

SGD optimization (omitting bias)

$$l(w, x_i, y_i) = \frac{\lambda}{2n} ||w||^2 + \max[0, 1 - y_i w^T x_i]$$

$$\nabla l(w, x_i, y_i) = \frac{\lambda}{n} w - \mathbb{I}[y_i w^T x_i < 1] y_i x_i$$

Recall: $\frac{\partial}{\partial a} \max(0, a) = \mathbb{I}[a > 0]$

SVM vs. perceptron

- SVM loss: $l(w, x_i, y_i) = \frac{\lambda}{2n} ||w||^2 + \max[0, 1 y_i w^T x_i]$
- SVM update:
 - If $y_i w^T x_i < 1$: $w \leftarrow w + \eta \left(y_i x_i \frac{\lambda}{n} w \right)$

• Otherwise:
$$w \leftarrow w - \eta \frac{\lambda}{n} w$$

- Perceptron loss: $l(w, x_i, y_i) = \max[0, -y_i w^T x_i]$
- · Perceptron update:
 - If $y_i w^T x_i < 0$: $w \leftarrow w + \eta y_i x_i$
 - Otherwise: do nothing
- What are the differences?

Kernel example 1: Polynomial

• Polynomial kernel with degree *d* and constant *c*:

 $K(x, x') = (x^T x' + c)^d$

• What this looks like for d = 2: $x = (u, v), \quad x' = (u', v')$ $K(x, x') = (uu' + vv' + c)^2$ $= u^2 u'^2 + v^2 v'^2 + 2uu'vv' + cuu' + cvv' + c^2$

 $\varphi(x) = (u^2, v^2, \sqrt{2}uv, \sqrt{c}u, \sqrt{c}v, \sqrt{c})$

 Thus, the explicit feature transformation consists of all polynomial combinations of individual dimensions of degree up to d

Kernel example 2: Gaussian

• Gaussian kernel with bandwith σ :

$$K(x, x') = \exp\left(-\frac{1}{\sigma^2}||x - x'||^2\right)$$

- The predictor $f(x) = \sum_{i=1}^{n} \alpha_i y_i K(x_i, x) + b$ is a sum of "bumps" centered on support vectors
- How does the value of σ affect the behavior of the predictor?
 - What if σ is close to zero?
 - What if *σ* is very large?

SVM: Pros and cons

- Pros
 - Margin maximization and kernel trick are elegant, amenable to convex optimization and theoretical analysis
 - SVM loss gives very good accuracy in practice
 - Linear SVMs can scale to large datasets
 - Kernel SVMs are flexible, can be used with problem-specific kernels
 - Perfect "off-the-shelf" classifier, many packages are available

Cons

- Kernel SVM training does not scale to large datasets: memory cost is quadratic and computation cost even worse
- "Shallow" method: predictor is a "flat" combination of kernel functions of support vectors and test example, no explicit feature representations are learned

Training linear classifiers

- Given: i.i.d. training data $\{(x_i, y_i), i = 1, ..., n\}, y_i \in \{-1, 1\}$
- Prediction function: $f_w(x) = \operatorname{sgn}(w^T x)$
- Classification with *bias*, i.e. $f_w(x) = \operatorname{sgn}(w^T x + b)$, can be reduced to the case w/o bias by letting w' = [w; b] and x' = [x; 1]

SGD updates

- Linear regression: $w \leftarrow w + \eta (y_i - w^T x_i) x_i$
- Logistic regression: $w \leftarrow w + \eta \sigma(-y_i w^T x_i) y_i x_i$
- Perceptron: $w \leftarrow w + \eta \mathbb{I}[y_i w^T x_i < 0] y_i x_i$
 - SVM: $w \leftarrow \left(1 - \frac{\eta \lambda}{n}\right) w + \eta \mathbb{I}[y_i w^T x_i < 1] y_i x_i$

Hyperparameters: Summary

- Hyperparameter types
 - K in K-NN
 - In SVMs: regularization constant, kernel type and constants
 - In neural networks: number of layers, number of units per layer, regularization
 - SGD settings: learning rate schedule, number of epochs, minibatch size, etc.
- We can think of our hyperparameter choices as defining the "complexity" of the model and controlling its generalization ability

