<u>Computing Confidence Intervals for</u> <u>Sample Data</u>

Topics

- □ Use of Statistics
- Sources of errors
- □ Accuracy, precision, resolution
- □ A mathematical model of errors
- □ Confidence intervals
 - > For means
 - > For variances
 - > For proportions
- How many measurements are needed for desired error?

2

What are statistics?

"A branch of mathematics dealing with the collection, analysis, interpretation, and presentation of masses of numerical data."

Merriam-Webster

- → We are most interested in analysis and interpretation here.
- □ "Lies, damn lies, and statistics!"

What is a statistic?

"A quantity that is computed from a sample [of data]."

Merriam-Webster

☐ An estimate of a population parameter

Why do we need statistics?

- ☐ A set of experimental measurements constitute a sample of the underlying process/system being measured
 - Use statistical techniques to infer the true value of the metric
- Use statistical techniques to quantify the amount of imprecision due to random experimental errors

Experimental errors

- \square Errors \rightarrow *noise* in measured values
- □ *Systematic* errors
 - Result of an experimental "mistake"
 - > Typically produce constant or slowly varying bias
- □ Controlled through skill of experimenter
- Examples
 - > Temperature change causes clock drift
 - > Forget to clear cache before timing run

Experimental errors

- □ *Random* errors
 - > Unpredictable, non-deterministic
 - Unbiased \rightarrow equal probability of increasing or decreasing measured value
- Result of

 - Limitations of measuring tool
 Observer reading output of tool
 Random processes within system
- □ Typically cannot be controlled
 - Use statistical tools to characterize and quantify

Quantization error □ Timer resolution → quantization error □ Repeated measurements X ± Δ Completely unpredictable

A Model of Errors

Error	Measured value	Probability
-E	<i>x</i> - E	1/2
+E	<i>x</i> + E	1/2

A Model of Errors

Error 1	Error 2	Measured value	Probability
-E	-E	x-2E	1/4
-E	+E	×	1/4
+E	-E	х	1/4
+E	+E	x+2E	1/4

Accuracy, Precision, Resolution

- \square Systematic errors \rightarrow accuracy
 - > How close mean of measured values is to true value
- \square Random errors \rightarrow precision
 - > Repeatability of measurements
- □ Characteristics of tools → resolution
 - > Smallest increment between measured values

Quantifying Accuracy, Precision, Resolution

- Accuracy
 - > Hard to determine true accuracy
 - > Relative to a predefined standard o E.g. definition of a "second"
- Resolution
 - > Dependent on tools
- Precision
 - Quantify amount of imprecision using statistical tools

18

Why do we need statistics?

- A set of experimental measurements constitute a sample of the underlying process/system being measured
 - Use statistical techniques to infer the true value of the metric
- Use statistical techniques to quantify the amount of imprecision due to random experimental errors

21

Assumption: random errors normally distributed

Interval Estimate

The interval estimate of the population parameter will have a specified confidence or probability of correctly estimating the population parameter.

22

Properties of Point Estimators

- □ In statistics, point estimation involves the use of sample data to calculate a single value which is to serve as a "best guess" for an unknown (fixed or random) population parameter.
- □ Example of point estimator: sample mean.
- □ Properties:
 - > Unbiasedness: the expected value of all possible sample statistics (of given size n) is equal to the population parameter. $E[\overline{X}] = \mu$

$$E[s^2] = \sigma^2$$

- > Efficiency: precision as estimator of the population parameter.
- Consistency: as the sample size increases the sample statistic becomes a better estimator of the population parameter.

Unbiasedness of the Mean

$$\overline{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$

$$E[\overline{X}] = \frac{E\left[\sum_{i=1}^{n} X_i\right]}{n} = \frac{\sum_{i=1}^{n} E[X_i]}{n} = \frac{\sum_{i=1}^{n} \mu}{n} = \mu$$

	Sample siz	:e=	15		1.7%	of populatio
	Sample 1	Sample 2	Sample 3			
	0.0739	0.0202	0.2918			
	0.1407	0.1089	0.4696			
	0.1257	0.0242	0.8644			
	0.0432	0.4253	0.1494			
	0.1784	0.1584	0.4242			
	0.4106	0.8948				
	0.1514					
	0.4542	0.1752	0.0084			
	0.0485					
	0.1705					
	0.3335					
	0.1772					
	0.0242					
	0.2183					
	0.0274	0.4079	0.1142	E[sample]	Population	Error
Sample						
Average	0.1718	0.2467	0.3744	0.2643	0.2083	26.9%
Sample						
Variance	0.0180	0.0534	0.1204	0.0639	0.0440	45.3%
Efficiency						
(average)	18%	18%	80%			
Efficiency						
(variance)	59%	21%	173%			

	Sample siz	e =	87		10%	of population
	Sample 1	Sample 2	Sample 3			
	0.5725	0.3864	0.4627			
	0.0701	0.0488	0.2317			
	0.2165	0.0611	0.1138			
	0.6581					
	0.0440	0.5866	0.2438			
	0.1777					
	0.2380	0.1923	0.6581			
	•					
	0.0102	0.9460	0.0714	ı	Population	% Rel Error
Sample	•	0.9460	0.0714		Population	% Rel. Error
Average	0.0102	0.9460 0.0445	0.0714 0.2959	0.2206	Population 0.2083	
Average Sample	0.0102 0.4325 0.2239	0.9460 0.0445 0.2203	0.0714 0.2959 0.2178	0.2206	0.2083	5.9%
Average Sample Variance	0.0102 0.4325 0.2239	0.9460 0.0445 0.2203	0.0714 0.2959		0.2083	5.9%
Average Sample	0.0102 0.4325 0.2239	0.9460 0.0445 0.2203 0.0484057	0.0714 0.2959 0.2178 0.0440444	0.2206	0.2083	5.9%

<u>Confidence Interval Estimation of the Mean</u>

- □ Known population standard deviation.
- □ Unknown population standard deviation:
 - Large samples: sample standard deviation is a good estimate for population standard deviation. OK to use normal distribution.
 - Small samples and original variable is normally distributed: use t distribution with n-1 degrees of freedom.

Central Limit Theorem

 $\hfill \square$ If the observations in a sample are independent and come from the same population that has mean μ and standard deviation σ then the sample mean for \pmb{large} samples has a normal distribution with mean μ and standard deviation σ/\sqrt{n}

$$\overline{x} \sim N(\mu, \sigma / \sqrt{n})$$

□ The standard deviation of the sample mean is called the *standard error*.

Confidence Interval - large (n>30) samples

• 100 (1- α)% confidence interval for the population mean:

$$(\overline{x}-z_{1-\alpha/2}\frac{s}{\sqrt{n}},\overline{x}+z_{1-\alpha/2}\frac{s}{\sqrt{n}})$$

x̄: sample means: sample standard deviationn: sample size

 $z_{1-\alpha/2}$. (1- α /2)-quantile of a unit normal variate (N(0,1)).

Sample	0.4325	0.0445	0.2959		Population	
Average	0.2239	0.2203	0.2178	0.2206	0.2083	
Sample						i e
Variance	0.0452688	0.0484057	0.0440444	0.0459	0.0440	
Efficiency						='
(average)	7.5%	5.7%	4.5%			
Efficiency						
(variance)	2.9%	10.0%	0.1%		In Exc	el:
95%					17 3.44	1 - CONFIDENCE(1.0.05
interval					72 Inte	rval = CONFIDENCE(1-0.95, s, n)
lower	0.1792	0.1740	0.1737			<u> </u>
95%						
interval						
upper	0.2686	0.2665	0.2619	0.0894	*	α
Mean in interval						
ntervai 99%	YES	YES	YES			
interval					\	
lower	0 1651	0 1595	0 1598			
99%	0.1651	0.1595	0.1598			
interval					-	- interval size
upper	0.2826	0.2810	0.2757	0.1175		/
Mean in	0.2020	0.2010	0.2737	0.1173		/
interval	YES	YES	YES		/	Note that the higher the
90%		0			/	Note that the higher the
interval					/	confidence level
lower	0.1864	0.1815	0.1807		/	Confidence level
90%					1	the larger the interval
interval						the larger the litter var
upper	0.2614	0.2591	0.2548	0.0750		
Mean in						
interval	YES	YES	YES			3

Confidence Interval Estimation of the Mean

- □ Known population standard deviation.
- □ Unknown population standard deviation:
 - Large samples: sample standard deviation is a good estimate for population standard deviation. OK to use normal distribution.
 - Small samples and original variable is normally distributed: use t distribution with n-1 degrees of freedom.

33

Student's t distribution

 $t(v) \sim \frac{N(0,1)}{\sqrt{\chi^2(v)/v}}$

v: number of degrees of freedom.

 $\chi^2(v)$: chi-square distribution with v degrees of freedom. Equal to the sum of squares of v unit normal variates.

- the pdf of a t-variate is similar to that of a N(0,1).
- for v > 30 a t distribution can be approximated by N(0,1).

34

Confidence Interval (small samples)

- \Box For samples from a normal distribution $N(\mu,\sigma^2)$, $(\overline{X}-\mu)/(\sigma/\sqrt{n})$ has a N(0,1) distribution and $(n-1)s^2/\sigma^2$ has a chisquare distribution with n-1 degrees of freedom
- □ Thus, $(\overline{X} \mu)/\sqrt{s^2/n}$ has a t distribution with n-1 degrees of freedom

35

<u>Confidence Interval (small samples, normally distributed population)</u>

• 100 (1- α)% confidence interval for the population mean:

$$(\bar{x} - t_{[1-\alpha/2;n-1]} \frac{s}{\sqrt{n}}, \bar{x} + t_{[1-\alpha/2;n-1]} \frac{s}{\sqrt{n}})$$

 \overline{x} : sample mean

s: sample standard deviation

n: sample size

 $t_{[1-\alpha/2;n-1]}$: critical value of the *t* distribution with *n-1* degrees of freedom for an area of $\alpha/2$ for the upper tail.

How many measurements do we need for a desired interval width?

- $lue{}$ Width of interval inversely proportional to ${\it J}$ n
- □ Want to minimize number of measurements
- ☐ Find confidence interval for mean, such that:
 - > Pr(actual mean in interval) = (1α)

$$(c_1, c_2) = [(1 - e)\overline{x}, (1 + e)\overline{x}]$$

38

How many measurements?

$$(c_1, c_2) = (1 \mp e)\overline{x}$$

$$= \overline{x} \mp z_{1-\alpha/2} \frac{s}{\sqrt{n}}$$

$$z_{1-\alpha/2} \frac{s}{\sqrt{n}} = \overline{x}e$$

$$n = \left(\frac{z_{1-\alpha/2}s}{\overline{x}e}\right)^2$$

How many measurements?

- □ But n depends on knowing mean and standard deviation!
- Estimate s with small number of measurements
- □ Use this s to find n needed for desired interval width

How many measurements?

- □ Mean = 7.94 s
- □ Standard deviation = 2.14 s
- □ Want 90% confidence mean is within 7% of actual mean.

How many measurements?

- □ Mean = 7.94 s
- □ Standard deviation = 2.14 s
- □ Want 90% confidence mean is within 7% of actual mean.

42

- $\alpha = 0.90$
- \Box (1- α /2) = 0.95
- □ *Error* = ± 3.5%
- □ *e = 0.035*

41

How many measurements?

$$n = \left(\frac{z_{1-\alpha/2}S}{\overline{x}e}\right)^2 = \left(\frac{1.895(2.14)}{0.035(7.94)}\right) = 212.9$$

- □ 213 measurements
- \rightarrow 90% chance true mean is within ± 3.5% interval

<u>Confidence Interval Estimates for Proportions</u>

Confidence Interval for Proportions

- □ For categorical data:
 - E.g. file types

{html, html, gif, jpg, html, pdf, ps, html, pdf ...}

- > If n_1 of n observations are of type html, then the sample proportion of html files is $p = n_1/n$.
- lue The population proportion is π .
- \Box Goal: provide confidence interval for the population proportion π .

45

Confidence Interval for Proportions

- □ The sampling distribution of the proportion formed by computing p from all possible samples of size n from a population of size N with replacement tends to a normal with mean π and standard error $\sigma_p = \sqrt{\frac{\pi(1-\pi)}{n}}$.
- □ The normal distribution is being used to approximate the binomial. So, $n\pi \ge 10$

46

Confidence Interval for Proportions

$$(p-z_{1-\alpha/2}\sqrt{\frac{p(1-p)}{n}},p+z_{1-\alpha/2}\sqrt{\frac{p(1-p)}{n}})$$

p: sample proportion.

n: sample size

 $z_{1-\alpha/2}$: (1- $\alpha/2$)-quantile of a unit normal variate (N(0,1)).

Example 1

One thousand entries are selected from a Web log. Six hundred and fifty correspond to gif files. Find 90% and 95% confidence intervals for the proportion of files that are gif files.

Example 2

- □ How much time does processor spend in
- □ Interrupt every 10 ms
- □ Increment counters
 - > n = number of interrupts
 - > m = number of interrupts when PC within OS

Proportions

- How much time does processor spend in OS?
- □ Interrupt every 10 ms
- □ Increment counters
 - > n = number of interrupts
 - > m = number of interrupts when PC within OS
- □ Run for 1 minute
 - > n = 6000
 - > m = 658

Proportions

$$(c_1, c_2) = \overline{p} \mp z_{1-\alpha/2} \sqrt{\frac{\overline{p}(1-\overline{p})}{n}}$$
$$= 0.1097 \mp 1.96 \sqrt{\frac{0.1097(1-0.1097)}{6000}} = (0.1018, 0.1176)$$

- $\hfill \hfill \hfill$
- $\hfill \Box$ So 95% certain processor spends 10.2-11.8% of its time in OS

61

49

Number of measurements for proportions

$$\begin{split} (1-e)\overline{p} &= \overline{p} - z_{1-\alpha/2} \sqrt{\frac{\overline{p}(1-\overline{p})}{n}} \\ e\overline{p} &= z_{1-\alpha/2} \sqrt{\frac{\overline{p}(1-\overline{p})}{n}} \\ n &= \frac{z_{1-\alpha/2}^2 \overline{p}(1-\overline{p})}{(e\overline{p})^2} \end{split}$$

52

Number of measurements for proportions

- ☐ How long to run OS experiment?
- □ Want 95% confidence
- □ ± 0.5%

Number of measurements for proportions

- ☐ How long to run OS experiment?
- □ Want 95% confidence
- □ ± 0.5%
- □ *e = 0.005*
- □ *p* = 0.1097

53

Number of measurements for proportions

$$n = \frac{z_{1-\alpha/2}^2 \overline{p}(1-\overline{p})}{(e\overline{p})^2}$$

$$= \frac{(1.960)^2 (0.1097)(1-0.1097)}{\left[0.005(0.1097)\right]^2}$$

$$= 1,247,102$$
• 10 ms interrupts

 \rightarrow 3.46 hours

Confidence Interval Estimation for **Variances**

Confidence Interval for the Variance

- □ If the original variable is normally distributed then the chi-square distribution can be used to develop a confidence interval estimate of the population variance.
- \Box The $(1-\alpha)\%$ confidence interval for σ^2 is

$$\frac{(n-1)s^2}{\chi_U^2} \leq \sigma^2 \leq \frac{(n-1)s^2}{\chi_L^2}$$

 χ_L^2 : lower critical value of χ^2 χ_U^2 : upper critical value of χ^2

57

95% confidence interval for the population variance for a sample of size 100 for a N(3,2) population.

The population variance (4 in this case) is in the interval (3.6343, 6.362) with 95% confidence.

59

Confidence Interval for the Variance

If the population is not normally distributed, the confidence interval, especially for small samples, is not very accurate.

Key Assumption

- Measurement errors are Normally distributed.
- □ Is this true for most measurements on real computer systems?

61

Key Assumption

- □ Saved by the Central Limit Theorem
 Sum of a "large number" of values from any
 distribution will be Normally (Gaussian)
 distributed.
- □ What is a "large number?"
 - Typically assumed to be >≈ 6 or 7.

62

Normalizing data for confidence intervals

- □ If the underlying distribution of the data being measured is not normal, then the data must be *normalized*
 - > Find the arithmetic mean of four or more randomly selected measurements
 - > Find confidence intervals for the means of these average values
 - We can no longer obtain a confidence interval for the individual values
 - o Variance for the aggregated events tends to be smaller than the variance of the individual events

63

Summary

- □ Use statistics to
 - > Deal with noisy measurements
 - > Estimate the true value from sample data
- □ Errors in measurements are due to:
 - > Accuracy, precision, resolution of tools
 - > Other sources of noise
 - → Systematic, random errors

Summary (cont'd)

- Use confidence intervals to quantify precision
- Confidence intervals for
 - > Mean of *n* samples
 - ProportionsVariance
- □ Confidence level
 - Pr(population parameter within computed interval)
- □ Compute number of measurements needed for desired interval width