Neural Network training

Optimization
Mini-batch SGD
Learning rate decay
Adaptive methods
Massaging the numbers
Data augmentation
Data preprocessing
Weight initialization
Batch normalization
Regularization

Classic regularization: L2 and L1
Dropout

Label smoothing

Test time: ensembles, averaging predictions
Slides from L. Lazebnik

Mini-batch SGD

Iterate over epochs

Iterate over dataset mini-batches (x4, y1), ..., (x3, vp)
Compute gradient of the mini-batch loss:

b
1
Vi = EZ Viw, x,71)
i=1

* Update parameters:

W« w —nVL

» Check for convergence, decide whether to decay
learning rate

* What are the hyperparameters?

* Mini-batch size, learning rate decay schedule,
deciding when to stop

SGD and mini-batch size

Larger mini-batches: more expensive and
less frequent updates, lower gradient
variance, more parallelizable

In the literature, SGD with larger batches is
generally reported to generalize more poorly
(e.g., Keskar et al., 2016)

« But can be made to work by using larger learning
rates with larger mini-batches (Goyal et al., 2017)

Learning rate decay

« Exponential decay: n = n,e ", where 1,

and k are hyperparameters, t is the iteration
or epoch number

1/t decay: n =1,/(1 + kt)

Step decay: reduce rate by a constant factor
every few epochs, e.g., by 0.5 every 5
epochs, 0.1 every 20 epochs

Manual: watch validation error and reduce
learning rate whenever it stops improving

https://arxiv.org/pdf/1609.04836
https://research.fb.com/wp-content/uploads/2017/06/imagenet1kin1h5.pdf?

Diagnosing learning rates

low learning rate

high learning rate

“‘\\\\\\\\\“-‘-‘_§

.
>

good learning rate

epoch

Image source: Stanford CS231n

A typical phenomenon

4 Loss

Learning rate decay!

|

>
>

Epoch

* Why does the learning curve look like this?

Image source: Stanford CS231n

http://cs231n.github.io/neural-networks-3/
http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture07.pdf

A typical phenomenon

Possible explanation

loss

Corresponding Learning Curve

loss
H /
f H
‘—4/ | good learning rate
——— |arge learning rate
B] I & —— .

Image source

Debugging learning curves

23 — ftrain

23125 val
22

23100

23075 21

23050 20

23025 19

23000
18

22975
17

o 500 1000 1500 2000 2500 0 200 400 600 800 1000 1200 1400 1600 0 500 1000 1500 2000 2500
Not training Error increasing Error decreasing
Bug in update calculation? Bug in update calculation? Not converged yet

— train — tain
val val

[) 500 1000 1500 2000 2500 [100 200 200 400 500 600 [200 400 600 800 1000 1200 1400

.SIOW_ start Possible overfitting Definite overfitting
Suboptimal initialization?

Image source: Stanford CS231n

http://mlexplained.com/2018/01/29/learning-rate-tuning-in-deep-learning-a-practical-guide/
https://docs.google.com/presentation/d/183aCHcSq-YsaokZrqI3khuy_zPbehG-XgkyA6L5W4t4/edit

Early stopping

* |dea: do not train a network to achieve too
low training error

* Monitor validation error to decide when to
stop

= 0.20 - , - r

S e—e Training set loss

E 0.15 —— Validation set loss |
&

2

P 0.10]
=

-]

€ 0.05 i
@

Q

= 0.00 ; —

0 50 100 150 200 250
Time (epochs)

Figure from Deep Learning Book

Advanced optimizers

 SGD with momentum
« RSMProp
e Adam

https://www.deeplearningbook.org/contents/regularization.html

SGD with momentum

What will SGD do?

Image source

SGD with momentum

* Introduce a “momentum” variable m and
associated “friction” coefficient g:
m « fm —nVL
wew+tm

* Typically start with g = 0.5, gradually increase
over time

Momentum update

fm

momentum
step
actual step

—nVL

gradient
step

Image source

http://ruder.io/optimizing-gradient-descent/index.html
http://cs231n.github.io/neural-networks-3/

SGD with momentum

* Introduce a “momentum” variable m and
associated “friction” coefficient S:

m < fm —nVL
wew+m
* Move faster in directions with consistent gradient

* Avoid oscillating in directions with large but
inconsistent gradients

Standard SGD SGD with momentum

) (=

Image source

SGD with momentum

* Introduce a “momentum” variable m and
associated “friction” coefficient g:

m « fm —nVL
wew+m
* Nesterov momentum: evaluate gradient at
“lookahead” position w + fm

Momentum update Nesterov momentum update
pm pm

momentum
step

“lookahead” gradient
step (bit different than
original)

—nVL(w + fm)

actual step

momentum
step
actual step

—nVL w

gradient
step

Image source

http://cs231n.github.io/neural-networks-3/
http://cs231n.github.io/neural-networks-3/

Adaptive per-parameter learning rates

» Gradients of different layers have different
magnitudes

« Want an automatic way to set different
learning rates for different parameters

Adagrad

» Keep track of history of gradient magnitudes,
scale the learning rate for each parameter

based on this history:

aL ||
vt |
n oL
e J—
Wi Wi vV Vi + € aWk

+ Parameters with small gradients get large
updates and vice versa

* Long-ago gradient magnitudes are not “forgotten”
so learning rate decays too quickly

J. Duchi, Adaptive subgradient methods for online learning and stochastic
optimization, JMLR 2011

http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf

RMSProp

» Introduce decay factor g (typically = 0.9) to
downweight past history exponentially:

2

oL
Vv < o+ (1—P) ||6—Wk

n daL
e —
Wie = W Uk + € 0wy

http://www.cs.toronto.edu/~tiimen/csc321/slides/lecture _slides lec6.pdf

Adam

« Combine RMSProp with momentum:
m« fim+ (1 —p;)VL

2

LA

e —

Vg < Bog + (B) Iwy
n

Wk(—Wk—mmk

+ Default parameters from paper:
B1=09,5,=0999,e =1e—8

* Full algorithm includes bias correction term to
account for m and v starting at O:

m ~
1- {’v

M = " (t is the timestep)
1-pL

D. Kingma and J. Ba, Adam: A method for stochastic optimization, ICLR 2015

http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://arxiv.org/abs/1412.6980

Which optimizer to use in practice?

Adaptive methods tend to reduce initial training
error faster than SGD

» Adam with default parameters is a popular choice,
SGD+momentum may work better but requires more
tuning

However, adaptive methods may quickly

plateau on the validation set or generalize more

poorly

» Use Adam first, then switch to SGD?

* Orjust stick with plain old SGD? (Wilson et al., 2017)

All methods require careful tuning and learning
rate control

Massaging the numbers

10

https://papers.nips.cc/paper/7003-the-marginal-value-of-adaptive-gradient-methods-in-machine-learning.pdf

Data augmentation

* Introduce transformations not adequately
sampled in the training data

+ Geometric: flipping, rotation, shearing, multiple crops

{ e
& N - ya
¥ okl = ')ﬁ

.@)

4o~ [y@.‘_
ﬁm N

ma e source

Image source

Data augmentation

* Introduce transformations not adequately
sampled in the training data
* Geometric: flipping, rotation, shearing, multiple crops
* Photometric: color transformations

Image source

11

https://medium.com/nanonets/how-to-use-deep-learning-when-you-have-limited-data-part-2-data-augmentation-c26971dc8ced
http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture07.pdf
http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture07.pdf

Data augmentation

* Introduce transformations not adequately
sampled in the training data
+ Geometric: flipping, rotation, shearing, multiple crops
* Photometric: color transformations

* Other: add noise, compression artifacts, lens
distortions, etc.

=2

Image source

Data augmentation

* Introduce transformations not adequately
sampled in the training data

« Limited only by your imagination and
time/memory constraints!

» Avoid introducing obvious artifacts

O A

Data augmentation

i X W Y| 81N

ma e source

12

https://medium.com/nanonets/how-to-use-deep-learning-when-you-have-limited-data-part-2-data-augmentation-c26971dc8ced
https://medium.com/@thimblot/data-augmentation-boost-your-image-dataset-with-few-lines-of-python-155c2dc1baec

Data preprocessing

« Zero centering
» Subtract mean image — all input images need to
have the same resolution

» Subtract per-channel means — images don’t need
to have the same resolution

* Optional: rescaling — divide each value by
(per-pixel or per-channel) standard deviation

» Be sure to apply the same transformation at
training and test time!
« Save training set statistics and apply to test data

Weight initialization

« What's wrong with initializing all weights to
the same number (e.g., zero)?

13

Weight initialization

Typically: initialize to random values sampled from
zero-mean Gaussian: w ~ N (0, 0?)
« Standard deviation matters!

+ Key idea: avoid reducing or amplifying the variance of
layer responses, which would lead to vanishing or
exploding gradients

Common heuristics:

* o0 = 1/ny,, where n;, is the number of inputs to a layer
* 0 =2/\nj + nour (Glorot and Bengio, 2010)

o =./2/n;, for ReLU (He et al., 2015)

Initializing biases: just set them to 0

More details: http://cs231n.qgithub.io/neural-networks-2/#init

Review: L2 regularization

* Regularized objective:
R 1N
Low) = SIWI +) 1w, x,,)
i=1
» Gradient of objective:

n
VI(w) = Aw + Z Vi(w, x;, ;)
i=1
* SGD update:
Wew— r)(ﬂw + Vi(w, xi,yi))
w < (1 —nhw —nVi(w, x;, ;)
* Interpretation: weight decay

14

http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf
https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/He_Delving_Deep_into_ICCV_2015_paper.pdf
http://cs231n.github.io/neural-networks-2/

L1 regularization

Regularized objective:

n
Lw) = Alwlly +) 1w, %, %)

i=1
n

= AZIWdI + z l(w,x;,y;)
d i=1

Gradient: VL(w) = Asgn(w) + X1, VI(w, x;, ;)
SGD update:

w < w —nisgn(w) —nVI(w, x;,y;)
Interpretation: encouraging sparsity

Dropout

« At training time, in each forward pass, turn
off some neurons with probability p

» At test time, to have deterministic behavior,
multiply output of neuron by p

(a) Standard Neural Net

N. Srivastava, G. Hinton, A. Krizhevsky, |. Sutskever, R. Salakhutdinov, Dropout:
A Simple Way to Prevent Neural Networks from Overfitting, JMLR 2014

15

https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf

Dropout

e |ntuitions

* Prevent “co-adaptation” of units, increase
robustness to noise

» Train implicit ensemble

(a) Standard Neural Net (b) After applying dropout.

N. Srivastava, G. Hinton, A. Krizhevsky, |. Sutskever, R. Salakhutdinov, Dropout:
A Simple Way to Prevent Neural Networks from Overfitting, JMLR 2014

Current status of dropout

* Against
+ Slows down convergence

* Made redundant by batch normalization or
possibly even clashes with it

* Unnecessary for larger datasets or with sufficient
data augmentation
* In favor

» Can still help in certain scenarios: e.g., used in
Wide Residual Networks

16

https://www.cs.toronto.edu/~hinton/absps/JMLRdropout.pdf
https://arxiv.org/abs/1801.05134

Label smoothing

Idea: avoid overly confident predictions,
account for label noise

When using softmax loss, replace hard 1 and
0 prediction targets with “soft” targets of

1—eand —
cC-1
Used in Inception-v2 architecture

Test time

Ensembles: train multiple independent models,
then average their predicted label distributions

Gives 1-2% improvement in most cases

Can take multiple snapshots of models obtained
during training, especially if you cycle the learning rate

05 Single Model : %7 Snapshot Ensemble : /)
0.4 Standard LR Schedule /)) 04 Cyclic LR Schedule A
03 A A 03 R\
0.2 02
0.1 0.1 O

o o gy

|

-01 -0 /)\“ \
-02 02 Wﬂ,—/
03 -03 =
04 04 = ;

. Huang et al., Snapshot ensembles: Train 1, get M for free, ICLR 2017

17

https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Szegedy_Rethinking_the_Inception_CVPR_2016_paper.pdf
https://openreview.net/pdf?id=BJYwwY9ll

Test time

» Average predictions across multiple crops of
test image

* There is a more elegant way to do this with fully
convolutional networks (FCNs)

Attempt at a conclusion

Training neural networks is still a black art
Process requires close “babysitting”

For many techniques, the reasons why, when, and whether
they work are in active dispute

Read everything but don’t trust anything
It all comes down to (principled) trial and error

18

