Previously

- Simulation, sampling

« Monte Carlo Simulations
« Inverse cdf method

- Rejection sampling

- Today: sampling cont.,

- Bayesian inference via sampling

- Eigenvalues and Eigenvectors

- Markov processes, PageRank alg.

Previously Monte Carlo Integration
. Compute [ f(x)dx

1. Draw u,,-+,u, from U(0,1)
2. Approximate integral as

i=%<f<ul>+---+f<un>>

Now to arbitrary integral from on interval (a,b)
b

[ Foax 1=y fu)

a n
This is interpreted as expected value of RV

I=E[(b-a)fx)])




How to sample from  f(x)

- Inversion Method, where F is cdf of f(x)

X =F'U)

T
Y

Rejection sampling

1. Generate x from g(x)

2. Draw u from unif (0,1)

3. Acceptif u< f(x)/Mg(x)
4. The accepted follows f(x)

Problems many samples can get rejected if g(x) is
too different from f(x)




Importance sampling

- Suppose you haveg(x) and f(x)
« But do not know the scale M

- Sample from g(x)  x,,...,x,

- Calculate weight for each sample

w; = f(x,)/g(x;)

- Mass for each sample is

q; = Wi/EWi
part

Importance Sampling

- The weights are biggest when the
distributions agree




Importance Sampling in 1D
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Bayes calculations

- Recall p(xI|z)x(x;z)p(x)

- We can do rejection sampling from posterior,
but no guarantee that

p(x)>=p(x12)

- Idea, sample from p(x) , and give each
sample importance weight w, = p(zlx,)

q;, = wi/iwi
i=1




Bayesian inference via sampling

+ Robot example

- Probability of robot’s position in 2D

- Different representations of probability

- Histograms

« Mixture of Gaussians

- Does not scale up to higher dimensions

Monte Carlo Expected Value

* Prior — sample from mixture of Gaussians
« Compute expected value of the bearing (angle)
* to origin

| Exnectéd angle =300 ‘Image‘Frank Deallert




Rejection sampling example

* P(measured angle|x,y) = N(predicted angle,3 degrees)

Prior(x,y)
Posterior(x,y|measured angle=20°)

e . Image Frank Deallert

Importance Sampling Example

{x0,y®O~Prior(x,y), w,=P(Z|xW,yW) }

- - ' ' Image Frank Deallert




Linear algebra - digression

« Previously

+ Rank of a matrix

- Determinant of a matrix

 Matrix inverse

- Matrix pseudo-inverse

- Solving system of equations

- Solving linear least squares problems
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Determinants

« If det(A) = 0 then matrix is invertible
+ If det(A) =0 then matrix is not invertible
- Ais rank deficient

- Focus was on solving matrix inversion
problems

- Now we look at other properties of matrices
- Useful when A represents a transformations
y=Ax

« Or A simply represents data
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Eigenvalues and Eigenvectors

» Motivated by solution to differential equations
For square matrices A € R"*" 1= Au A= { ‘21 :g }
For scalar ODE’s » We look for the solutions

» of the following type exponentials

“ v(t) = eMy u(t) =[v(e) w]
u(t) =e tu(O) w(t) = Ay

U= au

Behavior varies . .
If a > 0 unstable Substitute back to the equation

a = 0 neutrally stable
a <0 stable Ay = 4y — 5%
Az = 2% - 3;7)‘{,2

o[r] meft )

Eigenvalues and Eigenvectors

/\x—{2 _3})( Ax—/\)\
eigenvector
eigenvalue
Solve the equation: (A-=XDx=0 )

X —is in the null space of (A — AI)
A is chosen such that (A — XI) has a null space

Computation of eigenvalues and eigenvectors (for dim 2,3)

1. Compute determinant
2. Find roots (eigenvalues) of the polynomial such that determinant = 0

3. For each eigenvalue solve the equation (1)

For larger matrices — alternative ways of computation




Eigenvalues and Eigenvectors

For the previous example

A o=-1,z =[1,1]T Ao = —2,20 = [5,2]T

We will get special solutions to ODE =~ 1 = Au

_ |4 -5 — A1t 1 _)\t_5
A_{Q _3] u—e 1 u=e2 5

Their linear combination is also a solution (due to the linearity of 1 = Au

— At 1 A1t 5
u=cje { 1 } + coe { 5

In the context of diff. equations — special meaning
Any solution can be expressed as linear combination
Individual solutions correspond to modes

Eigenvalues and Eigenvectors
AxX = A\x

Only special vectors are eigenvectors

- such vectors whose direction will not be changed
by the transformation A (only scale)

- they correspond to normal modes of the system
act independently

eigenvalues eigenvectors
Examples

_ 120 2,3 0.1
=53] HEB
Whatever A does to an arbitrary vector is fully

determined by its eigenvalues and eigenvectors

Ax = 2A\qv1 + BArvso




Eigenvalues and Eigenvectors -
Diagonalization

Given a square matrix A and its eigenvalues and
eigenvectors — matrix can be diagonalized

A= SAS™1
A=SAS71
Matrix of eigenvectors / " Diagonal matrix of eigenvalues
AS = SA
Al x1 2 ... Tp | = | A1x1 A2To ... Anxn Ax = A\x
L —

/— Al
1 T ... Tp Ao ...
An

|: )\1%1 /\2$2 e )\n$n

A=SAS1
« If some of the eigenvalues are the same, eigenvectors
are not independent

Diagonalization

If there are no zero eigenvalues — matrix is invertible
If there are no repeated eigenvalues — matrix is diagonalizable

If all the eigenvalues are different then eigenvectors are
linearly independent

For Symmetric Matrices
If A is symmetric A=QAQT
/ h Diagonal|matrix of eigenvalues

orthonormal matrix of eigenvectors

i.e. for a covariance matrix °
or some matrix B = AATA Ne
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Dimensionality Reduction

- Next:

- Many dimensions are often interdependent
(correlated);

We can:
+ Reduce the dimensionality of problems;

« Transform interdependent coordinates into
significant and independent ones;
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