and Eigenvectors

For the previous example

$$\lambda_1 = -1, x_1 = [1, 1]^T$$
 $\lambda_2 = -2, x_2 = [5, 2]^T$

We will get special solutions to ODE $\dot{\mathbf{u}} = A\mathbf{u}$

$$A = \begin{bmatrix} 4 & -5 \\ 2 & -3 \end{bmatrix} \quad \mathbf{u} = e^{\lambda_1 t} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \qquad \mathbf{u} = e^{\lambda_2 t} \begin{bmatrix} 5 \\ 2 \end{bmatrix}$$

Their linear combination is also a solution (due to the linearity of $\dot{\mathbf{u}} = A\mathbf{u}$

$$\mathbf{u} = c_1 e^{\lambda_1 t} \begin{bmatrix} 1 \\ 1 \end{bmatrix} + c_2 e^{\lambda_1 t} \begin{bmatrix} 5 \\ 2 \end{bmatrix}$$

In the context of diff. equations – special meaning Any solution can be expressed as linear combination Individual solutions correspond to modes

Eigenvalues and Eigenvectors

$$A\mathbf{x} = \lambda \mathbf{x}$$

Only special vectors are eigenvectors

- such vectors whose direction will not be changed by the transformation A (only scale)
- they correspond to normal modes of the system act independently

Examples

$$2,3 \qquad \left[\begin{array}{c} 0\\1 \end{array}\right]; \left[\begin{array}{c} 1\\0 \end{array}\right]$$

eigenvalues eigenvectors

$$A = \left[\begin{array}{cc} 2 & 0 \\ 0 & 3 \end{array} \right]$$

Whatever A does to an arbitrary vector is fully determined by its eigenvalues and eigenvectors

$$A\mathbf{x} = 2\lambda_1 v_1 + 5\lambda_2 v_2$$

Eigenvalues and Eigenvectors - Diagonalization

 Given a square matrix A and its eigenvalues and eigenvectors – matrix can be diagonalized

 If some of the eigenvalues are the same, eigenvectors are not independent

Diagonalization

- If there are no zero eigenvalues matrix is invertible
- If there are no repeated eigenvalues matrix is diagonalizable
- If all the eigenvalues are different then eigenvectors are linearly independent

For Symmetric Matrices

or some matrix B = A^TA

If A is symmetric $A = Q \wedge Q^T$ Diagonal matrix of eigenvalues orthonormal matrix of eigenvectors i.e. for a covariance matrix

Dimensionality Reduction

- Next:
- Many dimensions are often interdependent (correlated);

We can:

- Reduce the dimensionality of problems;
- Transform interdependent coordinates into significant and independent ones;