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0.1 Vectors

From the preface of Linear Algebra and its Applications:

“Linear algebra is a fantastic subject. On the one hand
it is clean and beautiful.” – Gilbert Strang

This wonderful branch of mathematics is both beautiful and use-
ful. It is the cornerstone upon which signal and image processing
is built. This short chapter can not be a comprehensive survey
of linear algebra; it is meant only as a brief introduction and re-
view. The ideas and presentation order are modeled after Strang’s
highly recommended Linear Algebra and its Applications.

x

y

x+y=5

2x−y=1

(x,y)=(2,3)

Figure 0.1 “Row” solu-

tion

(2,1)(−1,1)

(1,5)

(4,2)

(−3,3)

Figure 0.2 “Column”

solution

At the heart of linear algebra is machinery for solving linear equa-
tions. In the simplest case, the number of unknowns equals the
number of equations. For example, here are a two equations in
two unknowns:

2x − y = 1

x + y = 5. (1)

There are at least two ways in which we can think of solving these
equations for x and y. The first is to consider each equation as
describing a line, with the solution being at the intersection of the
lines: in this case the point (2, 3), Figure 0.1. This solution is
termed a “row” solution because the equations are considered in
isolation of one another. This is in contrast to a “column” solution
in which the equations are rewritten in vector form:

(

2
1

)

x +
(

−1
1

)

y =
(

1
5

)

. (2)

The solution reduces to finding values for x and y that scale the
vectors (2, 1) and (−1, 1) so that their sum is equal to the vector
(1, 5), Figure 0.2. Of course the solution is again x = 2 and y = 3.

These solutions generalize to higher dimensions. Here is an exam-
ple with n = 3 unknowns and equations:

2u + v + w = 5

4u − 6v + 0w = −2 (3)

−2u + 7v + 2w = 9.
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Each equation now corresponds to a plane, and the row solution
corresponds to the intersection of the planes (i.e., the intersection
of two planes is a line, and that line intersects the third plane at
a point: in this case, the point u = 1, v = 1, w = 2). In vector
form, the equations take the form:

(5,−2,9)

Figure 0.3 “Column”

solution





2
4
−2



 u +





1
−6
7



 v +





1
0
2



w =





5
−2
9



 . (4)

The solution again amounts to finding values for u, v, and w that
scale the vectors on the left so that their sum is equal to the vector
on the right, Figure 0.3.

In the context of solving linear equations we have introduced the
notion of a vector, scalar multiplication of a vector, and vector
sum. In its most general form, a n-dimensional column vector is
represented as:

!x =











x1

x2
...

xn











, (5)

and a n-dimensional row vector as:

!y = ( y1 y2 . . . yn ) . (6)

Scalar multiplication of a vector !x by a scalar value c, scales the
length of the vector by an amount c (Figure 0.2) and is given by:

c!v =







cv1
...

cvn






. (7)

The vector sum !w = !x + !y is computed via the parallelogram
construction or by “stacking” the vectors head to tail (Figure 0.2)
and is computed by a pairwise addition of the individual vector
components:











w1

w2
...

wn











=











x1 + y1

x2 + y2
...

xn + yn











. (8)

The linear combination of vectors by vector addition and scalar
multiplication is one of the central ideas in linear algebra (more
on this later).
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0.2 Matrices

In solving n linear equations in n unknowns there are three quan-
tities to consider. For example consider again the following set of
equations:

2u + v + w = 5

4u − 6v + 0w = −2 (9)

−2u + 7v + 2w = 9.

On the right is the column vector:





5
−2
9



 , (10)

and on the left are the three unknowns that can also be written
as a column vector:





u
v
w



 . (11)

The set of nine coefficients (3 rows, 3 columns) can be written in
matrix form:





2 1 1
4 −6 0
−2 7 2



 (12)

Matrices, like vectors, can be added and scalar multiplied. Not
surprising, since we may think of a vector as a skinny matrix: a
matrix with only one column. Consider the following 3×3 matrix:

A =





a1 a2 a3

a4 a5 a6

a7 a8 a9



 . (13)

The matrix cA, where c is a scalar value, is given by:

cA =





ca1 ca2 ca3

ca4 ca5 ca6

ca7 ca8 ca9



 . (14)

And the sum of two matrices, A = B + C, is given by:





a1 a2 a3

a4 a5 a6

a7 a8 a9



 =





b1 + c1 b2 + c2 b3 + c3

b4 + c4 b5 + c5 b6 + c6

b7 + c7 b8 + c8 b9 + c9



 . (15)
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With the vector and matrix notation we can rewrite the three
equations in the more compact form of A!x = !b:





2 1 1
4 −6 0
−2 7 2









u
v
w



 =





5
−2
9



 . (16)

Where the multiplication of the matrix A with vector !x must be
such that the three original equations are reproduced. The first
component of the product comes from “multiplying” the first row
of A (a row vector) with the column vector !x as follows:

( 2 1 1 )





u
v
w



 = (2u + 1v + 1w ) . (17)

This quantity is equal to 5, the first component of !b, and is simply
the first of the three original equations. The full product is com-
puted by multiplying each row of the matrix A with the vector !x
as follows:





2 1 1
4 −6 0
−2 7 2









u
v
w



 =





2u + 1v + 1w
4u − 6v + 0w
−2u + 7v + 2w



 =





5
−2
9



 . (18)

In its most general form the product of a m × n matrix with a
n dimensional column vector is a m dimensional column vector
whose ith component is:

n
∑

j=1

aijxj , (19)

where aij is the matrix component in the ith row and jth column.
The sum along the ith row of the matrix is referred to as the inner
product or dot product between the matrix row (itself a vector) and
the column vector !x. Inner products are another central idea in
linear algebra (more on this later). The computation for multi-
plying two matrices extends naturally from that of multiplying a
matrix and a vector. Consider for example the following 3×4 and
4 × 2 matrices:

A =





a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34



 and B =









b11 b12

b21 b22

b31 b32

b41 b42









. (20)

The product C = AB is a 3 × 2 matrix given by:
(

a11b11 + a12b21 + a13b31 + a14b41 a11b12 + a12b22 + a13b32 + a14b42

a21b11 + a22b21 + a23b31 + a24b41 a21b12 + a22b22 + a23b32 + a24b42

a31b11 + a32b21 + a33b31 + a34b41 a31b12 + a32b22 + a33b32 + a34b42

)

.(21)
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That is, the i, j component of the product C is computed from
an inner product of the ith row of matrix A and the jth column
of matrix B. Notice that this definition is completely consistent
with the product of a matrix and vector. In order to multiply
two matrices A and B (or a matrix and a vector), the column
dimension of A must equal the row dimension of B. In other words
if A is of size m× n, then B must be of size n× p (the product is
of size m × p). This constraint immediately suggests that matrix
multiplication is not commutative: usually AB #= BA. However
matrix multiplication is both associative (AB)C = A(BC) and
distributive A(B + C) = AB + AC.

The identity matrix I is a special matrix with 1 on the diagonal
and zero elsewhere:

I =











1 0 . . . 0 0
0 1 . . . 0 0
...

. . .
...

0 0 . . . 0 1











. (22)

Given the definition of matrix multiplication, it is easily seen that
for any vector !x, I!x = !x, and for any suitably sized matrix, IA = A
and BI = B.

In the context of solving linear equations we have introduced the
notion of a vector and a matrix. The result is a compact notation
for representing linear equations, A!x = !b. Multiplying both sides
by the matrix inverse A−1 yields the desired solution to the linear
equations:

A−1A!x = A−1!b

I!x = A−1!b

!x = A−1!b (23)

A matrix A is invertible if there exists 1 a matrix B such that
BA = I and AB = I, where I is the identity matrix. The ma-
trix B is the inverse of A and is denoted as A−1. Note that this
commutative property limits the discussion of matrix inverses to
square matrices.

Not all matrices have inverses. Let’s consider some simple exam-
ples. The inverse of a 1 × 1 matrix A = ( a ) is A−1 = ( 1/a );
but the inverse does not exist when a = 0. The inverse of a 2 × 2

1The inverse of a matrix is unique: assume that B and C are both the
inverse of matrix A, then by definition B = B(AC) = (BA)C = C, so that B
must equal C.
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matrix can be calculated as:

(

a b
c d

)−1

=
1

ad − bc

(

d −b
−c a

)

, (24)

but does not exist when ad − bc = 0. Any diagonal matrix is
invertible:

A =







a1
. . .

an






and A−1 =







1/a1
. . .

1/an






, (25)

as long as all the diagonal components are non-zero. The inverse
of a product of matrices AB is (AB)−1 = B−1A−1. This is easily
proved using the associativity of matrix multiplication. 2 The
inverse of an arbitrary matrix, if it exists, can itself be calculated
by solving a collection of linear equations. Consider for example a
3× 3 matrix A whose inverse we know must satisfy the constraint
that AA−1 = I:




2 1 1
4 −6 0
−2 7 2







 !x1 !x2 !x3



 =



!e1 !e2 !e3



 =





1 0 0
0 1 0
0 0 1



 .(26)

This matrix equation can be considered “a column at a time”
yielding a system of three equations A !x1 = !e1, A !x2 = !e2, and
A !x3 = !e3. These can be solved independently for the columns
of the inverse matrix, or simultaneously using the Gauss-Jordan
method.

A system of linear equations A!x = !b can be solved by simply
left multiplying with the matrix inverse A−1 (if it exists). We
must naturally wonder the fate of our solution if the matrix is not
invertible. The answer to this question is explored in the next
section. But before moving forward we need one last definition.

The transpose of a matrix A, denoted as At, is constructed by
placing the ith row of A into the ith column of At. For example:

A =
(

1 2 1
4 −6 0

)

and At =





1 4
2 −6
1 0



 (27)

In general, the transpose of a m×n matrix is a n×m matrix with
(At)ij = Aji. The transpose of a sum of two matrices is the sum of

2In order to prove (AB)−1 = B−1A−1, we must show (AB)(B−1A−1) =
I : (AB)(B−1A−1) = A(BB−1)A−1 = AIA−1 = AA−1 = I , and that
(B−1A−1)(AB) = I : (B−1A−1)(AB) = B−1(A−1A)B = B−1IB = B−1B =
I .
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the transposes: (A+B)t = At +Bt. The transpose of a product of
two matrices has the familiar form (AB)t = BtAt. And the trans-
pose of the inverse is the inverse of the transpose: (A−1)t = (At)−1.
Of particular interest will be the class of symmetric matrices that
are equal to their own transpose At = A. Symmetric matrices are
necessarily square, here is a 3 × 3 symmetric matrix:

A =





2 1 4
1 −6 0
4 0 3



 , (28)

notice that, by definition, aij = aji.

0.3 Vector Spaces

The most common vector space is that defined over the reals, de-
noted as Rn. This space consists of all column vectors with n
real-valued components, with rules for vector addition and scalar
multiplication. A vector space has the property that the addi-
tion and multiplication of vectors always produces vectors that lie
within the vector space. In addition, a vector space must satisfy
the following properties, for any vectors !x, !y, !z, and scalar c:

1. !x + !y = !y + !x
2. (!x + !y) + !z = !x + (!y + !z)
3. there exists a unique “zero” vector !0 such that !x +!0 = !x
4. there exists a unique “inverse” vector −!x such that

!x + (−!x) = !0
5. 1!x = !x
6. (c1c2)!x = c1(c2!x)
7. c(!x + !y) = c!x + c!y
8. (c1 + c2)!x = c1!x + c2!x

Vector spaces need not be finite dimensional, R∞ is a vector space.
Matrices can also make up a vector space. For example the space
of 3 × 3 matrices can be thought of as R9 (imagine stringing out
the nine components of the matrix into a column vector).

A subspace of a vector space is a non-empty subset of vectors that
is closed under vector addition and scalar multiplication. That
is, the following constraints are satisfied: (1) the sum of any two
vectors in the subspace remains in the subspace; (2) multiplication
of any vector by a scalar yields a vector in the subspace. With
the closure property verified, the eight properties of a vector space
automatically hold for the subspace.

Example 0.1 Consider the set of all vectors in R2 whose com-

ponents are greater than or equal to zero. The sum of any two
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vectors in this space remains in the space, but multiplication of,

for example, the vector

(

1
2

)

by −1 yields the vector

(

−1
−2

)

which is no longer in the space. Therefore, this collection of

vectors does not form a vector space.

Vector subspaces play a critical role in understanding systems of
linear equations of the form A!x = !b. Consider for example the
following system:





u1 v1

u2 v2

u3 v3





(

x1

x2

)

=





b1

b2

b3



 (29)

Unlike the earlier system of equations, this system is over-constrained,
there are more equations (three) than unknowns (two). A solu-
tion to this system exists if the vector !b lies in the subspace of the
columns of matrix A. To see why this is so, we rewrite the above
system according to the rules of matrix multiplication yielding an
equivalent form:

x1





u1

u2

u3



 + x2





v1

v2

v3



 =





b1

b2

b3



 . (30)

In this form, we see that a solution exists when the scaled columns
of the matrix sum to the vector !b. This is simply the closure
property necessary for a vector subspace.

The vector subspace spanned by the columns of the matrix A is
called the column space of A. It is said that a solution to A!x = !b
exists if and only if the vector !b lies in the column space of A.

Example 0.2 Consider the following over-constrained system:

A!x = !b
(

1 0
5 4
2 4

)

(

u
v

)

=

(

b1

b2

b3

)

The column space of A is the plane spanned by the vectors

( 1 5 2 )t and ( 0 4 4 )t. Therefore, the solution !b can not

be an arbitrary vector in R3, but is constrained to lie in the

plane spanned by these two vectors.

At this point we have seen three seemingly different classes of
linear equations of the form A!x = !b, where the matrix A is either:

1. square and invertible (non-singular),
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2. square but not invertible (singular),
3. over-constrained.

In each case solutions to the system exist if the vector !b lies in the
column space of the matrix A. At one extreme is the invertible
n×n square matrix whose solutions may be any vector in the whole
of Rn. At the other extreme is the zero matrix A = 0 with only
the zero vector in it’s column space, and hence the only possible
solution. In between are the singular and over-constrained cases,
where solutions lie in a subspace of the full vector space.

The second important vector space is the nullspace of a matrix.
The vectors that lie in the nullspace of a matrix consist of all
solutions to the system A!x = !0. The zero vector is always in the
nullspace.

Example 0.3 Consider the following system:

A!x = !0
(

1 0 1
5 4 9
2 4 6

)(

u
v
w

)

=

(

0
0
0

)

The nullspace of A contains the zero vector (u v w )t = ( 0 0 0 )t.

Notice also that the third column of A is the sum of the first two

columns, therefore the nullspace of A also contains all vectors of

the form (u v w )t = ( c c −c )t (i.e., all vectors lying on a

one-dimensional line in R3).

(2,2)

(−1,−1)

(2,2)

(−2,0)

(2,2)

(−2,0)

(−1,2)

Figure 0.4 Linearly de-

pendent

(top/bottom) and inde-

pendent (middle).

0.4 Basis

Recall that if the matrix A in the system A!x = !b is invertible, then
left multiplying with A−1 yields the desired solution: !x = A−1!b.
In general it is said that a n× n matrix is invertible if it has rank
n or is full rank, where the rank of a matrix is the number of
linearly independent rows in the matrix. Formally, a set of vectors
!u1, !u2, ..., !un are linearly independent if:

c1!u1 + c2!u2 + ... + cn!un = !0 (31)

is true only when c1 = c2 = ... = cn = 0. Otherwise, the vectors
are linearly dependent. In other words, a set of vectors are linearly
dependent if at least one of the vectors can be expressed as a sum
of scaled copies of the remaining vectors.

Linear independence is easy to visualize in lower-dimensional sub-
spaces. In 2-D, two vectors are linearly dependent if they lie along
a line, Figure 0.4. That is, there is a non-trivial combination of the
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vectors that yields the zero vector. In 2-D, any three vectors are
guaranteed to be linearly dependent. For example, in Figure 0.4,
the vector (−1 2 ) can be expressed as a sum of the remaining
linearly independent vectors: 3

2 (−2 0 ) + ( 2 2 ). In 3-D, three
vectors are linearly dependent if they lie in the same plane. Also
in 3-D, any four vectors are guaranteed to be linearly dependent.

Linear independence is directly related to the nullspace of a ma-
trix. Specifically, the columns of a matrix are linearly independent
(i.e., the matrix is full rank) if the matrix nullspace contains only
the zero vector. For example, consider the following system of
linear equations:





u1 v1 w1

u2 v2 w2

u3 v3 w3









x1

x2

x3



 =





0
0
0



 . (32)

Recall that the nullspace contains all vectors !x such that x1!u +
x2!v + x3 !w = 0. Notice that this is also the condition for linear
independence. If the only solution is the zero vector then the
vectors are linearly independent and the matrix is full rank and
invertible.

Linear independence is also related to the column space of a ma-
trix. If the column space of a n × n matrix is all of Rn, then the
matrix is full rank. For example, consider the following system of
linear equations:





u1 v1 w1

u2 v2 w2

u3 v3 w3









x1

x2

x3



 =





b1

b2

b3



 . (33)

If the the matrix is full rank, then the solution !b can be any vector
in R3. In such cases, the vectors !u, !v, !w are said to span the space.

Now, a linear basis of a vector space is a set of linearly independent
vectors that span the space. Both conditions are important. Given
an n dimensional vector space with n basis vectors !v1, ..., !vn, any
vector !u in the space can be written as a linear combination of
these n vectors:

!u = a1 !v1 + ... + an !vn. (34)

In addition, the linear independence guarantees that this linear
combination is unique. If there is another combination such that:

!u = b1 !v1 + ... + bn !vn, (35)
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then the difference of these two representations yields

!0 = (a1 − b1)!v1 + ... + (an − bn) !vn

= c1 !v1 + ... + cn !vn (36)

which would violate the linear independence condition. While
the representation is unique, the basis is not. A vector space has
infinitely many different bases. For example in R2 any two vectors
that do not lie on a line form a basis, and in R3 any three vectors
that do not lie in a common plane or line form a basis.

Example 0.4 The vectors ( 1 0 ) and ( 0 1 ) form the canonical

basis for R2. These vectors are both linearly independent and

span the entire vector space.

Example 0.5 The vectors ( 1 0 0 ), ( 0 1 0 ) and (−1 0 0 )

do not form a basis for R3. These vectors lie in a 2-D plane and

do not span the entire vector space.

Example 0.6 The vectors ( 1 0 0 ), ( 0 −1 0 ), ( 0 0 2 ),

and ( 1 −1 0 ) do not form a basis. Although these vectors

span the vector space, the fourth vector is linearly dependent on

the first two. Removing the fourth vector leaves a basis for R3.

0.5 Inner Products and Projections

0.6 Linear Transforms
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