
1/28/20

1

Support vector machines
• When the data is linearly separable, which of the

many possible solutions should we prefer?
• SVM criterion: maximize the margin, or distance

between the hyperplane and the closest training
example

Slides courtesy L. Lazebnik (Univ. of Illinois CS498) and others

Support vector machines
• When the data is linearly separable, which of the

many possible solutions should we prefer?
• SVM criterion: maximize the margin, or distance

between the hyperplane and the closest training
example

Margin

Support
vectors

1/28/20

2

Finding the maximum margin hyperplane
• Define the margin as the distance between

the hyperplane !"# + % = 0 and the closest
point #(∗

• Distance between point and hyperplane is
given by |+

,-./|
+

• Assuming the data is linearly separable, we
can fix the scale of ! and % so that
0(∗(!"#(∗ + %) = 1 and 0((!"#(+ %) ≥ 1 for
all other points

• Then the margin is 5
+

Finding the maximum margin hyperplane
• Find separating hyperplane that maximizes

the distance to the closest training example

MarginSupport vectors

Positive examples: !"# + % ≥ 1
Negative examples: !"# + % ≤ −1

For support vectors, !"# + % = ±1

The margin is 1/ !

1/28/20

3

Finding the maximum margin hyperplane
• Maximize margin 1/ # while correctly

classifying all training data:
$% positive: #&'% +) ≥ 1
$% negative: #&'% +) ≤ −1

• Equivalent problem:

min0,2
1
2 # 4 s. t. $%(#&'% +)) ≥ 1 ∀;

• This is a quadratic objective with linear constraints:
convex optimization, global optimum can be found
using well-studied methods

“Soft margin” formulation
• What about non-separable data?
• And even for separable data, we may prefer a

larger margin with a few constraints violated

Source

http://www.robots.ox.ac.uk/~az/lectures/ml/lect2.pdf

1/28/20

4

“Soft margin” formulation
• What about non-separable data?
• And even for separable data, we may prefer a

larger margin with a few constraints violated

Source

“Soft margin” formulation

+1

-1
0

• Penalize margin violations using hinge loss:

min$,&
'
2) * +,

-./

0
max[0,1 −7-()9:- + ;)]

7-()9:- + ;)
Incorrectly
classified

Correctly
classified

(1,0)

(0,1)

Hinge loss

http://www.robots.ox.ac.uk/~az/lectures/ml/lect2.pdf

1/28/20

5

“Soft margin” formulation

+1

-1
0

• Penalize margin violations using hinge loss:

min$,&
'
2) * +,

-./

0
max[0,1 −7-()9:- + ;)]

7-()9:- + ;)
Incorrectly
classified

Correctly
classified

(1,0)

(0,1)

Hinge loss

Recall hinge loss used by the
perceptron update algorithm!

• Penalize margin violations using hinge loss:

min$,&
'
2) * +,

-./

0
max[0,1 −7-()9:- + ;)]

“Soft margin” formulation

Maximize margin –
a.k.a. regularization

Minimize misclassification loss

1/28/20

6

SGD optimization (omitting bias)

! ", $%, &% = (
)* ") + max[0, 1 − &%"3$%]

∇! ", $%, &% = (
* " − 6[&%"3$% < 1]&%$%

Recall: 8
89 max 0, : = 6[: > 0]

SGD optimization (omitting bias)

! ", $%, &% = (
)* ") + max[0, 1 − &%"3$%]

∇! ", $%, &% = (
* " − 6[&%"3$% < 1]&%$%

• SGD update:
• If &%"3$% < 1: " ← " + 9 &%$% − (

*"

• Otherwise: " ← " −9 (*"

S. Shalev-Schwartz et al., Pegasos: Primal Estimated sub-GrAdient
SOlver for SVM, Mathematical Programming, 2011

http://ttic.uchicago.edu/~nati/Publications/PegasosMPB.pdf

1/28/20

7

SVM vs. perceptron

• SVM loss: ! ", $%, &% = (
)* ") + max[0, 1 − &%"3$%]

• SVM update:
• If &%"3$% < 1: " ← " + 7 &%$% − (

*"

• Otherwise: " ← " −7 (*"

• Perceptron loss: ! ", $%, &% = max[0, −&%"3$%]
• Perceptron update:

• If &%"3$% < 0: " ← " + 7 &%$%
• Otherwise: do nothing

• What are the differences?

Dual SVM formulation
• SVM objective:

min$,&
'
2) * +,

-./

0
max[0,1 −7-()9:- + ;)]

• Directly solving for) using SGD is called the
primal approach

• Instead, SVM optimization can be formulated
to learn a classifier in the form

> : =,
-./

0
@-7-:-9: + ;

by solving a dual optimization problem over @-

1/28/20

8

Dual SVM formulation

! " =$
%&'

(
)%*%"%+" + -, / =$

%&'

(
)%*%"%

/ 0 = $
%
)%*%"% $

1
)1*1"1 =$

%,1
)%)1*%*1 "%+"1

• The dual problem (given without derivation):
max56$%

)% −
1
2$%,1

)%)1*%*1 "%+"1

s. t . 0 ≤)% ≤
1
? ,$%

)%*% = 0

• Important properties of the dual:
• At the optimum,)% are nonzero only for support vectors
• Feature vectors appear only inside dot products "%+"1:

this enables nonlinear SVMs via kernel functions

Φ: x→ φ(x)

Nonlinear SVMs
• General idea: the original input space can

always be mapped to some higher-dimensional
feature space where the training set is separable

Slide credit: Andrew Moore

1/28/20

9

Nonlinear SVMs
• The kernel trick: instead of explicitly

computing the lifting transformation !(#),
define a kernel function

% #, #' = ! #)!(#′)
• To be valid, the kernel function must satisfy

Mercer’s condition

• This gives a nonlinear decision boundary in
the original feature space:

+ # =,
-./

0
1-2-! #-)!(#) + 4

=,
-./

0
1-2-%(#-, #) + 4

• Non-separable data in 1D:

• Apply mapping ! " = ", "% :

! " &! "' = ((", "') = ""' + "%"′%

0 x

0 x

x2

Example

1/28/20

10

Kernel example 1: Polynomial
• Polynomial kernel with degree ! and

constant ":
$, $& = ($)$& + "),

• What this looks like for ! = 2:
$ = ., / , $& = .&, /&
$, $& = (..& + //& + ")0

= .0.′0 + /0/′0 + 2..&//& + "..& + "//& + "0

2 $ = (.0, /0, 2./, "., "/, ")

• Thus, the explicit feature transformation
consists of all polynomial combinations of
individual dimensions of degree up to !

Kernel example 1: Polynomial

1/28/20

11

Kernel example 2: Gaussian
• Gaussian kernel with bandwith !:

" #, #% = exp − 1
!, # − #′ ,

• Fun fact: the corresponding mapping . # is
infinite-dimensional!

||x – x’||

K(x, x’)

Kernel example 2: Gaussian
• Gaussian kernel with bandwith !:

" #, #% = exp − 1
!, # − #′ ,

• The predictor . # = ∑0123 4050" #0, # + 7 is a
sum of “bumps” centered on support vectors

SV’s

It’s also called a
Radial Basis
Function (RBF)
kernel

1/28/20

12

Kernel example 2: Gaussian
• Gaussian kernel with bandwith !:

" #, #% = exp − 1
!, # − #′ ,

• The predictor . # = ∑0123 4050" #0, # + 7 is a
sum of “bumps” centered on support vectors

• How does the value of ! affect the behavior of
the predictor?
• What if ! is close to zero?
• What if ! is very large?

SVM: Pros and cons
• Pros

• Margin maximization and kernel trick are elegant, amenable to
convex optimization and theoretical analysis

• SVM loss gives very good accuracy in practice
• Linear SVMs can scale to large datasets
• Kernel SVMs are flexible, can be used with problem-specific kernels
• Perfect “off-the-shelf” classifier, many packages are available

• Cons
• Kernel SVM training does not scale to large datasets: memory cost

is quadratic and computation cost even worse
• “Shallow” method: predictor is a “flat” combination of kernel

functions of support vectors and test example, no explicit feature
representations are learned

1/28/20

13

Training linear classifiers
• Given: i.i.d. training data !", $" , % = 1,… ,) ,

$" ∈ {−1,1}

• Prediction function: ./(!) = sgn(56!)

• Classification with bias, i.e. ./ ! = sgn(56! + 8),
can be reduced to the case w/o bias by letting
59 = 5; 8 and !9 = [!; 1]

• Find parameters ! that minimize the sum of a
regularization loss and a data loss:

"# ! = %& ! + 1
)*
+,-

.
/(!, 2+, 3+)

• Optimize by stochastic gradient descent (SGD):
At each iteration, sample a single data point
2+, 3+ and take a step in the direction opposite

the gradient of the loss for that point:

! ← ! − 7 ∇9
%
) & ! + / !, 2+, 3+

General recipe

empirical loss data lossregularization

1/28/20

14

Model 1: Linear regression
• Regularization: none
• Data loss: ! ", $%, &% = (")$% − &%),
• Interpretation: negative log likelihood

assuming &|$ is normally distributed with
mean ")$

• Pros: convex loss, easy to optimize
• Cons: conceptually inappropriate for

classification, sensitive to outliers

Model 2: Logistic regression
• Posterior label probability or confidence is

given by the sigmoid function:

!" # = 1 & = ' ()& = *
*+,-.(0"12)

!" # = −1 & = 1 − ' ()& = ' −()&

1/28/20

15

Model 2: Logistic regression
• Regularization: none
• Data loss:
! ", $%, &% = −log ,- &% $% = −log . &%"/$%

• Interpretation: negative log likelihood
assuming Gaussian class-conditional
distributions , $ & = 1

Model 3: Perceptron training algorithm
• Regularization: none
• Data loss: hinge loss

! ", $%, &% = max 0,−&%"-$%

&%"-$%

Incorrectly
classified

Correctly
classified

1/28/20

16

Model 4: Support vector machines
• Regularization: ! " = $

% " %

• Data loss: hinge loss

& ", (), *) = max 0, 1 − *)"1()

*)"1()

Incorrectly
classified

Correctly
classified

(1,0)

(0,1)

Perceptron
hinge loss

SVM hinge
loss

Model 4: Support vector machines
• Regularization: ! " = $

% " %

• Data loss: hinge loss

& ", (), *) = max 0, 1 − *)"1()

• Interpretation: maximize margin while
minimizing constraint violations

1/28/20

17

SGD updates
• Linear regression:

! ← ! + $ (&' − !)*') *'

• Logistic regression:
! ← ! + $, −&'!)*' &'*'

• Perceptron:
! ← ! + $ -[&'!)*' < 0] &'*'

• SVM:

! ← 1 − $34 ! + $ -[&'!)*' < 1] &'*'

Supervised learning outline revisited
1. Collect data and labels
2. Specify model: select model type, loss

function, hyperparameters
3. Train model: find the parameters of the

model that minimize the empirical loss on
the training data

• What is the right methodology for step 2?

1/28/20

18

Hyperparameters
• ! in !-nearest-neighbor

• What if ! is too large?
• What if ! is too small?

Hyperparameters
• Regularization constant ! in SVM optimization

min%,'
!
2) * +,

-./

0
max[0,1 −7-()9:- + ;)]

• What if ! is too large?
• What if ! is too small?

1/28/20

19

Hyperparameters
• Regularization constant ! in SVM optimization
• Recall: tradeoff between margin and constraint

violations

Source

Hyperparameters
• Regularization constant ! in SVM optimization
• Recall: tradeoff between margin and constraint

violations

Source

http://www.robots.ox.ac.uk/~az/lectures/ml/lect2.pdf
http://www.robots.ox.ac.uk/~az/lectures/ml/lect2.pdf

1/28/20

20

Hyperparameters in multi-layer networks
• Number of layers, number of units per layer

Source: Stanford 231n

Hyperparameters in multi-layer networks
• Number of layers, number of units per layer

Source: Stanford 231n

Number of hidden units in a two-layer network

http://cs231n.github.io/neural-networks-1/
http://cs231n.github.io/neural-networks-1/

1/28/20

21

Hyperparameters in multi-layer networks
• Number of layers, number of units per layer
• Regularization

Source: Stanford 231n

Hyperparameters in multi-layer networks
• Number of layers, number of units per layer
• Regularization
• SGD settings: learning rate schedule,

number of epochs, minibatch size, etc.

http://cs231n.github.io/neural-networks-1/

1/28/20

22

Hyperparameters: Summary

• Hyperparameter types
• K in K-NN

• In SVMs: regularization constant, kernel type and
constants

• In neural networks: number of layers, number of
units per layer, regularization

• SGD settings: learning rate schedule, number of
epochs, minibatch size, etc.

• We can think of our hyperparameter choices
as defining the “complexity” of the model and
controlling its generalization ability

Bias-variance tradeoff
• Generalization (test) error of learning algorithms has two

main components:
• Bias: error due to simplifying model assumptions
• Variance: error due to randomness of training set

• The tradeoff between these components is determined
by the complexity of the model and the amount of
training data

High bias, low variance Low bias, high variance

Figure source

http://www.holehouse.org/mlclass/07_Regularization.html

1/28/20

23

Underfitting and overfitting
• Underfitting: training and test error are both high

• Model does an equally poor job on the training and the test set
• The model is too “simple” to represent the data or the model

is not trained well
• Overfitting: Training error is low but test error is high

• Model fits irrelevant characteristics (noise) in the training data
• Model is too complex or amount of training data is insufficient

Underfitting OverfittingGood tradeoff

Figure source

Hyperparameter search in practice

• Iterate for a range of
hyperparameter choices:
• Learn parameters on the

training data
• Measure accuracy on the held-

out or validation data
• Finally, measure accuracy on

the test data
• Crucial: do not peek at test

set during hyperparameter
search!

http://www.holehouse.org/mlclass/07_Regularization.html

1/28/20

24

Hyperparameter search in practice
• Variant: K-fold cross-validation

• Partition the data into K groups
• In each run, select one of the groups as the

validation set

What’s the big deal?

