#### **Image Generation**

Slides adapted from S. Lazebnik

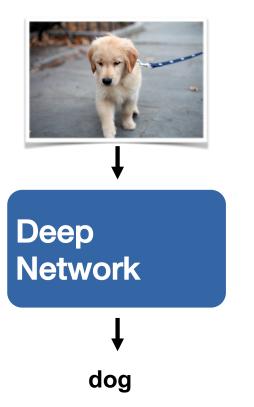
# Image generation

Input: Image

- High dimensional
- Structured

Output: Label

- Low dimensional
- Easy



© 2019 Philipp Krähenbühl and Chao-Yuan Wu

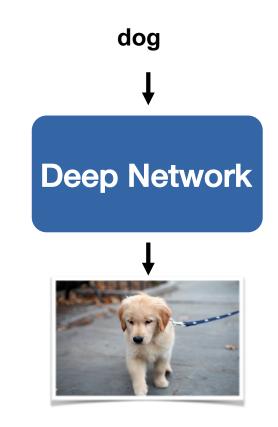
Input: Label / nothing

Low dimensional

Output: Image

- High dimensional
- Many possibilities

Very hard



# Autoencoder

Image to image

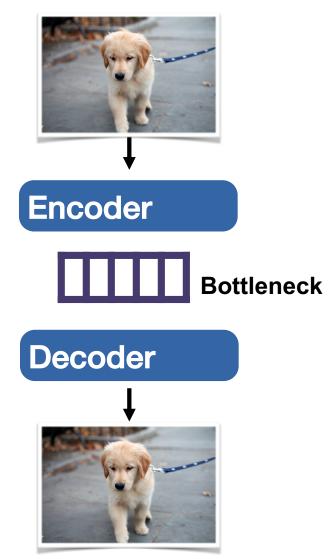
- with bottleneck
- Le
- Compression

Invertible mapping

- Does it learn to understand the image?
  - Only in the limit / best compression

Reducing the Dimensionality of Data with Neural Networks, Hinton and Salakhutdinov, Science, 2006

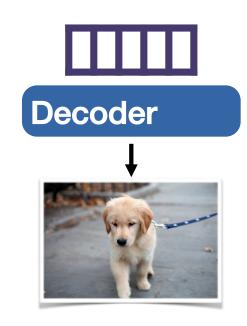
© 2019 Philipp Krähenbühl and Chao-Yuan Wu



## Alternative that works

Deep image prior

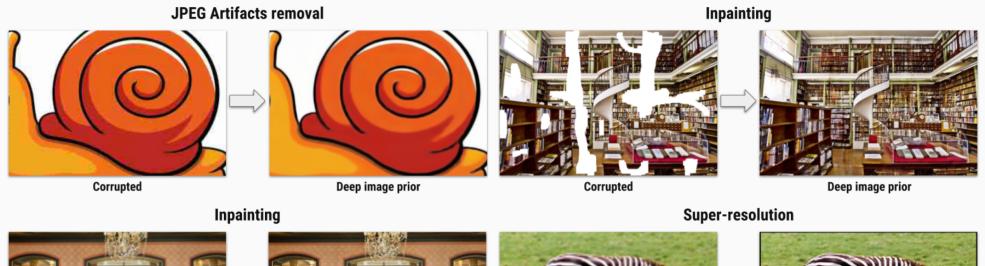
- Learn decoder of autoencoder
- Fixed random input
- Learns to denoise
- Learn how to generate an image from a single random code
- Search in the space on NN parameters to generate the image



Deep image prior, Ulyanov et al., CVPR 2018

© 2019 Philipp Krähenbühl and Chao-Yuan Wu

# Deep image prior





Corrupted



Deep image prior



Corrupted



Deep image prior

Inpainting







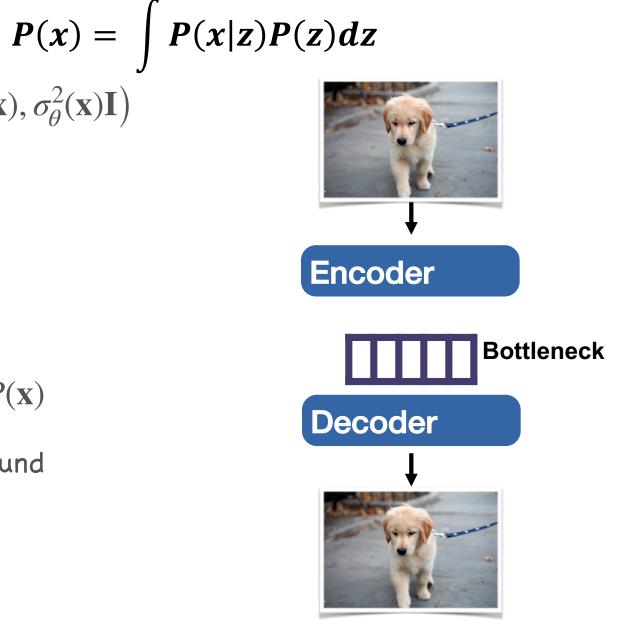


# Variational Autoencoder

• Encoder

• 
$$q(\mathbf{z} | \mathbf{x}) = \mathcal{N}\left(\mathbf{z}; \mu_{\theta}(\mathbf{x}), \sigma_{\theta}^{2}(\mathbf{x})\mathbf{I}\right)$$

- Sampling  $\mathbf{f} \sim q(\mathbf{z} \,|\, \mathbf{x})$
- Decoder
  - $P(\mathbf{x} \mid \mathbf{f})$
- Approximately learns  $P(\mathbf{x})$ 
  - Variational lower bound



#### VAE faces

#### Alec Radford



#### Generative adversarial networks

#### **EBGAN** (2017)



#### **BigGAN** (2018)

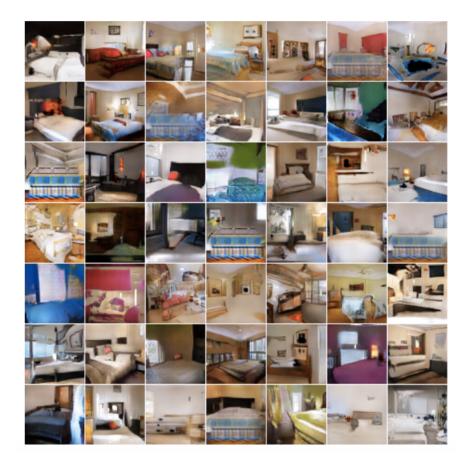


# Outline

- Generative tasks
- Formulations
  - Original GAN
  - DCGAN
  - WGAN, improved WGAN
  - LSGAN
- Issues
  - Stability
  - Mode collapse
  - Evaluation methodology

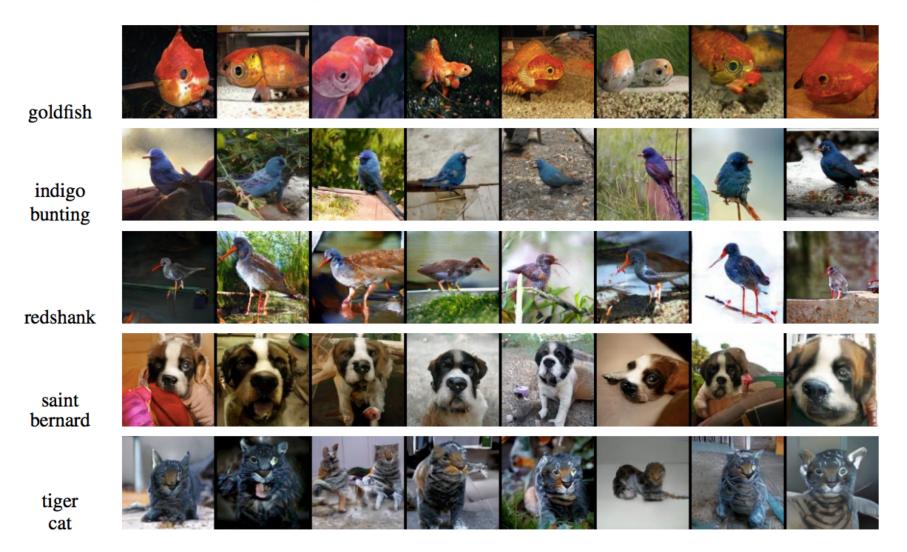
## Generative tasks

- Generation (from scratch): learn to sample from the distribution represented by the training set
  - Unsupervised learning task



#### Generative tasks

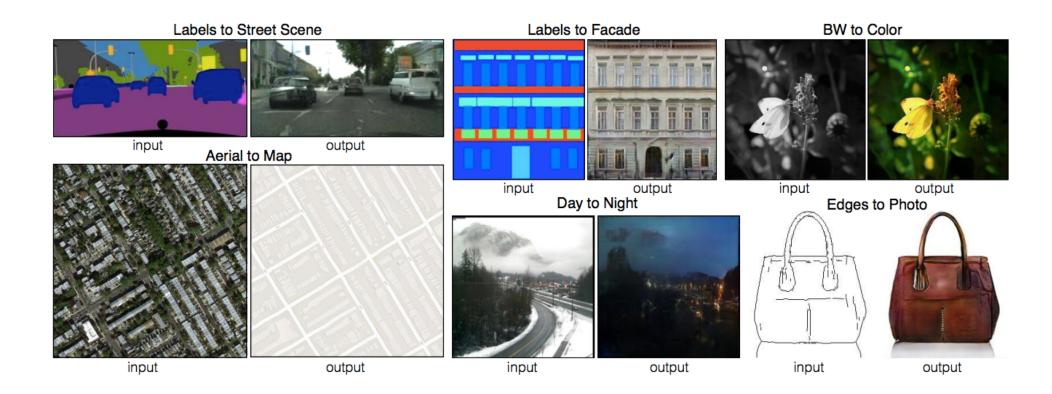
Conditional generation





#### Generative tasks

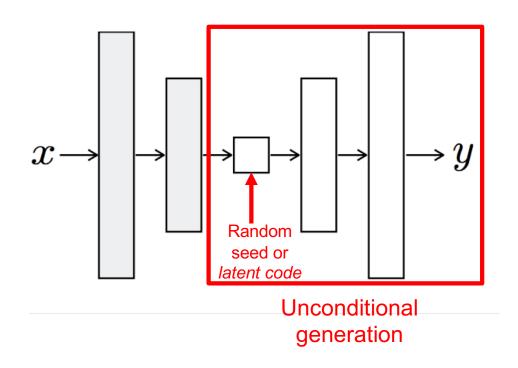
Image-to-image translation



P. Isola, J.-Y. Zhu, T. Zhou, A. Efros, <u>Image-to-Image Translation with Conditional Adversarial</u> <u>Networks</u>, CVPR 2017

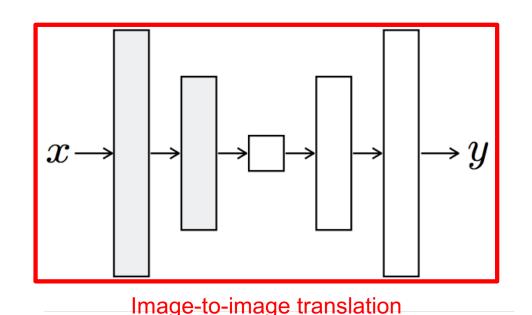
# Designing a network for generative tasks

- 1. We need an architecture that can generate an image
  - Recall upsampling architectures for dense prediction



# Designing a network for generative tasks

- 1. We need an architecture that can generate an image
  - Recall upsampling architectures for dense prediction

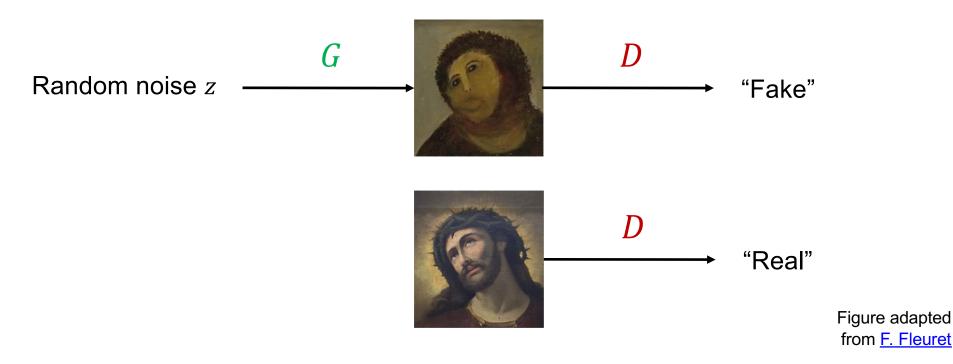


# Designing a network for generative tasks

- 1. We need an architecture that can generate an image
  - Recall upsampling architectures for dense prediction
- 2. We need to design the right loss function

## Generative adversarial networks

- Train two networks with opposing objectives:
  - Generator: learns to generate samples
  - Discriminator: learns to distinguish between generated and real samples



I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, <u>Generative adversarial nets</u>, NIPS 2014

# GAN objective

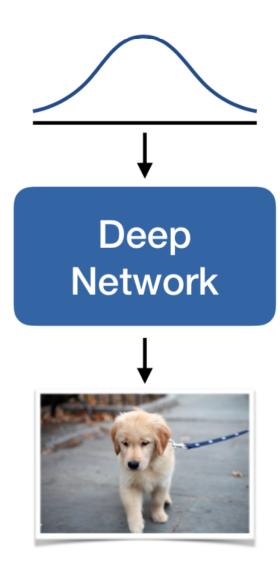
- The discriminator D(x) should output the probability that the sample x is real
  - That is, we want D(x) to be close to 1 for real data and close to 0 for fake
- Expected conditional log likelihood for real and generated data:

 $\mathbb{E}_{x \sim p_{\text{data}}} \log D(x) + \mathbb{E}_{x \sim p_{\text{gen}}} \log (1 - D(x))$ 

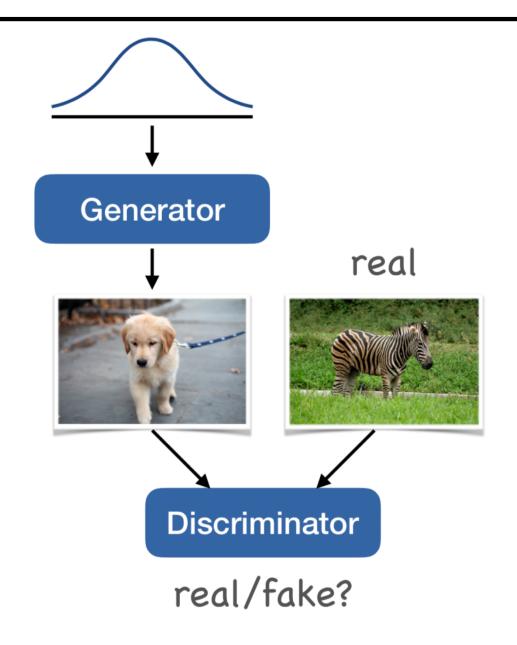
 $= \mathbb{E}_{x \sim p_{\text{data}}} \log D(x) + \mathbb{E}_{z \sim p} \log(1 - D(G(z)))$ 

We seed the generator with noise *z* drawn from a simple distribution *p* (Gaussian or uniform)

GAN



GAN



 $V(G,D) = \mathbb{E}_{x \sim p_{\text{data}}} \log D(x) + \mathbb{E}_{z \sim p} \log(1 - D(G(z)))$ 

• The discriminator wants to correctly distinguish real and fake samples:

 $D^* = \arg \max_D V(G, D)$ 

• The generator wants to fool the discriminator:

 $G^* = \arg\min_G V(G,D)$ 

• Train the generator and discriminator jointly in a *minimax game* 

 $V(G,D) = \mathbb{E}_{x \sim p_{\text{data}}} \log D(x) + \mathbb{E}_{z \sim p} \log(1 - D(G(z)))$ 

- Assuming unlimited capacity for generator and discriminator and unlimited training data:
  - The objective  $\min_{G} \max_{D} V(G, D)$  is equivalent to Jensen-Shannon divergence between  $p_{data}$  and  $p_{gen}$  and global optimum (Nash equilibrium) is given by  $p_{data} = p_{gen}$
  - If at each step, *D* is allowed to reach its optimum given *G*, and *G* is updated to decrease V(G, D), then  $p_{gen}$  with eventually converge to  $p_{data}$

 $V(G,D) = \mathbb{E}_{x \sim p_{\text{data}}} \log D(x) + \mathbb{E}_{z \sim p} \log(1 - D(G(z)))$ 

- Alternate between
  - *Gradient ascent* on discriminator:

 $D^* = \arg \max_D V(G, D)$ 

• *Gradient descent* on generator (minimize log-probability of discriminator being right):

 $G^* = \arg \min_G V(G, D)$ =  $\arg \min_G \mathbb{E}_{z \sim p} \log(1 - D(G(z)))$ 

 In practice, do gradient ascent on generator (maximize log-probability of discriminator being wrong):

 $G^* = \arg \max_G \mathbb{E}_{z \sim p} \log(D(G(z)))$ 

# GAN training algorithm

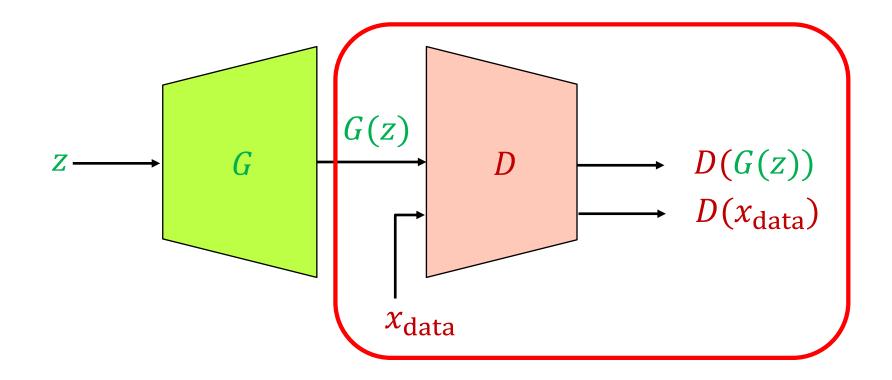
- Update discriminator
  - Repeat for *k* steps:
    - Sample mini-batch of noise samples  $z_1, \dots, z_m$  and mini-batch of real samples  $x_1, \dots, x_m$
    - Update parameters of *D* by stochastic gradient ascent on  $\frac{1}{m} \sum_{m} [\log D(x_m) + \log(1 - D(G(z_m)))]$
- Update generator
  - Sample mini-batch of noise samples  $z_1, \dots, z_m$
  - Update parameters of *G* by stochastic gradient ascent on

$$\frac{1}{m}\sum_{m}\log D(G(z_m))$$

• Repeat until happy with results

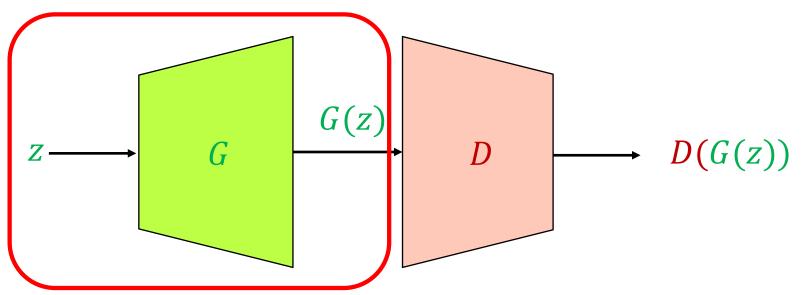
# GAN: Conceptual picture

- Update discriminator: push  $D(x_{data})$  close to 1 and D(G(z)) close to 0
  - The generator is a "black box" to the discriminator



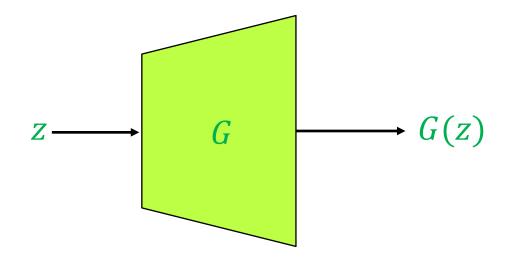
# GAN: Conceptual picture

- Update generator: increase D(G(z))
  - Requires back-propagating through the composed generator-discriminator network (i.e., the discriminator cannot be a black box)
  - The generator is exposed to real data only via the output of the discriminator (and its gradients)



## GAN: Conceptual picture

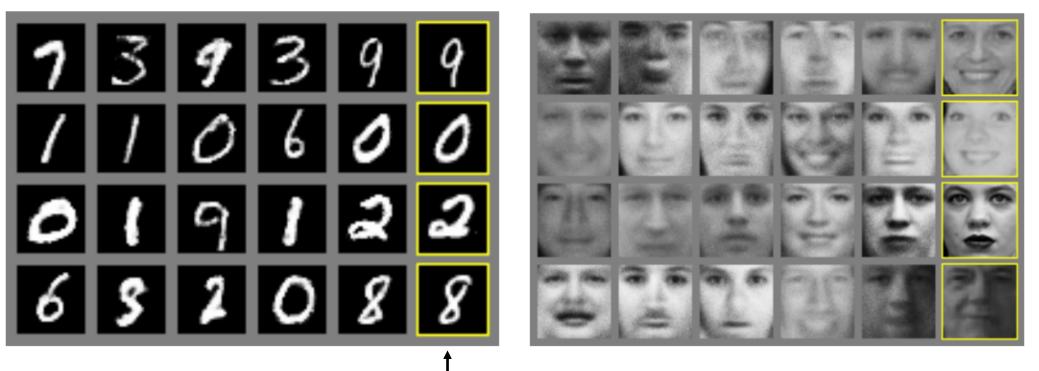
• Test time



## **Original GAN results**

#### MNIST digits

#### **Toronto Face Dataset**



Nearest real image for sample to the left

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, <u>Generative adversarial nets</u>, NIPS 2014

## **Original GAN results**

#### CIFAR-10 (FC networks)

#### CIFAR-10 (conv networks)



I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, <u>Generative adversarial nets</u>, NIPS 2014

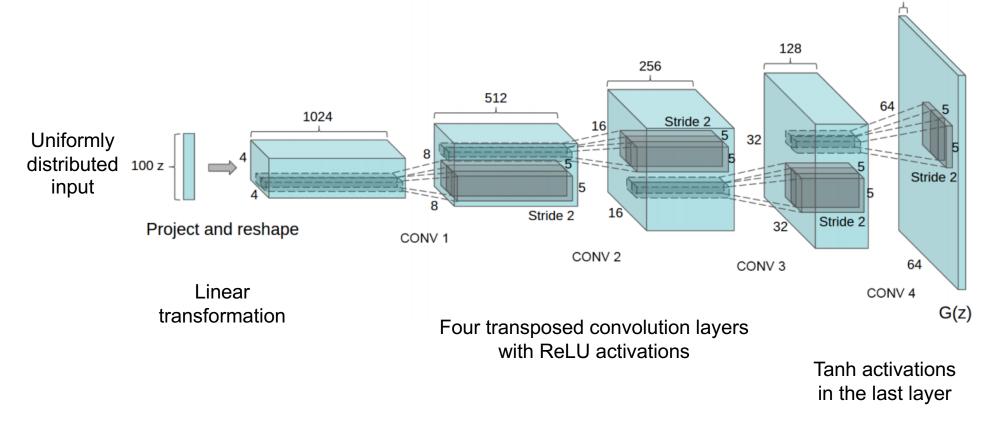
## DCGAN

- Propose principles for designing convolutional architectures for GANs
- Generator architecture

A. Radford, L. Metz, S. Chintala, <u>Unsupervised representation learning with deep</u> <u>convolutional generative adversarial networks</u>, ICLR 2016

## DCGAN

- Propose principles for designing convolutional architectures for GANs
- Generator architecture



A. Radford, L. Metz, S. Chintala, <u>Unsupervised representation learning with deep</u> <u>convolutional generative adversarial networks</u>, ICLR 2016

## DCGAN

- Propose principles for designing convolutional architectures for GANs
- Discriminator architecture
  - Don't use pooling, only strided convolutions
  - Use Leaky ReLU activations (sparse gradients cause problems for training)
  - Use only one FC layer before the softmax output
  - Use batch normalization after most layers (in the generator also)

A. Radford, L. Metz, S. Chintala, <u>Unsupervised representation learning with deep</u> <u>convolutional generative adversarial networks</u>, ICLR 2016

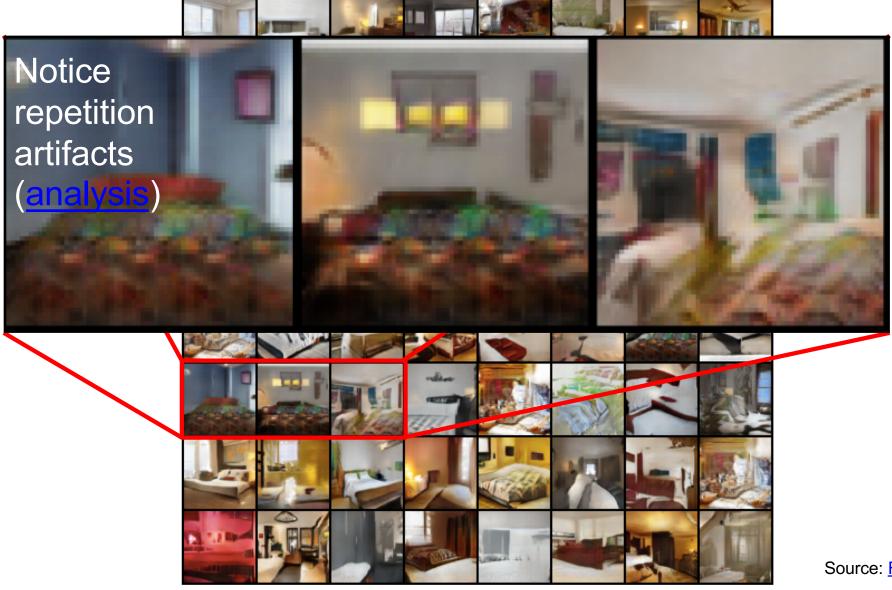
#### Generated bedrooms after one epoch



#### Generated bedrooms after five epochs

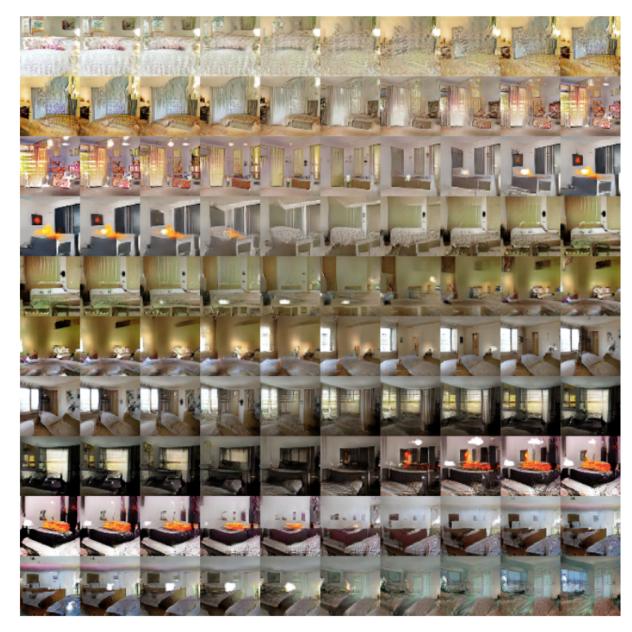


#### Generated bedrooms from reference implementation

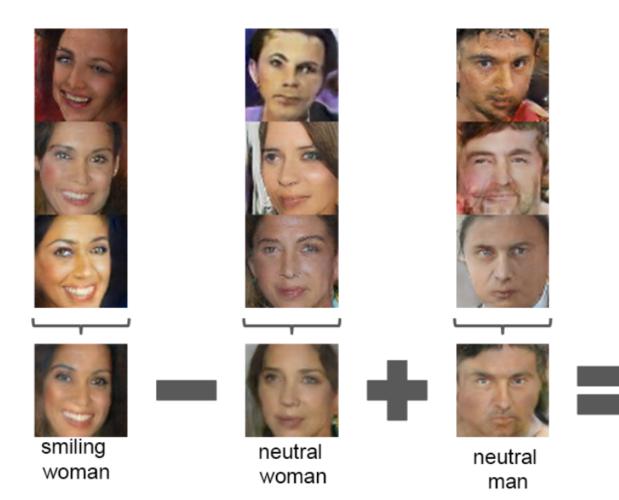


Source: F. Fleuret

#### Interpolation between different points in the z space

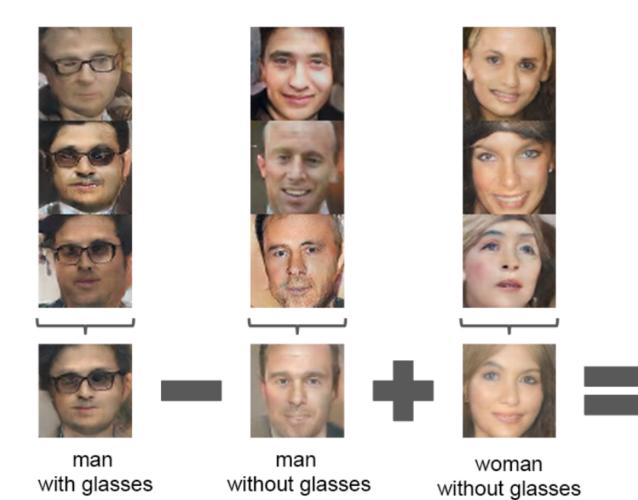


• Vector arithmetic in the z space



### **DCGAN** results

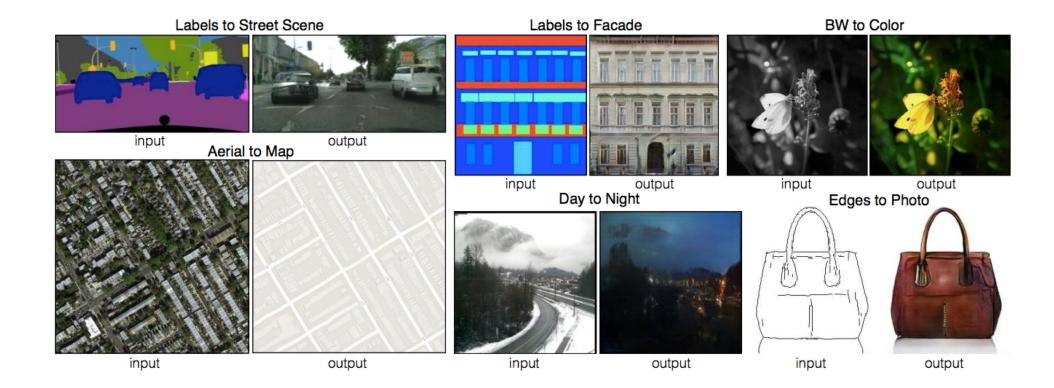
• Vector arithmetic in the z space



# **DCGAN** results

• Pose transformation by adding a "turn" vector





P. Isola, J.-Y. Zhu, T. Zhou, A. Efros, <u>Image-to-Image Translation with Conditional Adversarial</u> <u>Networks</u>, CVPR 2017

# Pix2Pix - Image2Image translation

real

#### "Autoencoder"

 Different input and output

#### **GAN** loss

• High fidelity reconstruction

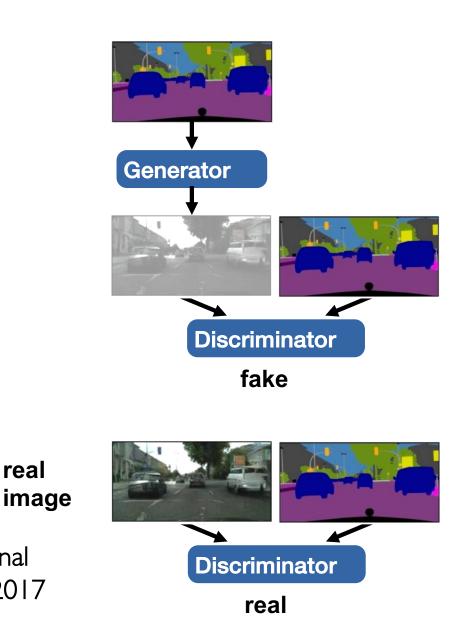
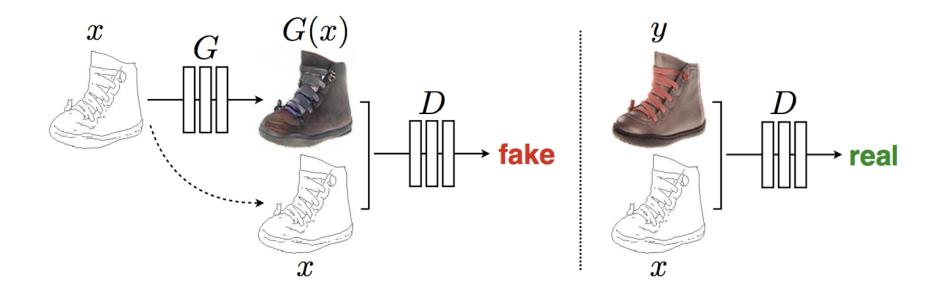
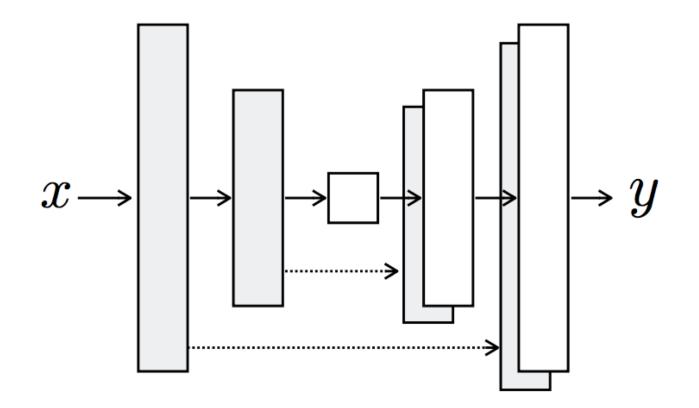


Image-to-Image Translation with Conditional Adversarial Networks, Isola et al., CVPR 2017

- Produce modified image y conditioned on input image x (note change of notation)
  - Generator receives *x* as input
  - Discriminator receives an x, y pair and has to decide whether it is real or fake

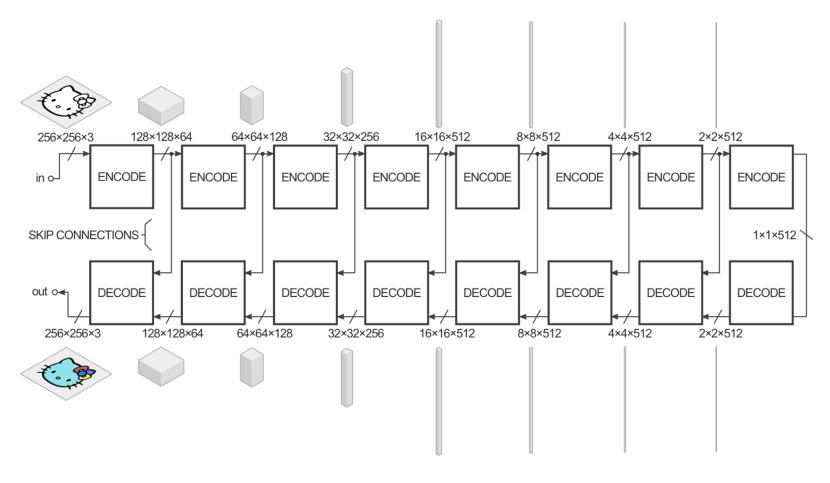


• Generator architecture: U-Net



• Note: no z used as input, transformation is basically deterministic

• Generator architecture: U-Net



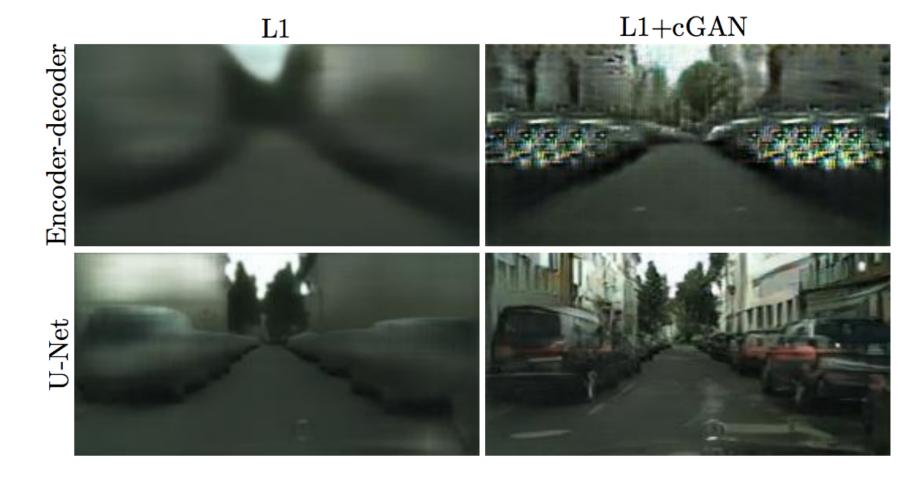
Encode: convolution  $\rightarrow$  BatchNorm  $\rightarrow$  ReLU

Decode: transposed convolution  $\rightarrow$  BatchNorm  $\rightarrow$  ReLU



• Generator architecture: U-Net

#### Effect of adding skip connections to the generator



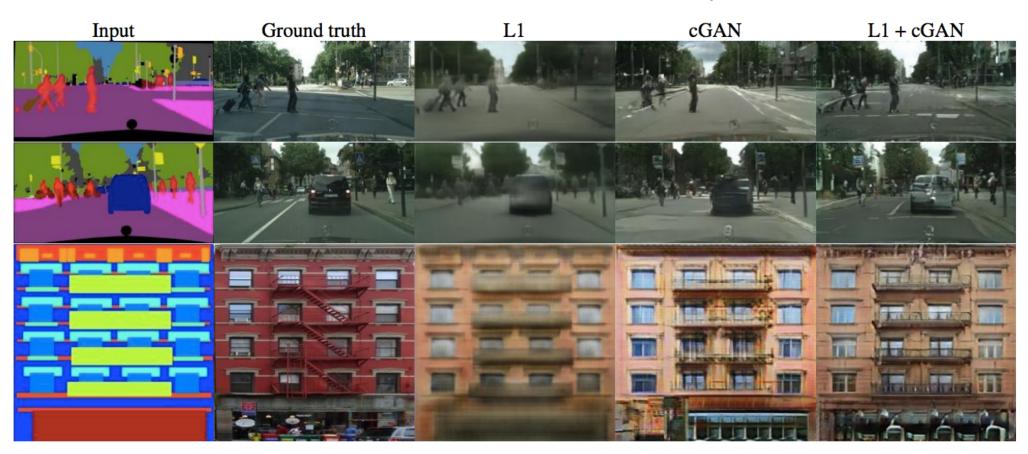
 Generator loss: GAN loss plus L1 reconstruction penalty

 $G^* = \arg\min_G \max_D \mathcal{L}_{GAN}(G, D) + \lambda \sum_i ||y_i - G(x_i)||_1$ 

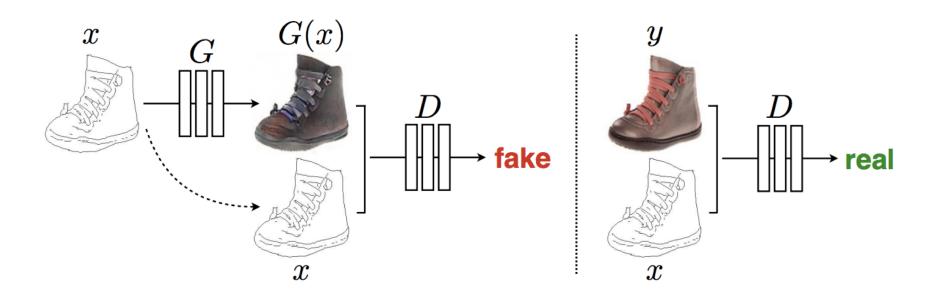
Generated output  $G(x_i)$  should be close to ground truth target  $y_i$ 

 Generator loss: GAN loss plus L1 reconstruction penalty

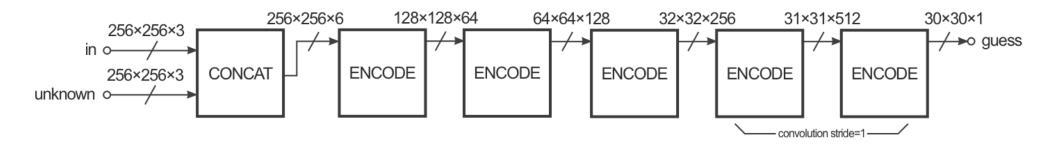
 $G^* = \arg\min_G \max_D \mathcal{L}_{GAN}(G, D) + \lambda \sum_i ||y_i - G(x_i)||_1$ 



- Discriminator: PatchGAN
  - Given input image *x* and second image *y*, decide whether *y* is a ground truth target or produced by the generator



- Discriminator: PatchGAN
  - Given input image *x* and second image *y*, decide whether *y* is a ground truth target or produced by the generator
  - Output is a 30 x 30 map where each value (0 to 1) represents the quality of the corresponding section of the output image
  - Fully convolutional network, effective patch size can be increased by increasing the depth



- Discriminator: PatchGAN
  - Given input image *x* and second image *y*, decide whether *y* is a ground truth target or produced by the generator
  - Output is a 30 x 30 map where each value (0 to 1) represents the quality of the corresponding section of the output image
  - Fully convolutional network, effective patch size can be increased by increasing the depth

Effect of discriminator patch size on generator output



#### • Translating between maps and aerial photos

Map to aerial photo

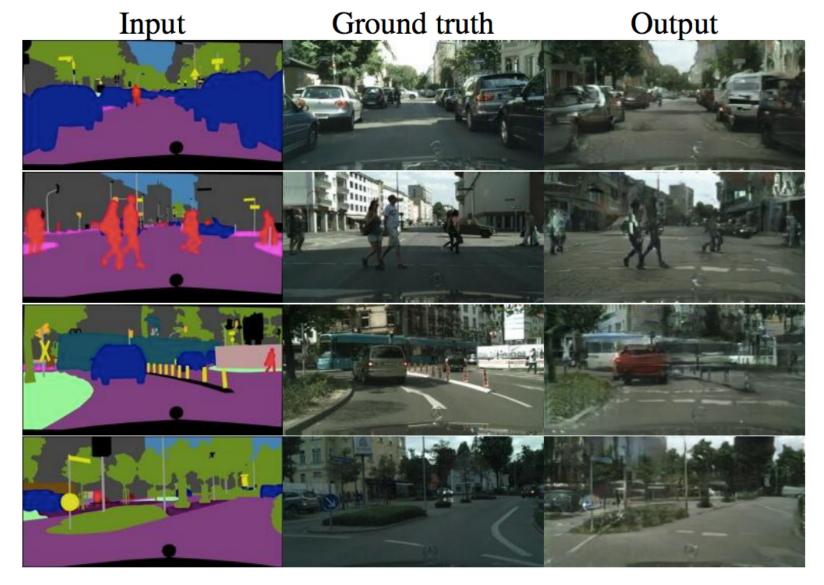
Aerial photo to map



- Translating between maps and aerial photos
- Human study:

|         | <b>Photo</b> $\rightarrow$ <b>Map</b> | $\mathbf{Map} \rightarrow \mathbf{Photo}$ |
|---------|---------------------------------------|-------------------------------------------|
| Loss    | % Turkers labeled real                | % Turkers labeled real                    |
| L1      | $2.8\%\pm1.0\%$                       | $0.8\%\pm0.3\%$                           |
| L1+cGAN | $6.1\% \pm 1.3\%$                     | $\textbf{18.9\%} \pm \textbf{2.5\%}$      |

• Semantic labels to scenes



- Semantic labels to scenes
- Evaluation: FCN score
  - The higher the quality of the output, the better the FCN should do at recovering the original semantic labels

| Loss                | Per-pixel acc. | Per-class acc. | <b>Class IOU</b> |
|---------------------|----------------|----------------|------------------|
| L1                  | 0.42           | 0.15           | 0.11             |
| GAN                 | 0.22           | 0.05           | 0.01             |
| cGAN                | 0.57           | 0.22           | 0.16             |
| L1+GAN              | 0.64           | 0.20           | 0.15             |
| L1+cGAN             | 0.66           | 0.23           | 0.17             |
| <b>Ground truth</b> | 0.80           | 0.26           | 0.21             |

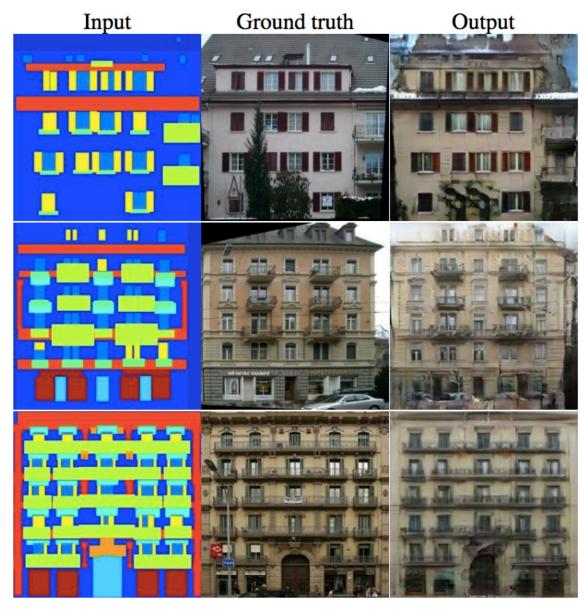
• Scenes to semantic labels

# cGAN Ground truth L1 Input

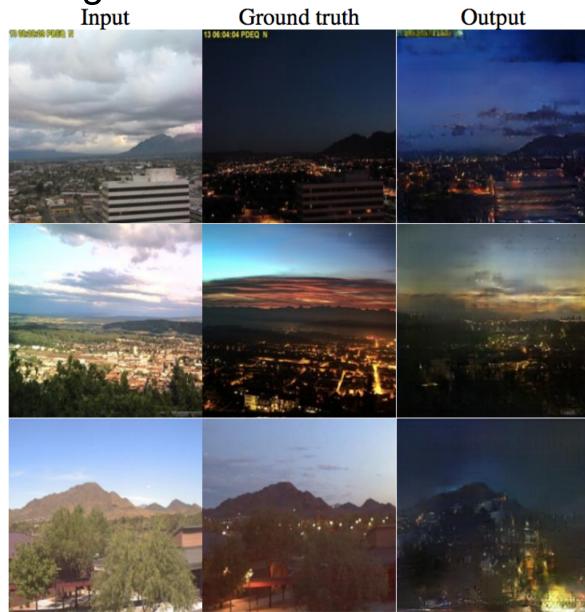
- Scenes to semantic labels
- Accuracy is worse than that of regular FCNs or generator with L1 loss

| Loss    | Per-pixel acc. | Per-class acc. | <b>Class IOU</b> |
|---------|----------------|----------------|------------------|
| L1      | 0.86           | 0.42           | 0.35             |
| cGAN    | 0.74           | 0.28           | 0.22             |
| L1+cGAN | 0.83           | 0.36           | 0.29             |

• Semantic labels to facades



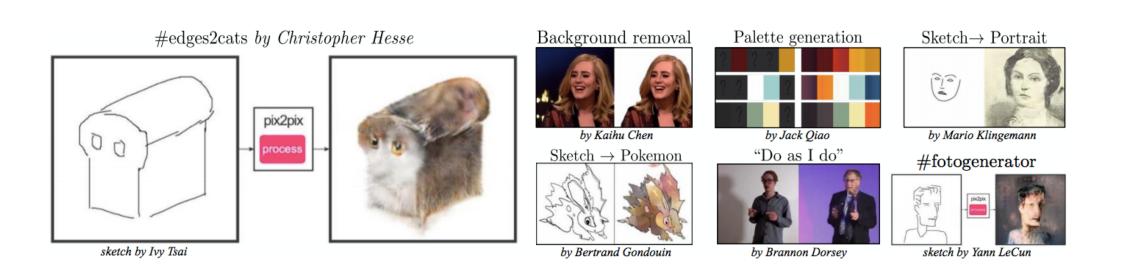
#### • Day to night



#### • Edges to photos



• pix2pix demo

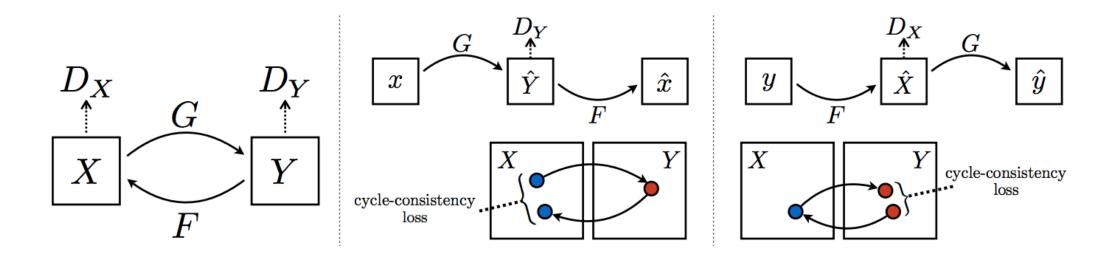


# Image-to-image translation: Limitations

- Visual quality could be improved
- Requires *x*, *y* pairs for training
- Does not model conditional distribution P(y|x), returns a single mode instead

# CycleGAN

- Given: domains X and Y
- Train two generators F and G and two discriminators  $D_X$  and  $D_Y$ 
  - *G* translates from *X* to *Y*, *F* translates from *Y* to *X*
  - $D_X$  recognizes images from X,  $D_Y$  from Y
  - We want  $F(G(x)) \approx x$  and  $G(F(y)) \approx y$



# CycleGAN: Architecture

• Generators:

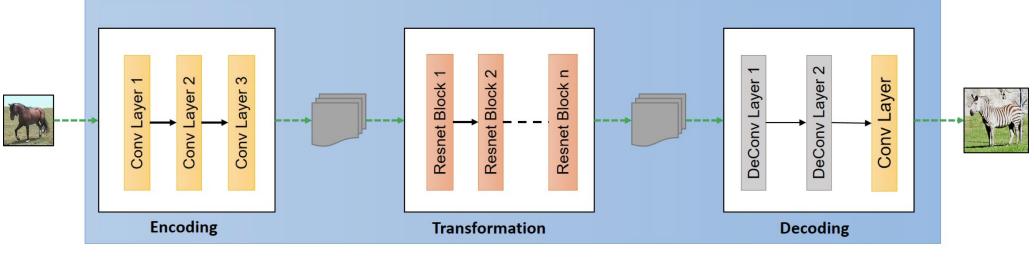


Figure source

• Discriminators: PatchGAN on 70 x 70 patches

# CycleGAN: Loss

- Requirements:
  - G translates from X to Y, F translates from Y to X
  - $D_X$  recognizes images from X,  $D_Y$  from Y
  - We want  $F(G(x)) \approx x$  and  $G(F(y)) \approx y$
- CycleGAN discriminator loss: LSGAN

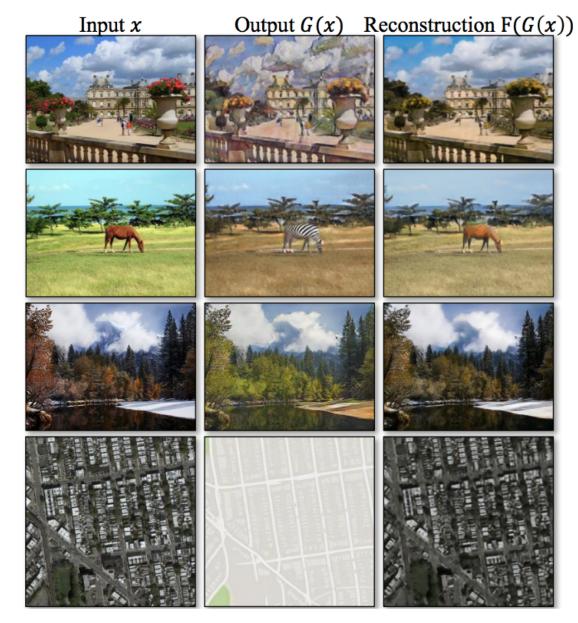
$$\mathcal{L}_{\text{GAN}}(D_Y) = \mathbb{E}_{y \sim p_{\text{data}}(y)} \left[ (D_Y(y) - 1)^2 \right] + \mathbb{E}_{x \sim p_{\text{data}}(x)} \left[ D_Y(G(x))^2 \right]$$
$$\mathcal{L}_{\text{GAN}}(D_X) = \mathbb{E}_{x \sim p_{\text{data}}(x)} \left[ (D_X(x) - 1)^2 \right] + \mathbb{E}_{y \sim p_{\text{data}}(y)} \left[ D_X(F(y))^2 \right]$$

CycleGAN generator loss:

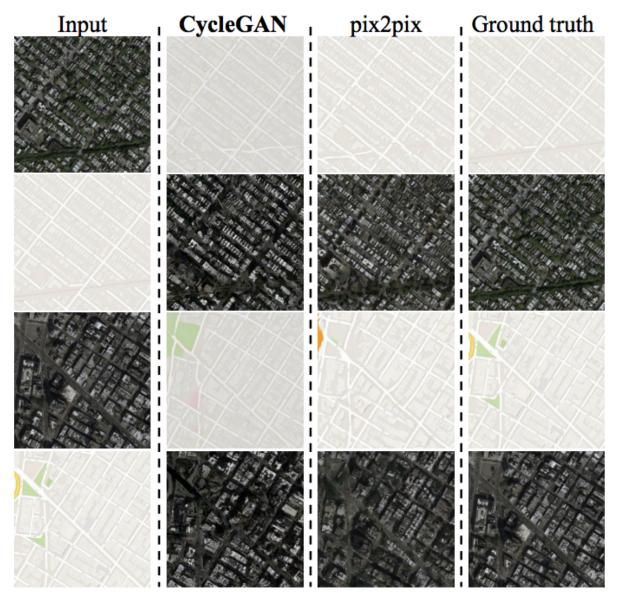
 $\mathcal{L}_{\text{cyc}}(G,F) = \mathbb{E}_{x \sim p_{\text{data}}(x)} [D_Y(G(x) - 1)^2] + \mathbb{E}_{y \sim p_{\text{data}}(y)} [D_X(F(y) - 1)^2]$  $+ \mathbb{E}_{x \sim p_{\text{data}}(x)} \left[ \left\| F(G(x)) - x \right\|_1 \right] + \mathbb{E}_{y \sim p_{\text{data}}(y)} \left[ \left\| G(F(y)) - y \right\|_1 \right]$ 

# CycleGAN

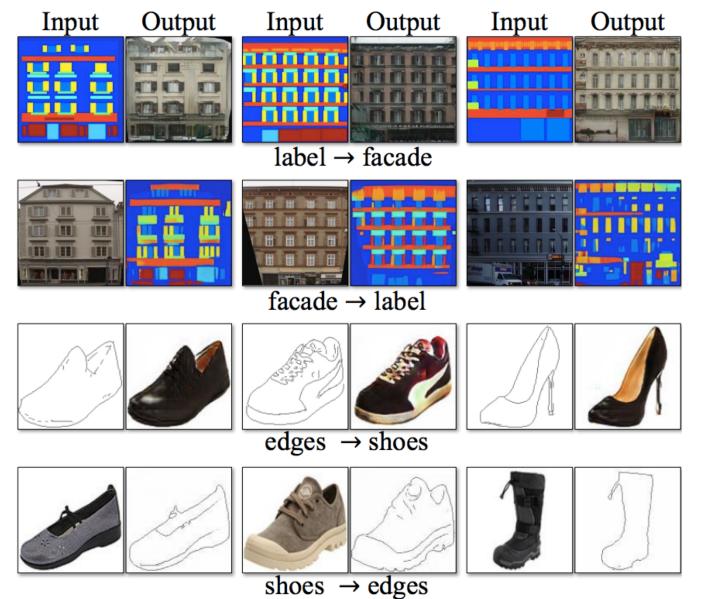
#### • Illustration of cycle consistency:



• Translation between maps and aerial photos

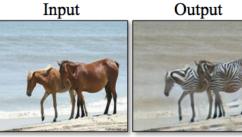


#### • Other pix2pix tasks



• Tasks for which paired data is unavailable





horse  $\rightarrow$  zebra



 $zebra \rightarrow horse$ 



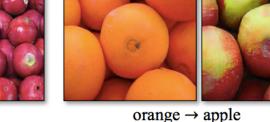
apple  $\rightarrow$  orange



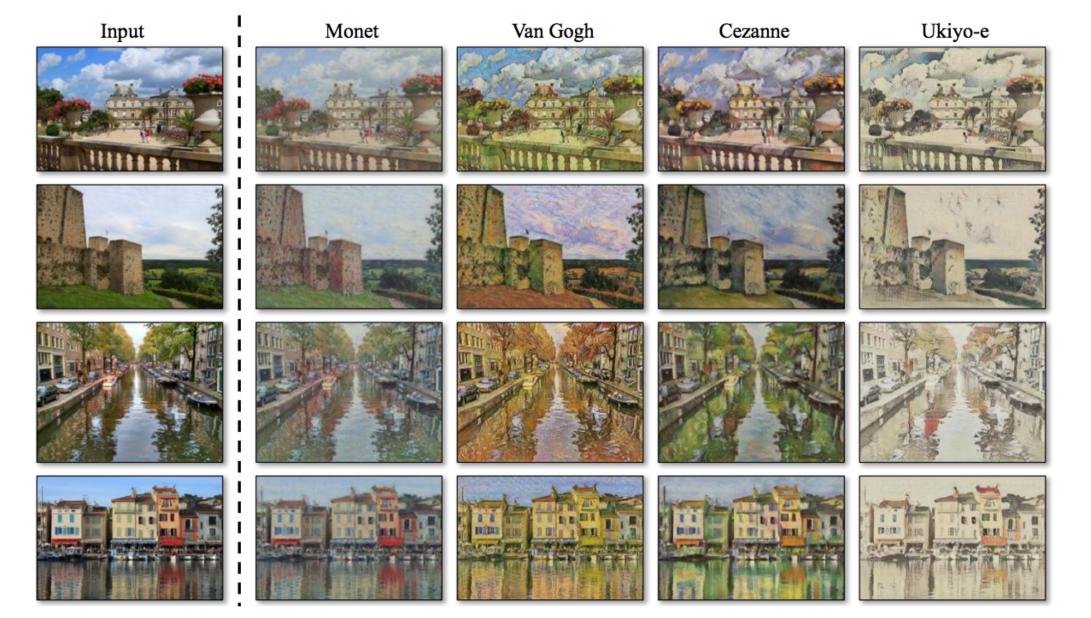
Output

Input





#### • Style transfer



## CycleGAN: Failure cases

#### Failure cases

