Multi-class classification

One-vs-all classification

- Let $y \in\{1, \ldots, C\}$
- Learn C scoring functions $f_{1}, f_{2}, \ldots, f_{C}$
- Classify x to class $\hat{y}=\operatorname{argmax}_{c} f_{c}(x)$
- Let's start with multi-class perceptrons:

$$
f_{c}(x)=w_{c}^{T} x
$$

Multi-class perceptrons

- Multi-class perceptrons: $f_{c}(x)=w_{c}^{T} x$
- Let W be the matrix with rows w_{c}
- What loss should we use for multi-class classification?

Multi-class perceptrons

- Multi-class perceptrons: $f_{c}(x)=w_{c}^{T} x$
- Let W be the matrix with rows w_{c}
- What loss should we use for multi-class classification?
- For $\left(x_{i}, y_{i}\right)$, let the loss be the sum of hinge losses associated with predictions for all incorrect classes:

$$
l\left(W, x_{i}, y_{i}\right)=\sum_{c \neq y_{i}} \max \left[0, w_{c}^{T} x_{i}-w_{y_{i}}^{T} x_{i}\right]
$$

Multi-class perceptrons

$$
l\left(W, x_{i}, y_{i}\right)=\sum_{c \neq y_{i}} \max \left[0, w_{c}^{T} x_{i}-w_{y_{i}}^{T} x_{i}\right]
$$

- Gradient w.r.t. $w_{y_{i}}$:

$$
\begin{gathered}
\quad-\sum_{c \neq y_{i}} \mathbb{I}\left[w_{c}^{T} x_{i}>w_{y_{i}}^{T} x_{i}\right] x_{i} \\
\text { Recall: } \frac{\partial}{\partial a} \max (0, a)=\mathbb{I}[a>0]
\end{gathered}
$$

Multi-class perceptrons

$$
l\left(W, x_{i}, y_{i}\right)=\sum_{c \neq y_{i}} \max \left[0, w_{c}^{T} x_{i}-w_{y_{i}}^{T} x_{i}\right]
$$

- Gradient w.r.t. $w_{y_{i}}$:

$$
-\sum_{c \neq y_{i}} \mathbb{I}\left[w_{c}^{T} x_{i}>w_{y_{i}}^{T} x_{i}\right] x_{i}
$$

- Gradient w.r.t. $w_{c}, c \neq y_{i}$:

$$
\mathbb{I}\left[w_{c}^{T} x_{i}>w_{y_{i}}^{T} x_{i}\right] x_{i}
$$

- Update rule: for each c s.t. $w_{c}^{T} x_{i}>w_{y_{i}}^{T} x_{i}$:

$$
\begin{aligned}
w_{y_{i}} & \leftarrow w_{y_{i}}+\eta x_{i} \\
w_{c} & \leftarrow w_{c}-\eta x_{i}
\end{aligned}
$$

Multi-class perceptrons

- Update rule: for each c s.t. $w_{c}^{T} x_{i}>w_{y_{i}}^{T} x_{i}$:

$$
\begin{aligned}
w_{y_{i}} & \leftarrow w_{y_{i}}+\eta x_{i} \\
w_{c} & \leftarrow w_{c}-\eta x_{i}
\end{aligned}
$$

- Is this equivalent to training C independent one-vs-all classifiers?

input image

Independent Multi-class
Cat score: 65.1 Do nothing Increase
Dog score: 101.4 Decrease
Ship score: 24.9

Multi-class SVM

- Recall single-class SVM loss:

$$
l\left(w, x_{i}, y_{i}\right)=\frac{\lambda}{2 n}\|w\|^{2}+\max \left[0,1-y_{i} w^{T} x_{i}\right]
$$

- Generalization to multi-class:
$l\left(W, x_{i}, y_{i}\right)=\frac{\lambda}{2 n}\|W\|^{2}+\sum_{c \neq y_{i}} \max \left[0,1-w_{y_{i}}^{T} x_{i}+w_{c}^{T} x_{i}\right]$

Multi-class SVM

$$
l\left(W, x_{i}, y_{i}\right)=\frac{\lambda}{2 n}\|W\|^{2}+\sum_{c \neq y_{i}} \max \left[0,1-w_{y_{i}}^{T} x_{i}+w_{c}^{T} x_{i}\right]
$$

- Gradient w.r.t. $w_{y_{i}}$:

$$
\frac{\lambda}{n} w_{y_{i}}-\sum_{c \neq y_{i}} \mathbb{I}\left[w_{y_{i}}^{T} x_{i}-w_{c}^{T} x_{i}<1\right] x_{i}
$$

- Gradient w.r.t. $w_{c}, c \neq y_{i}$:

$$
\frac{\lambda}{n} w_{c}+\mathbb{I}\left[w_{y_{i}}^{T} x_{i}-w_{c}^{T} x_{i}<1\right] x_{i}
$$

- Update rule:
- For $c=1, \ldots, C: w_{c} \leftarrow\left(1-\eta \frac{\lambda}{n}\right) w_{c}$
- For each $c \neq y_{i}$ s.t. $w_{y_{i}}^{T} x_{i}-w_{c}^{T} x_{i}<1$:

$$
w_{y_{i}} \leftarrow w_{y_{i}}+\eta x_{i}, \quad w_{c} \leftarrow w_{c}-\eta x_{i}
$$

Softmax

- We want to squash the vector of responses $\left(f_{1}, \ldots, f_{c}\right)$ into a vector of "probabilities":

$$
\operatorname{softmax}\left(f_{1}, \ldots, f_{c}\right)=\left(\frac{\exp \left(f_{1}\right)}{\sum_{j} \exp \left(f_{j}\right)}, \ldots, \frac{\exp \left(f_{C}\right)}{\sum_{j} \exp \left(f_{j}\right)}\right)
$$

- The entries are between 0 and 1 and sum to 1
- If one of the inputs is much larger than the others, then the corresponding softmax value will be close to 1 and others will be close to 0

Note on numerical stability

- Exponentiated classifier responses $\exp \left(w_{c}^{T} x\right)$ can become very large
- However, adding the same constant to all raw responses does not change the output of the softmax:

$$
\begin{aligned}
& \frac{\exp \left(w_{c}^{T} x\right)}{\sum_{j} \exp \left(w_{j}^{T} x_{i}\right)}=\frac{K \exp \left(w_{c}^{T} x\right)}{\sum_{j} K \exp \left(w_{j}^{T} x\right)} \\
& =\frac{\exp \left(w_{c}^{T} x+\log K\right)}{\sum_{j} \exp \left(w_{j}^{T} x+\log K\right)}
\end{aligned}
$$

- We can let $\log K=-\max _{j} w_{j}^{T} x$. That is, subtract from each raw response the max response over all the classes.

Softmax and sigmoid

- For two classes:

$$
\begin{aligned}
& \operatorname{softmax}\left(f_{w},-f_{w}\right) \\
& =\left(\frac{\exp \left(f_{w}\right)}{\exp \left(f_{w}\right)+\exp \left(-f_{w}\right)}, \frac{\exp \left(-f_{w}\right)}{\exp \left(f_{w}\right)+\exp \left(-f_{w}\right)}\right) \\
& \quad=\left(\frac{1}{1+\exp \left(-2 f_{w}\right)}, \frac{1}{\exp \left(2 f_{w}\right)+1}\right) \\
& \quad=\left(\sigma\left(2 f_{w}\right), \sigma\left(-2 f_{w}\right)\right)
\end{aligned}
$$

- Thus, softmax is the generalization of sigmoid for more than two classes

Cross-entropy loss

- It is conventional to use negative log likelihood loss with softmax:

$$
l\left(W, x_{i}, y_{i}\right)=-\log P_{W}\left(y_{i} \mid x_{i}\right)=-\log \left(\frac{\exp \left(w_{y_{i}}^{T} x_{i}\right)}{\sum_{j} \exp \left(w_{j}^{T} x_{i}\right)}\right)
$$

- This can be viewed as the cross-entropy between the "empirical" distribution $\hat{P}\left(c \mid x_{i}\right)=\mathbb{I}\left[c=y_{i}\right]$ and the "estimated" distribution $P_{W}\left(c \mid x_{i}\right)$:

$$
-\sum_{c} \hat{P}\left(c \mid x_{i}\right) \log P_{W}\left(c \mid x_{i}\right)
$$

- Minimizing cross-entropy is equivalent to minimizing Kullback-Leibler divergence between empirical and estimated label distributions

SGD with cross entropy loss

$$
\begin{aligned}
l\left(W, x_{i}, y_{i}\right) & =-\log P_{W}\left(y_{i} \mid x_{i}\right)=-\log \left(\frac{\exp \left(w_{y_{i}}^{T} x_{i}\right)}{\sum_{j} \exp \left(w_{j}^{T} x_{i}\right)}\right) \\
= & -w_{y_{i}}^{T} x_{i}+\log \left(\sum_{j} \exp \left(w_{j}^{T} x_{i}\right)\right)
\end{aligned}
$$

- Gradient w.r.t. $w_{y_{i}}$:

$$
-x_{i}+\frac{\exp \left(w_{y_{i}}^{T} x_{i}\right) x_{i}}{\sum_{j} \exp \left(w_{j}^{T} x_{i}\right)}=\left(P_{W}\left(y_{i} \mid x_{i}\right)-1\right) x_{i}
$$

- Gradient w.r.t. $w_{c}, c \neq y_{i}$:

$$
\frac{\exp \left(w_{c}^{T} x_{i}\right) x_{i}}{\sum_{j} \exp \left(w_{j}^{T} x_{i}\right)}=P_{W}\left(c \mid x_{i}\right) x_{i}
$$

SGD with cross-entropy loss

- Gradient w.r.t. $w_{y_{i}}$: $\quad\left(P_{W}\left(y_{i} \mid x_{i}\right)-1\right) x_{i}$
- Gradient w.r.t. $w_{c}, c \neq y_{i}: \quad P_{W}\left(c \mid x_{i}\right) x_{i}$
- Update rule:
- For y_{i} :

$$
w_{y_{i}} \leftarrow w_{y_{i}}+\eta\left(1-P_{W}\left(y_{i} \mid x_{i}\right)\right) x_{i}
$$

- For $c \neq y_{i}$:

$$
w_{c} \leftarrow w_{c}-\eta P_{W}\left(c \mid x_{i}\right) x_{i}
$$

