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Neural Network training
• Optimization

• Mini-batch SGD
• Learning rate decay
• Adaptive methods

• Massaging the numbers
• Data augmentation 
• Data preprocessing
• Weight initialization
• Batch normalization

• Regularization
• Classic regularization: L2 and L1
• Dropout
• Label smoothing

• Test time: ensembles, averaging predictions
Slides from L. Lazebnik

Mini-batch SGD
• Iterate over epochs

• Iterate over dataset mini-batches !", $" , … , (!', $')
• Compute gradient of the mini-batch loss:

∇*+ = 1
./01"

'
∇2(3, !0, $0)

• Update parameters:
3 ← 3 − 6∇*+

• Check for convergence, decide whether to decay 
learning rate

• What are the hyperparameters? 
• Mini-batch size, learning rate decay schedule, 

deciding when to stop
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SGD and mini-batch size
• Larger mini-batches: more expensive and 

less frequent updates, lower gradient 
variance, more parallelizable

• In the literature, SGD with larger batches is 
generally reported to generalize more poorly 
(e.g., Keskar et al., 2016) 
• But can be made to work by using larger learning 

rates with larger mini-batches (Goyal et al., 2017)

Learning rate decay
• Exponential decay: ! = !#$%&', where !#

and ( are hyperparameters, ) is the iteration 
or epoch number

• */, decay: ! = !#/(1 + ())
• Step decay: reduce rate by a constant factor 

every few epochs, e.g., by 0.5 every 5 
epochs, 0.1 every 20 epochs

• Manual: watch validation error and reduce 
learning rate whenever it stops improving

https://arxiv.org/pdf/1609.04836
https://research.fb.com/wp-content/uploads/2017/06/imagenet1kin1h5.pdf?
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Diagnosing learning rates

Image source: Stanford CS231n

A typical phenomenon

• Why does the learning curve look like this? 

Image source: Stanford CS231n

http://cs231n.github.io/neural-networks-3/
http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture07.pdf
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A typical phenomenon

Possible explanation

Image source

Debugging learning curves

Image source: Stanford CS231n

Not training
Bug in update calculation?

Error increasing
Bug in update calculation?

Error decreasing
Not converged yet

Slow start
Suboptimal initialization?

Possible overfitting Definite overfitting

http://mlexplained.com/2018/01/29/learning-rate-tuning-in-deep-learning-a-practical-guide/
https://docs.google.com/presentation/d/183aCHcSq-YsaokZrqI3khuy_zPbehG-XgkyA6L5W4t4/edit
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Early stopping
• Idea: do not train a network to achieve too 

low training error
• Monitor validation error to decide when to 

stop

Figure from Deep Learning Book

Advanced optimizers
• SGD with momentum
• RSMProp
• Adam

https://www.deeplearningbook.org/contents/regularization.html
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SGD with momentum

Image source

What will SGD do?

SGD with momentum
• Introduce a “momentum” variable ! and 

associated “friction” coefficient ":
! ← "! − %∇'
( ← ( +!

• Typically start with " = 0.5, gradually increase 
over time

(

"!

−%∇'
Image source

http://ruder.io/optimizing-gradient-descent/index.html
http://cs231n.github.io/neural-networks-3/
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SGD with momentum
• Introduce a “momentum” variable ! and 

associated “friction” coefficient ":
! ← "! − %∇'
( ← ( +!

• Move faster in directions with consistent gradient
• Avoid oscillating in directions with large but 

inconsistent gradients

Image source

Standard SGD SGD with momentum

SGD with momentum
• Introduce a “momentum” variable ! and 

associated “friction” coefficient ":
! ← "! − %∇'
( ← ( +!

• Nesterov momentum: evaluate gradient at 
“lookahead” position ( + "!

(( −%∇'

−%∇'(( + "!)

Image source

"! "!

http://cs231n.github.io/neural-networks-3/
http://cs231n.github.io/neural-networks-3/
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Adaptive per-parameter learning rates
• Gradients of different layers have different 

magnitudes
• Want an automatic way to set different 

learning rates for different parameters

Adagrad
• Keep track of history of gradient magnitudes, 

scale the learning rate for each parameter 
based on this history:

!" ← !" +
%&
%'"

(

'" ← '" −
*

!" + +
%&
%'"

• Parameters with small gradients get large 
updates and vice versa

• Long-ago gradient magnitudes are not “forgotten” 
so learning rate decays too quickly

J. Duchi, Adaptive subgradient methods for online learning and stochastic 
optimization, JMLR 2011  

http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf
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RMSProp
• Introduce decay factor ! (typically ≥ 0.9) to 

downweight past history exponentially:

&' ← !&' + (1 − !)
./
.0'

1

0' ← 0' −
2

&' + 3
./
.0'

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

Adam
• Combine RMSProp with momentum:

! ← #$! + 1 − #$ ∇)
*+ ← #*+ + (1 − #)

.)
./+

0

/+ ← /+ −
1

*+ + 2
!+

• Default parameters from paper: 
#$ = 0.9, #0 = 0.999, 2 = 17 − 8

• Full algorithm includes bias correction term to 
account for ! and * starting at 0:

9! = :
$;<=>

, ?* = @
$;<A>

(B is the timestep)

D. Kingma and J. Ba, Adam: A method for stochastic optimization, ICLR 2015

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://arxiv.org/abs/1412.6980
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Which optimizer to use in practice?

• Adaptive methods tend to reduce initial training 

error faster than SGD

• Adam with default parameters is a popular choice, 

SGD+momentum may work better but requires more 

tuning

• However, adaptive methods may quickly 

plateau on the validation set or generalize more 

poorly 

• Use Adam first, then switch to SGD?

• Or just stick with plain old SGD? (Wilson et al., 2017)

• All methods require careful tuning and learning 

rate control

Massaging the numbers

https://papers.nips.cc/paper/7003-the-marginal-value-of-adaptive-gradient-methods-in-machine-learning.pdf
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Data augmentation
• Introduce transformations not adequately 

sampled in the training data
• Geometric: flipping, rotation, shearing, multiple crops

Image source Image source

Data augmentation
• Introduce transformations not adequately 

sampled in the training data
• Geometric: flipping, rotation, shearing, multiple crops
• Photometric: color transformations

Image source

https://medium.com/nanonets/how-to-use-deep-learning-when-you-have-limited-data-part-2-data-augmentation-c26971dc8ced
http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture07.pdf
http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture07.pdf
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Data augmentation
• Introduce transformations not adequately 

sampled in the training data
• Geometric: flipping, rotation, shearing, multiple crops
• Photometric: color transformations
• Other: add noise, compression artifacts, lens 

distortions, etc.

Image source

Data augmentation
• Introduce transformations not adequately 

sampled in the training data
• Limited only by your imagination and 

time/memory constraints!
• Avoid introducing obvious artifacts

Image source

https://medium.com/nanonets/how-to-use-deep-learning-when-you-have-limited-data-part-2-data-augmentation-c26971dc8ced
https://medium.com/@thimblot/data-augmentation-boost-your-image-dataset-with-few-lines-of-python-155c2dc1baec
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Data preprocessing
• Zero centering

• Subtract mean image – all input images need to 
have the same resolution

• Subtract per-channel means – images don’t need 
to have the same resolution

• Optional: rescaling – divide each value by 
(per-pixel or per-channel) standard deviation

• Be sure to apply the same transformation at 
training and test time!
• Save training set statistics and apply to test data

Weight initialization
• What’s wrong with initializing all weights to 

the same number (e.g., zero)?
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Weight initialization
• Typically: initialize to random values sampled from 

zero-mean Gaussian: ! ~#(0, '()
• Standard deviation matters!
• Key idea: avoid reducing or amplifying the variance of 

layer responses, which would lead to vanishing or 
exploding gradients

• Common heuristics:
• ' = 1/ -./, where -./ is the number of inputs to a layer
• ' = 2/ -./ + -234 (Glorot and Bengio, 2010)
• ' = 2/-./ for ReLU (He et al., 2015)

• Initializing biases: just set them to 0

More details: http://cs231n.github.io/neural-networks-2/#init

Review: L2 regularization
• Regularized objective:

!"($) = '
2 $ )) ++

,-.

/
0($, 2,, 3,)

• Gradient of objective:

∇!"($) = '$ ++
,-.

/
∇0($, 2,, 3,)

• SGD update:
$ ← $ − 7 '$ + ∇0 $, 2,, 3,
$ ← (1 − 7')$ − 7∇0 $, 2,, 3,

• Interpretation: weight decay

http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/He_Delving_Deep_into_ICCV_2015_paper.pdf
http://cs231n.github.io/neural-networks-2/
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L1 regularization
• Regularized objective:

!" # = % # & +(
)*&

+
, #, .), /)

= %(
0
#0 +(

)*&

+
, #, .), /)

• Gradient: ∇!" # = % sgn(#) + ∑)*&+ ∇,(#, .), /))
• SGD update:

# ← # − :% sgn # − :∇, #, .), /)
• Interpretation: encouraging sparsity

Dropout
• At training time, in each forward pass, turn 

off some neurons with probability p 
• At test time, to have deterministic behavior, 

multiply output of neuron by p

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, Dropout: 
A Simple Way to Prevent Neural Networks from Overfitting, JMLR 2014

https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf
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Dropout
• Intuitions

• Prevent “co-adaptation” of units, increase 
robustness to noise

• Train implicit ensemble

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, Dropout: 
A Simple Way to Prevent Neural Networks from Overfitting, JMLR 2014

Current status of dropout
• Against

• Slows down convergence
• Made redundant by batch normalization or 

possibly even clashes with it
• Unnecessary for larger datasets or with sufficient 

data augmentation
• In favor 

• Can still help in certain scenarios: e.g., used in 
Wide Residual Networks

https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf
https://arxiv.org/abs/1801.05134
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Label smoothing
• Idea: avoid overly confident predictions, 

account for label noise
• When using softmax loss, replace hard 1 and 

0 prediction targets with “soft” targets of 
1 − # and $

%&'
• Used in Inception-v2 architecture

Test time
• Ensembles: train multiple independent models, 

then average their predicted label distributions
• Gives 1-2% improvement in most cases
• Can take multiple snapshots of models obtained 

during training, especially if you cycle the learning rate

G. Huang et al., Snapshot ensembles: Train 1, get M for free, ICLR 2017

https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Szegedy_Rethinking_the_Inception_CVPR_2016_paper.pdf
https://openreview.net/pdf?id=BJYwwY9ll
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Test time
• Average predictions across multiple crops of 

test image
• There is a more elegant way to do this with fully 

convolutional networks (FCNs)

Attempt at a conclusion
• Training neural networks is still a black art
• Process requires close “babysitting”
• For many techniques, the reasons why, when, and whether 

they work are in active dispute
• Read everything but don’t trust anything
• It all comes down to (principled) trial and error


