Support vector machines

* When the data is linearly separable, which of the
many possible solutions should we prefer?
» SVM criterion: maximize the margin, or distance

between the hyperplane and the closest training
example

Slides courtesy L. Lazebnik (Univ. of lllinois CS4@8) and others

Support vector machines

« When the data is linearly separable, which of the
many possible solutions should we prefer?
« SVM criterion: maximize the margin, or distance

between the hyperplane and the closest training
example

Margin ()

Support
vectors
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Finding the maximum margin hyperplane

+ Define the margin as the distance between
the hyperplane w’x + b = 0 and the closest
point x;

» Distance between point and hyperplane is

[wTx+b|

given by

lIwl
+ Assuming the data is linearly separable, we
can fix the scale of w and b so that
yiwTx +b)=1and y;(w'x; + b) = 1 for
all other points
1

Iwl|

* Then the margin is

Finding the maximum margin hyperplane

* Find separating hyperplane that maximizes
the distance to the closest training example

Positive examples: wix + b > 1
Negative examples: wix + b < —1

For support vectors, w'x + b = +1

The margin is 1/[|w/||
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Finding the maximum margin hyperplane

+ Maximize margin 1/||lw|| while correctly
classifying all training data:

y; positive: wix; + b =1
v; hegative: WTxi +b < -1

« Equivalent problem:
minwlbi wll? s.t. y;wlx;+b)=>1 Vi

* This is a quadratic objective with linear constraints:
convex optimization, global optimum can be found
using well-studied methods

“Soft margin” formulation

What about non-separable data?

And even for separable data, we may prefer a
larger margin with a few constraints violated
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“Soft margin” formulation

What about non-separable data?

And even for separable data, we may prefer a

larger margin with a few constraints violated
|
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“Soft margin” formulation

Penalize margin violations using hinge loss:

n
A
min,, , > lw||? + Z max[0,1 —y;(wTx; + b)]
i=1

Hinge loss

(0,1

Incorrectly (1,0) _ Correctly
classified ™

T ¥ classified
yi(w'x; + b)
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“Soft margin” formulation

Penalize margin violations using hinge loss:

n
A
miny, , 5wl + ) max{0,1 - y,(wx; + b)]
i=1

Hinge loss

Incorrectly (1,0) _ Correctly

classified ¥ classified
yi(w"x; + b)

Recall hinge loss used by the
perceptron update algorithm!

“Soft margin” formulation

Penalize margin violations using hinge loss:

n
A
min,, , > lw||? + Z max[0,1 —y;(wTx; + b)]
i=1

I_'_l ! T
Maximize margin — Minimize misclassification loss
a.k.a. reqularization
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SGD optimization (omitting bias)

2
Z(W; xi; yl) - z ||W”2 + maX[O, 1 - inTxi]
A
VIi(w,x;,y;) = —w - Ily,whx; < 1]y;x;

Recall: ;—amaX(O, a) = l[a > 0]

SGD optimization (omitting bias)

A
l(w,x;,y;) = o Iwll? + max[0,1 — y;w"x;]

A
VIi(w, x;,y;) = ~w - Ily,w”x; < 1]yx;

» SGD update:
s fywlxy, <l:wew+n (yixl- —%w)

* Otherwise: w «w —n %W

S. Shalev-Schwartz et al., Pegasos: Primal Estimated sub-GrAdient
SOlver for SVM, Mathematical Programming, 2011
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http://ttic.uchicago.edu/~nati/Publications/PegasosMPB.pdf

SVM vs. perceptron

SVM loss: [(w, x;, y;) = % lw||? + max[0,1 — y;wTx;]
SVM update:
e fywix,<l:wew+n (yl-xl- —%w)

+ Otherwise: w «w —1n %W

Perceptron loss: [(w, x;,y;) = max[0, —y,w’ x;]

Perceptron update:
c fywlx; <0:w e« w+nyx;
+ Otherwise: do nothing

What are the differences?

Dual SVM formulation
+ SVM objective:

n
A
min,, , §||W||2 + Z max[0,1 —y;(wTx; + b)]
i=1

 Directly solving for w using SGD is called the
primal approach

* Instead, SVM optimization can be formulated

to learn a classifier in the form
n

FO) =) aryilx+b
i=1
by solving a dual optimization problem over «;
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Dual SVM formulation

n

FG) =) ayixx+b,

n
w = Z A yiXi
i=1 =1
2 _ _ T
lwl|* = (Z%Yi%‘) (Z _ijijj> = z Q0GYYj X X
L ] L]

The dual problem (given without derivation):
1
maxai Z a; — Ez 'aiajyiyj XiTX}'
i lL,j
1
s.t.0 < a; < —,Z aiyi = 0
Y RVAST,

Important properties of the dual:
* At the optimum, «; are nonzero only for support vectors

» Feature vectors appear only inside dot products xl-Tx]-:
this enables nonlinear SVMs via kernel functions

Nonlinear SVMs

» General idea: the original input space can
always be mapped to some higher-dimensional
feature space where the training set is separable
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Slide credit: Andrew Moore
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Nonlinear SVMs

* The kernel trick: instead of explicitly
computing the lifting transformation ¢ (x),
define a kernel function

K(x,x") = o) o)
+ To be valid, the kernel function must satisfy
Mercer’s condition

» This gives a nonlinear decision boundary in

the original feature space:
n

F0) =) @@ o) + b
i=1

= Z a;yiK(x;,x)+ b

i=1

Example

* Non-separable data in 1D:

o o
g = Lo an g > >

0 X

* Apply mapping ¢(x) = (x,x*):

() Tp(x") = K(x,x") = xx' + x%x'?
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Kernel example 1: Polynomial

Polynomial kernel with degree d and
constant c:
K(x,x") = (xTx" + ¢)“
What this looks like for d = 2:
x = (u,v), x'=,v")
K(x,x") = (uu' + vv' + ¢)?
= u?u'? + v?v'"?

¢ (x) = (u?,v%,V2uv,Jcu, cv, /o)

Thus, the explicit feature transformation
consists of all polynomial combinations of
individual dimensions of degree up to d

+ 2uu'vv' + cuu’ + cvv’ + c?

Kernel example 1: Polynomial

5 -1 -05 0 05 1 15 2 ds = =5 0 05 1 15 2

linear 2"¢ order polynomial

S5 1 05 0 05 1 15 2 ds = =5 o o5 i 15 2

4" order polynomial 8" order polynomial
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Kernel example 2: Gaussian

» Gaussian kernel with bandwith o

’ 1 "2
KGox') = exp (= llx = x11?)

* Fun fact: the corresponding mapping ¢ (x) is

infinite-dimensional!

K(x, xX°)

[Ix = x7]

Kernel example 2: Gaussian

« Gaussian kernel with bandwith o

! 1 2
KGox') = exp (== llx = X117

« The predictor f(x) = )", ;v;K(x;,x) + bisa

sum of “bumps” centered on support vectors

Q°7! 0 077
(-]
08 ooo °
SV's o ©.00
4 ge ",
3 2 ° ® oog o °° 4
° It's also called a
Radial Basis

Function (RBF)
kernel

o o 9
00 °ue7°°4
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Kernel example 2: Gaussian

» Gaussian kernel with bandwith o
1
KGox') = exp (= =l — %I
« The predictor f(x) = )", a;v;K(x;,x) + bisa
sum of “bumps” centered on support vectors
« How does the value of ¢ affect the behavior of
the predictor?

* Whatif o is close to zero?
 Whatif o is very large?

SVM: Pros and cons

Pros

+ Margin maximization and kernel trick are elegant, amenable to
convex optimization and theoretical analysis

+ SVM loss gives very good accuracy in practice

+ Linear SVMs can scale to large datasets

+ Kernel SVMs are flexible, can be used with problem-specific kernels
+ Perfect “off-the-shelf’ classifier, many packages are available

Cons

+ Kernel SVM training does not scale to large datasets: memory cost
is quadratic and computation cost even worse

+ “Shallow” method: predictor is a “flat” combination of kernel
functions of support vectors and test example, no explicit feature
representations are learned

1/28/20
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Training linear classifiers

Given: i.i.d. training data {(x;,y;),i = 1, ..., n},
yi € {-1,1}

Prediction function: f;, (x) = sgn(w”x)

Classification with bias, i.e. f;,(x) = sgn(w'x + b),
can be reduced to the case w/o bias by letting
w' = [w;b] and x" = [x; 1]

General recipe

Find parameters w that minimize the sum of a
regularization loss and a data loss:

n

X 1
Lw) = JARWw) + EZZ(W,xi,yi)

empirical loss regularization i=1 dataloss

Optimize by stochastic gradient descent (SGD):
At each iteration, sample a single data point
(x;,y;) and take a step in the direction opposite
the gradient of the loss for that point:

A
wew-—nV, ER(W) + I(w, x;, ;)

1/28/20
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Model 1: Linear regression

* Regularization: none
« Dataloss: [(w,x;,y;) = WTx; — y;)?
» Interpretation: negative log likelihood

assuming y|x is normally distributed with
mean w’ x

* Pros: convex loss, easy to optimize

» Cons: conceptually inappropriate for
classification, sensitive to outliers

Model 2: Logistic regression

» Posterior label probability or confidence is
given by the sigmoid function:
Py =1x) = o(w'x) = ——

1+exp(-wTx)

P,(y=—-1lx) =1—-0Ww'x) = o(—wTx)

sig(t
10 |58

0.8

0.6

1/28/20

14



Model 2: Logistic regression

* Regularization: none
« Data loss:

l(w, x;,y;) = —log B, (y;|x;) = —loga(y;w" x;)
* Interpretation: negative log likelihood

assuming Gaussian class-conditional
distributions P(x|y = 1)

Model 3: Perceptron training algorithm

* Regularization: none
+ Data loss: hinge loss

l(W, Xi» yl) = maX(Or _inTxi)

Incorrectly . Correctly

classified n ~  classified
Viw’ X

1/28/20

15



Model 4: Support vector machines

« Regularization: R(w) = % lw]|?

+ Data loss: hinge loss

L(w,x;,y;) = max(0,1 — y;wTx;)

SVM hinge
loss
Perceptron A
hinge loss
\
\
\
\
\ (0,1)
\
\
Incorrectly S (1,0) _ Correctly
classified o classified

Viw’™ X

Model 4: Support vector machines

* Regularization: R(w) = % lw]|?

+ Data loss: hinge loss
I(w,x;,y;) = max(0,1 — y;wTx;)

* Interpretation: maximize margin while
minimizing constraint violations

1/28/20
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SGD updates

* Linear regression:
wew+n (- wix)x

* Logistic regression:
w e w+no(=yw'x;) yix;

* Perceptron:
w e w+nlI[y;whx; <0]yx;

« SVM:
nA -
w « 1——n w+nlyw x; <1]y;ix;

Supervised learning outline revisited

1. Collect data and labels

2. Specify model: select model type, loss
function, hyperparameters

3. Train model: find the parameters of the
model that minimize the empirical loss on
the training data

*  What is the right methodology for step 27?

1/28/20

17



Hyperparameters

* K in K-nearest-neighbor
+ Whatif K is too large?
*+ Whatif K is too small?

Hyperparameters

Regularization constant 1 in SVM optimization

n
A
min,, , Ellwll2 + Z max[0,1 —y;(wTx; + b)]
i=1

* Whatif 1is too large?
* Whatif 1 is too small?

1/28/20
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Hyperparameters

Regularization constant /1 in SVM optimization
Recall: tradeoff between margin and constraint

violations
. \.\\\\\ A A
. . .\\\\ A A A

® o . A AAA

. . N \\
. . \\\ A A A A

() \

o A AA
\\\\\\ A Source
Hyperparameters

Regularization constant 1 in SVM optimization

Recall: tradeoff between margin and constraint
violations

°* o A A
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Hyperparameters in multi-layer networks

* Number of layers, number of units per layer

X
o
o;o

IS
I ‘

\“’ tput layer

hidden layer 1 hidden layer 2

.
A
‘;

4
\
X

)

input layer

Source: Stanford 231n

Hyperparameters in multi-layer networks

* Number of layers, number of units per layer

3 hidden neurons 6 hidden neurons 20 hidden neurons

Number of hidden units in a two-layer network

Source: Stanford 231n

1/28/20
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Hyperparameters in multi-layer networks

Number of layers, number of units per layer
Regularization

Source: Stanford 231n

Hyperparameters in multi-layer networks

Number of layers, number of units per layer
Regularization

SGD settings: learning rate schedule,
number of epochs, minibatch size, etc.

1/28/20
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Hyperparameters: Summary

* Hyperparameter types

* Kin K-NN
* In SVMs: regularization constant, kernel type and
constants

* In neural networks: number of layers, number of
units per layer, regularization

+ SGD settings: learning rate schedule, number of
epochs, minibatch size, etc.

*  We can think of our hyperparameter choices
as defining the “complexity” of the model and
controlling its generalization ability

Bias-variance tradeoff

» Generalization (test) error of learning algorithms has two
main components:
» Bias: error due to simplifying model assumptions
» Variance: error due to randomness of training set
» The tradeoff between these components is determined

by the complexity of the model and the amount of
training data

High bias, low variance Low bias, high variance

Figure source
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Underfitting and overfitting

* Underfitting: training and test error are both high
* Model does an equally poor job on the training and the test set

* The model is too “simple” to represent the data or the model
is not trained well

» Overfitting: Training error is low but test error is high
» Model fits irrelevant characteristics (noise) in the training data
* Model is too complex or amount of training data is insufficient

Underfitting Good tradeoff Overfitting

Figure source

Hyperparameter search in practice

 lterate for a range of
hyperparameter choices:

* Learn parameters on the Training
training data Data

* Measure accuracy on the held-
out or validation data

* Finally, measure accuracy on

the test data reld-out
* Crucial: do not peek at test

set during hyperparameter Test

search! Data
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Hyperparameter search in practice

» Variant: K-fold cross-validation
« Partition the data into K groups

* In each run, select one of the groups as the
validation set

run 1

run 2

run 3

run 4

What’s the big deal?

Baidu admits cheating in international
supercomputer competition

Baidu recently apologised for violating the rules of an international supercomputer test in
May, when the Chinese search engine giant claimed to beat both Google and Microsoft on
the ImageNet image-recognition test.

l By Cyrus Lee | June 10, 2015 -- 00:15 GMT (17:15 PDT) | Topic: China
TECHNOLOGY al)t Nl.‘\ll mork ai]nl‘ﬁ
Computer Scientists Are Astir After Baidu Team Is Barred From A.lL

Competition

By JOHN MARKOFF JUNE 3, 2015 E}ﬂgmdggp
Baidu caught gaming recent . -
supercomputer performance test m

;& Andrew Tarantola | @terro
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