
Image Generation

Slides adapted from S. Lazebnik

Image generation
Input: Image

• High dimensional
• Structured

Output: Label
• Low dimensional

Easy

Deep
Network

dog

Deep Network

dog

Input: Label / nothing
• Low dimensional

Output: Image
• High dimensional
• Many possibilities

Very hard

� 2019 Philipp Krähenbühl and Chao-Yuan Wu

Autoencoder

Image to image

• with bottleneck

• Le

Encoder

Decoder

Bottleneck

Reducing the Dimensionality of Data with Neural Networks,
Hinton and Salakhutdinov, Science, 2006

Compression

Invertible mapping

Does it learn to understand

the image?

• Only in the limit / best
compression

� 2019 Philipp Krähenbühl and Chao-Yuan Wu

Alternative that works

Deep image prior

• Learn decoder of

autoencoder

• Fixed random input

• Learns to denoise

• Learn how to generate an

image from a single random

code

• Search in the space on NN

parameters to generate the

image

Decoder

Deep image prior, Ulyanov et al., CVPR 2018

� 2019 Philipp Krähenbühl and Chao-Yuan Wu

Deep image prior

Variational Autoencoder

Encoder

Decoder

Bottleneck

Variational autoencoder -
formal definition

• Encoder

• �

• Sampling �

• Decoder

• �

• Approximately learns �

• Variational lower bound

q(z |x) = ! (z; μθ(x), σ2
θ (x)I)

f ∼q(z |x)

P(x | f)

P(x)

Encoder

Decoder

Bottleneck

! " = $! " % ! % &%

VAE faces

Alec Radford

Generative adversarial networks

BigGAN (2018)

EBGAN (2017)

https://arxiv.org/pdf/1809.11096.pdf
https://arxiv.org/pdf/1609.03126.pdf

Outline
• Generative tasks
• Formulations

• Original GAN
• DCGAN
• WGAN, improved WGAN
• LSGAN

• Issues
• Stability
• Mode collapse
• Evaluation methodology

Generative tasks
• Generation (from scratch): learn to sample from

the distribution represented by the training set
• Unsupervised learning task

Generative tasks
• Conditional generation

Figure source

https://arxiv.org/pdf/1805.08318.pdf

Generative tasks
• Image-to-image translation

P. Isola, J.-Y. Zhu, T. Zhou, A. Efros, Image-to-Image Translation with Conditional Adversarial
Networks, CVPR 2017

https://phillipi.github.io/pix2pix/

Designing a network for generative tasks
1. We need an architecture that can generate an

image
• Recall upsampling architectures for dense prediction

Random
seed or

latent code

Unconditional
generation

Designing a network for generative tasks
1. We need an architecture that can generate an

image
• Recall upsampling architectures for dense prediction

Image-to-image translation

Designing a network for generative tasks
1. We need an architecture that can generate an

image
• Recall upsampling architectures for dense prediction

2. We need to design the right loss function

Generative adversarial networks
• Train two networks with opposing objectives:

• Generator: learns to generate samples
• Discriminator: learns to distinguish between

generated and real samples

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, Y. Bengio, Generative adversarial nets, NIPS 2014

!
Random noise "

#
“Fake”

#
“Real”

Figure adapted
from F. Fleuret

http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
https://fleuret.org/ee559/ee559-slides-10-1-GAN.pdf

GAN objective
• The discriminator !(#) should output the probability

that the sample # is real
• That is, we want !(#) to be close to 1 for real data

and close to 0 for fake
• Expected conditional log likelihood for real and

generated data:
%&~()*+* log!(#)

= %&~()*+* log!(#) + %1~(log(1 − ! 4(5))
We seed the generator with noise 5
drawn from a simple distribution 6

(Gaussian or uniform)

+ %&~(789 log 1 − ! #

GAN

GAN

GAN objective
! ",$ = &'~)*+,+ log$(1) + &4~)log(1 − $ "(7))

• The discriminator wants to correctly distinguish real
and fake samples:

$∗ = arg max= !(", $)
• The generator wants to fool the discriminator:

"∗ = arg min@ !(", $)
• Train the generator and discriminator jointly in a

minimax game

Theoretical analysis
! ",$ = &'~)*+,+ log$(1) + &4~)log(1 − $ "(7))

• Assuming unlimited capacity for generator and
discriminator and unlimited training data:
• The objective min; max>! ",$ is equivalent to Jensen-

Shannon divergence between ?@ABA and ?CDE and global
optimum (Nash equilibrium) is given by ?@ABA = ?CDE

• If at each step, $ is allowed to reach its optimum given ",
and " is updated to decrease ! ",$, then ?CDE with
eventually converge to ?@ABA

GAN training
! ",$ = &'~)*+,+ log$(1) + &4~)log(1 − $ "(7))

• Alternate between
• Gradient ascent on discriminator:

$∗ = arg max= ! ",$
• Gradient descent on generator (minimize log-probability

of discriminator being right):
"∗ = arg min@ ! ",$

= arg min@ &4~)log(1 − $ "(7))
• In practice, do gradient ascent on generator (maximize

log-probability of discriminator being wrong):
"∗ = arg max@ &4~)log($ "(7))

GAN training algorithm
• Update discriminator

• Repeat for ! steps:
• Sample mini-batch of noise samples "#,… , "& and

mini-batch of real samples '#,… , '&
• Update parameters of (by stochastic gradient ascent on

1
*+

&
log(('&) + log(1 − (3("&))

• Update generator
• Sample mini-batch of noise samples "#,… , "&
• Update parameters of 3 by stochastic gradient ascent on

1
*+

&
log(3("&)

• Repeat until happy with results

GAN: Conceptual picture
• Update discriminator: push !(#$%&%) close to

1 and !((())) close to 0
• The generator is a “black box” to the discriminator

) (!
(())

!((()))

#$%&%

!(#$%&%)

GAN: Conceptual picture
• Update generator: increase !(#($))

• Requires back-propagating through the
composed generator-discriminator network
(i.e., the discriminator cannot be a black box)

• The generator is exposed to real data only via
the output of the discriminator (and its gradients)

$ # ! !(#($))
#($)

GAN: Conceptual picture
• Test time

! " "(!)

Original GAN results

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, Y. Bengio, Generative adversarial nets, NIPS 2014

Nearest real image for
sample to the left

MNIST digits Toronto Face Dataset

http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf

Original GAN results

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, Y. Bengio, Generative adversarial nets, NIPS 2014

CIFAR-10 (FC networks) CIFAR-10 (conv networks)

http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf

• Propose principles for designing convolutional
architectures for GANs

• Generator architecture

DCGAN

A. Radford, L. Metz, S. Chintala, Unsupervised representation learning with deep
convolutional generative adversarial networks, ICLR 2016

https://arxiv.org/pdf/1511.06434.pdf

• Propose principles for designing convolutional
architectures for GANs

• Generator architecture

DCGAN

A. Radford, L. Metz, S. Chintala, Unsupervised representation learning with deep
convolutional generative adversarial networks, ICLR 2016

Four transposed convolution layers
with ReLU activations

Tanh activations
in the last layer

Uniformly
distributed

input

Linear
transformation

https://arxiv.org/pdf/1511.06434.pdf

• Propose principles for designing convolutional

architectures for GANs

• Discriminator architecture

• Don’t use pooling, only strided convolutions

• Use Leaky ReLU activations (sparse gradients

cause problems for training)

• Use only one FC layer before the softmax output

• Use batch normalization after most layers

(in the generator also)

DCGAN

A. Radford, L. Metz, S. Chintala, Unsupervised representation learning with deep

convolutional generative adversarial networks, ICLR 2016

https://arxiv.org/pdf/1511.06434.pdf

DCGAN results

Generated bedrooms after one epoch

DCGAN results

Generated bedrooms after five epochs

DCGAN results
Generated bedrooms from reference implementation

Source: F. Fleuret

Notice
repetition
artifacts
(analysis)

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture12.pdf
https://distill.pub/2016/deconv-checkerboard/

DCGAN results
Interpolation between different points in the z space

DCGAN results
• Vector arithmetic in the z space

DCGAN results
• Vector arithmetic in the z space

DCGAN results
• Pose transformation by adding a “turn” vector

Image-to-image translation

P. Isola, J.-Y. Zhu, T. Zhou, A. Efros, Image-to-Image Translation with Conditional Adversarial
Networks, CVPR 2017

https://phillipi.github.io/pix2pix/

Pix2Pix - Image2Image translation

"Autoencoder"
• Different input and

output
GAN loss

• High fidelity
reconstruction

Generator

Discriminator
fake

Discriminator
real

real
image

Image-to-Image Translation with Conditional
Adversarial Networks, Isola et al., CVPR 2017

Image-to-image translation
• Produce modified image ! conditioned on

input image " (note change of notation)
• Generator receives " as input
• Discriminator receives an ", ! pair and has to

decide whether it is real or fake

Image-to-image translation
• Generator architecture: U-Net

• Note: no ! used as input, transformation is
basically deterministic

Image-to-image translation
• Generator architecture: U-Net

Figure source

Encode: convolution → BatchNorm → ReLU

Decode: transposed convolution → BatchNorm → ReLU

https://affinelayer.com/pix2pix/

Image-to-image translation
• Generator architecture: U-Net

Effect of adding skip connections to the generator

Image-to-image translation
• Generator loss: GAN loss plus L1 reconstruction

penalty

!∗ = argmin* max,ℒ*./ !, 1 + 3 4
5

65 − !(95) ;

Generated output
!(95) should be close to

ground truth target 65

Image-to-image translation
• Generator loss: GAN loss plus L1 reconstruction

penalty

!∗ = argmin* max,ℒ*./ !, 1 + 3 4
5

65 − !(95) ;

Image-to-image translation
• Discriminator: PatchGAN

• Given input image ! and second image ", decide
whether " is a ground truth target or produced by the
generator

Image-to-image translation
• Discriminator: PatchGAN

• Given input image ! and second image ", decide
whether " is a ground truth target or produced by the
generator

• Output is a 30 x 30 map where each value (0 to 1)
represents the quality of the corresponding section
of the output image

• Fully convolutional network, effective patch size can
be increased by increasing the depth

Figure source

https://affinelayer.com/pix2pix/

Image-to-image translation
• Discriminator: PatchGAN

• Given input image ! and second image ", decide
whether " is a ground truth target or produced by the
generator

• Output is a 30 x 30 map where each value (0 to 1)
represents the quality of the corresponding section
of the output image

• Fully convolutional network, effective patch size can
be increased by increasing the depth

Effect of discriminator patch size on generator output

Image-to-image translation: Results
• Translating between maps and aerial photos

Image-to-image translation: Results
• Translating between maps and aerial photos
• Human study:

Image-to-image translation: Results
• Semantic labels to scenes

Image-to-image translation: Results
• Semantic labels to scenes
• Evaluation: FCN score

• The higher the quality of the output, the better the
FCN should do at recovering the original
semantic labels

Image-to-image translation: Results
• Scenes to semantic labels

Image-to-image translation: Results
• Scenes to semantic labels
• Accuracy is worse than that of regular FCNs

or generator with L1 loss

Image-to-image translation: Results
• Semantic labels to facades

Image-to-image translation: Results
• Day to night

Image-to-image translation: Results
• Edges to photos

Image-to-image translation: Results
• pix2pix demo

https://affinelayer.com/pixsrv/

Image-to-image translation: Limitations
• Visual quality could be improved
• Requires !, # pairs for training
• Does not model conditional distribution
$(#|!), returns a single mode instead

CycleGAN
• Given: domains ! and "
• Train two generators # and $ and two

discriminators %& and %'
• $ translates from ! to ", # translates from " to !
• %& recognizes images from !, %' from "
• We want #($())) ≈) and $(#(,)) ≈ ,

CycleGAN: Architecture
• Generators:

• Discriminators: PatchGAN on 70 x 70 patches

Figure source

https://hardikbansal.github.io/CycleGANBlog/

CycleGAN: Loss
• Requirements:

• ! translates from " to #, $ translates from # to "
• %& recognizes images from ", %' from #
• We want $(!())) ≈) and !($(,)) ≈ ,

• CycleGAN discriminator loss: LSGAN
ℒ./0 %' = 23~56787(3) (%' , − 1); + 2=~56787(=) %' !) ;

ℒ./0 %& = 2=~56787(=) (%&) − 1); + 23~56787(3) %& $, ;

• CycleGAN generator loss:
ℒ>?> !, $ = 2=~56787(=) %' !) − 1 ; + 23~56787(3) %& $, − 1 ;

+ 2=~56787(=) $!) −) A + 23~56787(3) ! $, − , A

CycleGAN
• Illustration of cycle consistency:

CycleGAN: Results
• Translation between maps and aerial photos

CycleGAN: Results
• Other pix2pix tasks

CycleGAN: Results
• Tasks for which paired data is unavailable

CycleGAN: Results
• Style transfer

CycleGAN: Failure cases
• Failure cases

