Part I

Linear Regression

To make our housing example more interesting, lets consider a slightly richer dataset in which we also know the number of bedrooms in each house:

Living area $\left(\right.$ feet $\left.^{2}\right)$	\#bedrooms	Price (1000\$s)
2104	3	400
1600	3	330
2400	3	369
1416	2	232
3000	4	540
\vdots	\vdots	\vdots

Here, the x 's are two-dimensional vectors in \mathbb{R}^{2}. For instance, $x_{1}^{(i)}$ is the living area of the i-th house in the training set, and $x_{2}^{(i)}$ is its number of bedrooms. (In general, when designing a learning problem, it will be up to you to decide what features to choose, so if you are out in Portland gathering housing data, you might also decide to include other features such as whether each house has a fireplace, the number of bathrooms, and so on. We'll say more about feature selection later, but for now lets take the features as given.)

To perform supervised learning, we must decide how we're going to represent functions/hypotheses h in a computer. As an initial choice, lets say we decide to approximate y as a linear function of x :

$$
h_{\theta}(x)=\theta_{0}+\theta_{1} x_{1}+\theta_{2} x_{2}
$$

Here, the θ_{i} 's are the parameters (also called weights) parameterizing the space of linear functions mapping from \mathcal{X} to \mathcal{Y}. When there is no risk of confusion, we will drop the θ subscript in $h_{\theta}(x)$, and write it more simply as $h(x)$. To simplify our notation, we also introduce the convention of letting $x_{0}=1$ (this is the intercept term), so that

$$
h(x)=\sum_{i=0}^{n} \theta_{i} x_{i}=\theta^{T} x
$$

where on the right-hand side above we are viewing θ and x both as vectors, and here n is the number of input variables (not counting x_{0}).

Now, given a training set, how do we pick, or learn, the parameters θ ? One reasonable method seems to be to make $h(x)$ close to y, at least for
the training examples we have. To formalize this, we will define a function that measures, for each value of the θ 's, how close the $h\left(x^{(i)}\right)$'s are to the corresponding $y^{(i)}$'s. We define the cost function:

$$
J(\theta)=\frac{1}{2} \sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right)^{2} .
$$

If you've seen linear regression before, you may recognize this as the familiar least-squares cost function that gives rise to the ordinary least squares regression model. Whether or not you have seen it previously, lets keep going, and we'll eventually show this to be a special case of a much broader family of algorithms.

1 LMS algorithm

We want to choose θ so as to minimize $J(\theta)$. To do so, lets use a search algorithm that starts with some "initial guess" for θ, and that repeatedly changes θ to make $J(\theta)$ smaller, until hopefully we converge to a value of θ that minimizes $J(\theta)$. Specifically, lets consider the gradient descent algorithm, which starts with some initial θ, and repeatedly performs the update:

$$
\theta_{j}:=\theta_{j}-\alpha \frac{\partial}{\partial \theta_{j}} J(\theta)
$$

(This update is simultaneously performed for all values of $j=0, \ldots, n$.) Here, α is called the learning rate. This is a very natural algorithm that repeatedly takes a step in the direction of steepest decrease of J.

In order to implement this algorithm, we have to work out what is the partial derivative term on the right hand side. Lets first work it out for the case of if we have only one training example (x, y), so that we can neglect the sum in the definition of J. We have:

$$
\begin{aligned}
\frac{\partial}{\partial \theta_{j}} J(\theta) & =\frac{\partial}{\partial \theta_{j}} \frac{1}{2}\left(h_{\theta}(x)-y\right)^{2} \\
& =2 \cdot \frac{1}{2}\left(h_{\theta}(x)-y\right) \cdot \frac{\partial}{\partial \theta_{j}}\left(h_{\theta}(x)-y\right) \\
& =\left(h_{\theta}(x)-y\right) \cdot \frac{\partial}{\partial \theta_{j}}\left(\sum_{i=0}^{n} \theta_{i} x_{i}-y\right) \\
& =\left(h_{\theta}(x)-y\right) x_{j}
\end{aligned}
$$

For a single training example, this gives the update rule: ${ }^{1}$

$$
\theta_{j}:=\theta_{j}+\alpha\left(y^{(i)}-h_{\theta}\left(x^{(i)}\right)\right) x_{j}^{(i)} .
$$

The rule is called the LMS update rule (LMS stands for "least mean squares"), and is also known as the Widrow-Hoff learning rule. This rule has several properties that seem natural and intuitive. For instance, the magnitude of the update is proportional to the error term $\left(y^{(i)}-h_{\theta}\left(x^{(i)}\right)\right)$; thus, for instance, if we are encountering a training example on which our prediction nearly matches the actual value of $y^{(i)}$, then we find that there is little need to change the parameters; in contrast, a larger change to the parameters will be made if our prediction $h_{\theta}\left(x^{(i)}\right)$ has a large error (i.e., if it is very far from $\left.y^{(i)}\right)$.

We'd derived the LMS rule for when there was only a single training example. There are two ways to modify this method for a training set of more than one example. The first is replace it with the following algorithm:

Repeat until convergence \{

$$
\theta_{j}:=\theta_{j}+\alpha \sum_{i=1}^{m}\left(y^{(i)}-h_{\theta}\left(x^{(i)}\right)\right) x_{j}^{(i)} \quad(\text { for every } j)
$$

\}
The reader can easily verify that the quantity in the summation in the update rule above is just $\partial J(\theta) / \partial \theta_{j}$ (for the original definition of J). So, this is simply gradient descent on the original cost function J. This method looks at every example in the entire training set on every step, and is called batch gradient descent. Note that, while gradient descent can be susceptible to local minima in general, the optimization problem we have posed here for linear regression has only one global, and no other local, optima; thus gradient descent always converges (assuming the learning rate α is not too large) to the global minimum. Indeed, J is a convex quadratic function. Here is an example of gradient descent as it is run to minimize a quadratic function.

[^0]

The ellipses shown above are the contours of a quadratic function. Also shown is the trajectory taken by gradient descent, with was initialized at $(48,30)$. The x 's in the figure (joined by straight lines) mark the successive values of θ that gradient descent went through.

When we run batch gradient descent to fit θ on our previous dataset, to learn to predict housing price as a function of living area, we obtain $\theta_{0}=71.27, \theta_{1}=0.1345$. If we plot $h_{\theta}(x)$ as a function of x (area), along with the training data, we obtain the following figure:

If the number of bedrooms were included as one of the input features as well, we get $\theta_{0}=89.60, \theta_{1}=0.1392, \theta_{2}=-8.738$.

The above results were obtained with batch gradient descent. There is an alternative to batch gradient descent that also works very well. Consider the following algorithm:

```
Loop \{
    for \(\mathrm{i}=1\) to \(\mathrm{m},\{\)
        \(\theta_{j}:=\theta_{j}+\alpha\left(y^{(i)}-h_{\theta}\left(x^{(i)}\right)\right) x_{j}^{(i)} \quad(\) for every \(j)\).
    \}
\}
```

In this algorithm, we repeatedly run through the training set, and each time we encounter a training example, we update the parameters according to the gradient of the error with respect to that single training example only. This algorithm is called stochastic gradient descent (also incremental gradient descent). Whereas batch gradient descent has to scan through the entire training set before taking a single step - a costly operation if m is large - stochastic gradient descent can start making progress right away, and continues to make progress with each example it looks at. Often, stochastic gradient descent gets θ "close" to the minimum much faster than batch gradient descent. (Note however that it may never "converge" to the minimum, and the parameters θ will keep oscillating around the minimum of $J(\theta)$; but in practice most of the values near the minimum will be reasonably good approximations to the true minimum. ${ }^{2}$) For these reasons, particularly when the training set is large, stochastic gradient descent is often preferred over batch gradient descent.

2 The normal equations

Gradient descent gives one way of minimizing J. Lets discuss a second way of doing so, this time performing the minimization explicitly and without resorting to an iterative algorithm. In this method, we will minimize J by explicitly taking its derivatives with respect to the θ_{j} 's, and setting them to zero. To enable us to do this without having to write reams of algebra and pages full of matrices of derivatives, lets introduce some notation for doing calculus with matrices.

[^1]
2.1 Matrix derivatives

For a function $f: \mathbb{R}^{m \times n} \mapsto \mathbb{R}$ mapping from m-by- n matrices to the real numbers, we define the derivative of f with respect to A to be:

$$
\nabla_{A} f(A)=\left[\begin{array}{ccc}
\frac{\partial f}{\partial A_{11}} & \cdots & \frac{\partial f}{\partial A_{1 n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial f}{\partial A_{m 1}} & \cdots & \frac{\partial f}{\partial A_{m n}}
\end{array}\right]
$$

Thus, the gradient $\nabla_{A} f(A)$ is itself an m-by- n matrix, whose (i, j)-element is $\partial f / \partial A_{i j}$. For example, suppose $A=\left[\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right]$ is a 2-by-2 matrix, and the function $f: \mathbb{R}^{2 \times 2} \mapsto \mathbb{R}$ is given by

$$
f(A)=\frac{3}{2} A_{11}+5 A_{12}^{2}+A_{21} A_{22} .
$$

Here, $A_{i j}$ denotes the (i, j) entry of the matrix A. We then have

$$
\nabla_{A} f(A)=\left[\begin{array}{cc}
\frac{3}{2} & 10 A_{12} \\
A_{22} & A_{21}
\end{array}\right] .
$$

We also introduce the trace operator, written "tr." For an n-by- n (square) matrix A, the trace of A is defined to be the sum of its diagonal entries:

$$
\operatorname{tr} A=\sum_{i=1}^{n} A_{i i}
$$

If a is a real number (i.e., a 1-by-1 matrix), then $\operatorname{tr} a=a$. (If you haven't seen this "operator notation" before, you should think of the trace of A as $\operatorname{tr}(A)$, or as application of the "trace" function to the matrix A. It's more commonly written without the parentheses, however.)

The trace operator has the property that for two matrices A and B such that $A B$ is square, we have that $\operatorname{tr} A B=\operatorname{tr} B A$. (Check this yourself!) As corollaries of this, we also have, e.g.,

$$
\begin{gathered}
\operatorname{tr} A B C=\operatorname{tr} C A B=\operatorname{tr} B C A \\
\operatorname{tr} A B C D=\operatorname{tr} D A B C=\operatorname{tr} C D A B=\operatorname{tr} B C D A .
\end{gathered}
$$

The following properties of the trace operator are also easily verified. Here, A and B are square matrices, and a is a real number:

$$
\begin{aligned}
\operatorname{tr} A & =\operatorname{tr} A^{T} \\
\operatorname{tr}(A+B) & =\operatorname{tr} A+\operatorname{tr} B \\
\operatorname{tr} a A & =a \operatorname{tr} A
\end{aligned}
$$

We now state without proof some facts of matrix derivatives (we won't need some of these until later this quarter). Equation (4) applies only to non-singular square matrices A, where $|A|$ denotes the determinant of A. We have:

$$
\begin{align*}
\nabla_{A} \operatorname{tr} A B & =B^{T} \tag{1}\\
\nabla_{A^{T}} f(A) & =\left(\nabla_{A} f(A)\right)^{T} \tag{2}\\
\nabla_{A} \operatorname{tr} A B A^{T} C & =C A B+C^{T} A B^{T} \tag{3}\\
\nabla_{A}|A| & =|A|\left(A^{-1}\right)^{T} . \tag{4}
\end{align*}
$$

To make our matrix notation more concrete, let us now explain in detail the meaning of the first of these equations. Suppose we have some fixed matrix $B \in \mathbb{R}^{n \times m}$. We can then define a function $f: \mathbb{R}^{m \times n} \mapsto \mathbb{R}$ according to $f(A)=\operatorname{tr} A B$. Note that this definition makes sense, because if $A \in \mathbb{R}^{m \times n}$, then $A B$ is a square matrix, and we can apply the trace operator to it; thus, f does indeed map from $\mathbb{R}^{m \times n}$ to \mathbb{R}. We can then apply our definition of matrix derivatives to find $\nabla_{A} f(A)$, which will itself by an m-by- n matrix. Equation (1) above states that the (i, j) entry of this matrix will be given by the (i, j)-entry of B^{T}, or equivalently, by $B_{j i}$.

The proofs of Equations (1-3) are reasonably simple, and are left as an exercise to the reader. Equations (4) can be derived using the adjoint representation of the inverse of a matrix. ${ }^{3}$

2.2 Least squares revisited

Armed with the tools of matrix derivatives, let us now proceed to find in closed-form the value of θ that minimizes $J(\theta)$. We begin by re-writing J in matrix-vectorial notation.

Giving a training set, define the design matrix X to be the m-by- n matrix (actually m-by- $n+1$, if we include the intercept term) that contains

[^2]the training examples' input values in its rows:
\[

X=\left[$$
\begin{array}{c}
-\left(x^{(1)}\right)^{T}- \\
-\left(x^{(2)}\right)^{T}- \\
\vdots \\
-\left(x^{(m)}\right)^{T}-
\end{array}
$$\right]
\]

Also, let \vec{y} be the m-dimensional vector containing all the target values from the training set:

$$
\vec{y}=\left[\begin{array}{c}
y^{(1)} \\
y^{(2)} \\
\vdots \\
y^{(m)}
\end{array}\right] .
$$

Now, since $h_{\theta}\left(x^{(i)}\right)=\left(x^{(i)}\right)^{T} \theta$, we can easily verify that

$$
\begin{aligned}
X \theta-\vec{y} & =\left[\begin{array}{c}
\left(x^{(1)}\right)^{T} \theta \\
\vdots \\
\left(x^{(m)}\right)^{T} \theta
\end{array}\right]-\left[\begin{array}{c}
y^{(1)} \\
\vdots \\
y^{(m)}
\end{array}\right] \\
& =\left[\begin{array}{c}
h_{\theta}\left(x^{(1)}\right)-y^{(1)} \\
\vdots \\
h_{\theta}\left(x^{(m)}\right)-y^{(m)}
\end{array}\right] .
\end{aligned}
$$

Thus, using the fact that for a vector z, we have that $z^{T} z=\sum_{i} z_{i}^{2}$:

$$
\begin{aligned}
\frac{1}{2}(X \theta-\vec{y})^{T}(X \theta-\vec{y}) & =\frac{1}{2} \sum_{i=1}^{m}\left(h_{\theta}\left(x^{(i)}\right)-y^{(i)}\right)^{2} \\
& =J(\theta)
\end{aligned}
$$

Finally, to minimize J, lets find its derivatives with respect to θ. Combining Equations (2) and (3), we find that

$$
\begin{equation*}
\nabla_{A^{T}} \operatorname{tr} A B A^{T} C=B^{T} A^{T} C^{T}+B A^{T} C \tag{5}
\end{equation*}
$$

Hence,

$$
\begin{aligned}
\nabla_{\theta} J(\theta) & =\nabla_{\theta} \frac{1}{2}(X \theta-\vec{y})^{T}(X \theta-\vec{y}) \\
& =\frac{1}{2} \nabla_{\theta}\left(\theta^{T} X^{T} X \theta-\theta^{T} X^{T} \vec{y}-\vec{y}^{T} X \theta+\vec{y}^{T} \vec{y}\right) \\
& =\frac{1}{2} \nabla_{\theta} \operatorname{tr}\left(\theta^{T} X^{T} X \theta-\theta^{T} X^{T} \vec{y}-\vec{y}^{T} X \theta+\vec{y}^{T} \vec{y}\right) \\
& =\frac{1}{2} \nabla_{\theta}\left(\operatorname{tr} \theta^{T} X^{T} X \theta-2 \operatorname{tr} \vec{y}^{T} X \theta\right) \\
& =\frac{1}{2}\left(X^{T} X \theta+X^{T} X \theta-2 X^{T} \vec{y}\right) \\
& =X^{T} X \theta-X^{T} \vec{y}
\end{aligned}
$$

In the third step, we used the fact that the trace of a real number is just the real number; the fourth step used the fact that $\operatorname{tr} A=\operatorname{tr} A^{T}$, and the fifth step used Equation (5) with $A^{T}=\theta, B=B^{T}=X^{T} X$, and $C=I$, and Equation (1). To minimize J, we set its derivatives to zero, and obtain the normal equations:

$$
X^{T} X \theta=X^{T} \vec{y}
$$

Thus, the value of θ that minimizes $J(\theta)$ is given in closed form by the equation

$$
\theta=\left(X^{T} X\right)^{-1} X^{T} \vec{y}
$$

3 Probabilistic interpretation

When faced with a regression problem, why might linear regression, and specifically why might the least-squares cost function J, be a reasonable choice? In this section, we will give a set of probabilistic assumptions, under which least-squares regression is derived as a very natural algorithm.

Let us assume that the target variables and the inputs are related via the equation

$$
y^{(i)}=\theta^{T} x^{(i)}+\epsilon^{(i)}
$$

where $\epsilon^{(i)}$ is an error term that captures either unmodeled effects (such as if there are some features very pertinent to predicting housing price, but that we'd left out of the regression), or random noise. Let us further assume that the $\epsilon^{(i)}$ are distributed IID (independently and identically distributed) according to a Gaussian distribution (also called a Normal distribution) with
mean zero and some variance σ^{2}. We can write this assumption as " $\epsilon{ }^{(i)} \sim$ $\mathcal{N}\left(0, \sigma^{2}\right)$." I.e., the density of $\epsilon^{(i)}$ is given by

$$
p\left(\epsilon^{(i)}\right)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{\left(\epsilon^{(i)}\right)^{2}}{2 \sigma^{2}}\right) .
$$

This implies that

$$
p\left(y^{(i)} \mid x^{(i)} ; \theta\right)=\frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{\left(y^{(i)}-\theta^{T} x^{(i)}\right)^{2}}{2 \sigma^{2}}\right)
$$

The notation " $p\left(y^{(i)} \mid x^{(i)} ; \theta\right)$ " indicates that this is the distribution of $y^{(i)}$ given $x^{(i)}$ and parameterized by θ. Note that we should not condition on θ (" $p\left(y^{(i)} \mid x^{(i)}, \theta\right)$ "), since θ is not a random variable. We can also write the distribution of $y^{(i)}$ as as $y^{(i)} \mid x^{(i)} ; \theta \sim \mathcal{N}\left(\theta^{T} x^{(i)}, \sigma^{2}\right)$.

Given X (the design matrix, which contains all the $x^{(i)}$'s) and θ, what is the distribution of the $y^{(i)}$'s? The probability of the data is given by $p(\vec{y} \mid X ; \theta)$. This quantity is typically viewed a function of \vec{y} (and perhaps X), for a fixed value of θ. When we wish to explicitly view this as a function of θ, we will instead call it the likelihood function:

$$
L(\theta)=L(\theta ; X, \vec{y})=p(\vec{y} \mid X ; \theta) .
$$

Note that by the independence assumption on the $\epsilon^{(i)}$'s (and hence also the $y^{(i)}$'s given the $x^{(i)}$'s), this can also be written

$$
\begin{aligned}
L(\theta) & =\prod_{i=1}^{m} p\left(y^{(i)} \mid x^{(i)} ; \theta\right) \\
& =\prod_{i=1}^{m} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{\left(y^{(i)}-\theta^{T} x^{(i)}\right)^{2}}{2 \sigma^{2}}\right) .
\end{aligned}
$$

Now, given this probabilistic model relating the $y^{(i)}$'s and the $x^{(i)}$'s, what is a reasonable way of choosing our best guess of the parameters θ ? The principal of maximum likelihood says that we should should choose θ so as to make the data as high probability as possible. I.e., we should choose θ to maximize $L(\theta)$.

Instead of maximizing $L(\theta)$, we can also maximize any strictly increasing function of $L(\theta)$. In particular, the derivations will be a bit simpler if we
instead maximize the log likelihood $\ell(\theta)$:

$$
\begin{aligned}
\ell(\theta) & =\log L(\theta) \\
& =\log \prod_{i=1}^{m} \frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{\left(y^{(i)}-\theta^{T} x^{(i)}\right)^{2}}{2 \sigma^{2}}\right) \\
& =\sum_{i=1}^{m} \log \frac{1}{\sqrt{2 \pi} \sigma} \exp \left(-\frac{\left(y^{(i)}-\theta^{T} x^{(i)}\right)^{2}}{2 \sigma^{2}}\right) \\
& =m \log \frac{1}{\sqrt{2 \pi} \sigma}-\frac{1}{\sigma^{2}} \cdot \frac{1}{2} \sum_{i=1}^{m}\left(y^{(i)}-\theta^{T} x^{(i)}\right)^{2} .
\end{aligned}
$$

Hence, maximizing $\ell(\theta)$ gives the same answer as minimizing

$$
\frac{1}{2} \sum_{i=1}^{m}\left(y^{(i)}-\theta^{T} x^{(i)}\right)^{2}
$$

which we recognize to be $J(\theta)$, our original least-squares cost function.
To summarize: Under the previous probabilistic assumptions on the data, least-squares regression corresponds to finding the maximum likelihood estimate of θ. This is thus one set of assumptions under which least-squares regression can be justified as a very natural method that's just doing maximum likelihood estimation. (Note however that the probabilistic assumptions are by no means necessary for least-squares to be a perfectly good and rational procedure, and there may - and indeed there are - other natural assumptions that can also be used to justify it.)

Note also that, in our previous discussion, our final choice of θ did not depend on what was σ^{2}, and indeed we'd have arrived at the same result even if σ^{2} were unknown. We will use this fact again later, when we talk about the exponential family and generalized linear models.

4 Locally weighted linear regression

Consider the problem of predicting y from $x \in \mathbb{R}$. The leftmost figure below shows the result of fitting a $y=\theta_{0}+\theta_{1} x$ to a dataset. We see that the data doesn't really lie on straight line, and so the fit is not very good.

Instead, if we had added an extra feature x^{2}, and fit $y=\theta_{0}+\theta_{1} x+\theta_{2} x^{2}$, then we obtain a slightly better fit to the data. (See middle figure) Naively, it might seem that the more features we add, the better. However, there is also a danger in adding too many features: The rightmost figure is the result of fitting a 5 -th order polynomial $y=\sum_{j=0}^{5} \theta_{j} x^{j}$. We see that even though the fitted curve passes through the data perfectly, we would not expect this to be a very good predictor of, say, housing prices (y) for different living areas (x). Without formally defining what these terms mean, we'll say the figure on the left shows an instance of underfitting - in which the data clearly shows structure not captured by the model - and the figure on the right is an example of overfitting. (Later in this class, when we talk about learning theory we'll formalize some of these notions, and also define more carefully just what it means for a hypothesis to be good or bad.)

As discussed previously, and as shown in the example above, the choice of features is important to ensuring good performance of a learning algorithm. (When we talk about model selection, we'll also see algorithms for automatically choosing a good set of features.) In this section, let us talk briefly talk about the locally weighted linear regression (LWR) algorithm which, assuming there is sufficient training data, makes the choice of features less critical. This treatment will be brief, since you'll get a chance to explore some of the properties of the LWR algorithm yourself in the homework.

In the original linear regression algorithm, to make a prediction at a query point x (i.e., to evaluate $h(x)$), we would:

1. Fit θ to minimize $\sum_{i}\left(y^{(i)}-\theta^{T} x^{(i)}\right)^{2}$.
2. Output $\theta^{T} x$.

In contrast, the locally weighted linear regression algorithm does the following:

1. Fit θ to minimize $\sum_{i} w^{(i)}\left(y^{(i)}-\theta^{T} x^{(i)}\right)^{2}$.
2. Output $\theta^{T} x$.

Here, the $w^{(i)}$'s are non-negative valued weights. Intuitively, if $w^{(i)}$ is large for a particular value of i, then in picking θ, we'll try hard to make $\left(y^{(i)}-\right.$ $\left.\theta^{T} x^{(i)}\right)^{2}$ small. If $w^{(i)}$ is small, then the $\left(y^{(i)}-\theta^{T} x^{(i)}\right)^{2}$ error term will be pretty much ignored in the fit.

A fairly standard choice for the weights is ${ }^{4}$

$$
w^{(i)}=\exp \left(-\frac{\left(x^{(i)}-x\right)^{2}}{2 \tau^{2}}\right)
$$

Note that the weights depend on the particular point x at which we're trying to evaluate x. Moreover, if $\left|x^{(i)}-x\right|$ is small, then $w^{(i)}$ is close to 1 ; and if $\left|x^{(i)}-x\right|$ is large, then $w^{(i)}$ is small. Hence, θ is chosen giving a much higher "weight" to the (errors on) training examples close to the query point x. (Note also that while the formula for the weights takes a form that is cosmetically similar to the density of a Gaussian distribution, the $w^{(i)}$'s do not directly have anything to do with Gaussians, and in particular the $w^{(i)}$ are not random variables, normally distributed or otherwise.) The parameter τ controls how quickly the weight of a training example falls off with distance of its $x^{(i)}$ from the query point $x ; \tau$ is called the bandwidth parameter, and is also something that you'll get to experiment with in your homework.

Locally weighted linear regression is the first example we're seeing of a non-parametric algorithm. The (unweighted) linear regression algorithm that we saw earlier is known as a parametric learning algorithm, because it has a fixed, finite number of parameters (the θ_{i} 's), which are fit to the data. Once we've fit the θ_{i} 's and stored them away, we no longer need to keep the training data around to make future predictions. In contrast, to make predictions using locally weighted linear regression, we need to keep the entire training set around. The term "non-parametric" (roughly) refers to the fact that the amount of stuff we need to keep in order to represent the hypothesis h grows linearly with the size of the training set.

[^3]
[^0]: ${ }^{1}$ We use the notation " $a:=b$ " to denote an operation (in a computer program) in which we set the value of a variable a to be equal to the value of b. In other words, this operation overwrites a with the value of b. In contrast, we will write " $a=b$ " when we are asserting a statement of fact, that the value of a is equal to the value of b.

[^1]: ${ }^{2}$ While it is more common to run stochastic gradient descent as we have described it and with a fixed learning rate α, by slowly letting the learning rate α decrease to zero as the algorithm runs, it is also possible to ensure that the parameters will converge to the global minimum rather then merely oscillate around the minimum.

[^2]: ${ }^{3}$ If we define A^{\prime} to be the matrix whose (i, j) element is $(-1)^{i+j}$ times the determinant of the square matrix resulting from deleting row i and column j from A, then it can be proved that $A^{-1}=\left(A^{\prime}\right)^{T} /|A|$. (You can check that this is consistent with the standard way of finding A^{-1} when A is a 2 -by- 2 matrix. If you want to see a proof of this more general result, see an intermediate or advanced linear algebra text, such as Charles Curtis, 1991, Linear Algebra, Springer.) This shows that $A^{\prime}=|A|\left(A^{-1}\right)^{T}$. Also, the determinant of a matrix can be written $|A|=\sum_{j} A_{i j} A_{i j}^{\prime}$. Since $\left(A^{\prime}\right)_{i j}$ does not depend on $A_{i j}$ (as can be seen from its definition), this implies that $\left(\partial / \partial A_{i j}\right)|A|=A_{i j}^{\prime}$. Putting all this together shows the result.

[^3]: ${ }^{4}$ If x is vector-valued, this is generalized to be $w^{(i)}=\exp \left(-\left(x^{(i)}-x\right)^{T}\left(x^{(i)}-x\right) /\left(2 \tau^{2}\right)\right)$, or $w^{(i)}=\exp \left(-\left(x^{(i)}-x\right)^{T} \Sigma^{-1}\left(x^{(i)}-x\right) / 2\right)$, for an appropriate choice of τ or Σ.

