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Image generation
Input: Image

• High dimensional
• Structured

Output: Label
• Low dimensional

Easy

Deep 
Network

dog

Deep Network

dog

Input: Label / nothing
• Low dimensional

Output: Image
• High dimensional
• Many possibilities

Very hard

� 2019 Philipp Krähenbühl and Chao-Yuan Wu



Autoencoder

Image to image

• with bottleneck

• Le

Encoder

Decoder

Bottleneck

Reducing the Dimensionality of Data with Neural Networks, 
Hinton and Salakhutdinov, Science, 2006

Compression

Invertible mapping

Does it learn to understand 

the image?

• Only in the limit / best 
compression

� 2019 Philipp Krähenbühl and Chao-Yuan Wu



Alternative that works

Deep image prior

• Learn decoder of 

autoencoder

• Fixed random input

• Learns to denoise

• Learn how to generate an 

image from a single random 

code

• Search in the space on NN 

parameters to generate the 

image

Decoder

Deep image prior, Ulyanov et al.,  CVPR 2018

� 2019 Philipp Krähenbühl and Chao-Yuan Wu



Deep image prior



Variational Autoencoder

Encoder

Decoder

Bottleneck

Variational autoencoder - 
formal definition

• Encoder


• � 


• Sampling � 


• Decoder


• � 


• Approximately learns � 


• Variational lower bound

q(z |x) = ! (z; μθ(x), σ2
θ (x)I)

f ∼q(z |x)

P(x | f)

P(x)

Encoder

Decoder

Bottleneck
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VAE faces 

Alec Radford



Generative adversarial networks

BigGAN (2018)

EBGAN (2017)

https://arxiv.org/pdf/1809.11096.pdf
https://arxiv.org/pdf/1609.03126.pdf


Outline
• Generative tasks
• Formulations

• Original GAN
• DCGAN
• WGAN, improved WGAN
• LSGAN

• Issues
• Stability
• Mode collapse
• Evaluation methodology



Generative tasks
• Generation (from scratch): learn to sample from 

the distribution represented by the training set
• Unsupervised learning task



Generative tasks
• Conditional generation

Figure source

https://arxiv.org/pdf/1805.08318.pdf


Generative tasks
• Image-to-image translation

P. Isola, J.-Y. Zhu, T. Zhou, A. Efros, Image-to-Image Translation with Conditional Adversarial 
Networks, CVPR 2017

https://phillipi.github.io/pix2pix/


Designing a network for generative tasks
1. We need an architecture that can generate an 

image
• Recall upsampling architectures for dense prediction

Random 
seed or 

latent code

Unconditional 
generation



Designing a network for generative tasks
1. We need an architecture that can generate an 

image
• Recall upsampling architectures for dense prediction

Image-to-image translation



Designing a network for generative tasks
1. We need an architecture that can generate an 

image
• Recall upsampling architectures for dense prediction

2. We need to design the right loss function



Generative adversarial networks
• Train two networks with opposing objectives:

• Generator: learns to generate samples
• Discriminator: learns to distinguish between 

generated and real samples

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, 
A. Courville, Y. Bengio, Generative adversarial nets, NIPS 2014

!
Random noise "

#
“Fake”

#
“Real”

Figure adapted 
from F. Fleuret

http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
https://fleuret.org/ee559/ee559-slides-10-1-GAN.pdf


GAN objective
• The discriminator !(#) should output the probability 

that the sample # is real 
• That is, we want !(#) to be close to 1 for real data 

and close to 0 for fake
• Expected conditional log likelihood for real and 

generated data:
%&~()*+* log!(#)

= %&~()*+* log!(#) + %1~(log(1 − ! 4(5) )
We seed the generator with noise 5
drawn from a simple distribution 6

(Gaussian or uniform)

+ %&~(789 log 1 − ! #



GAN



GAN



GAN objective
! ",$ = &'~)*+,+ log$(1) + &4~)log(1 − $ "(7) )

• The discriminator wants to correctly distinguish real 
and fake samples:

$∗ = arg max= !(", $)
• The generator wants to fool the discriminator:

"∗ = arg min@ !(", $)
• Train the generator and discriminator jointly in a 

minimax game



Theoretical analysis
! ",$ = &'~)*+,+ log$(1) + &4~)log(1 − $ "(7) )

• Assuming unlimited capacity for generator and 
discriminator and unlimited training data:
• The objective min; max>! ",$ is equivalent to Jensen-

Shannon divergence between ?@ABA and ?CDE and global 
optimum (Nash equilibrium) is given by ?@ABA = ?CDE

• If at each step, $ is allowed to reach its optimum given ", 
and " is updated to decrease ! ",$ , then ?CDE with 
eventually converge to ?@ABA



GAN training
! ",$ = &'~)*+,+ log$(1) + &4~)log(1 − $ "(7) )

• Alternate between
• Gradient ascent on discriminator:

$∗ = arg max= ! ",$
• Gradient descent on generator (minimize log-probability 

of discriminator being right):
"∗ = arg min@ ! ",$

= arg min@ &4~)log(1 − $ "(7) )
• In practice, do gradient ascent on generator (maximize 

log-probability of discriminator being wrong):
"∗ = arg max@ &4~)log($ "(7) )



GAN training algorithm
• Update discriminator

• Repeat for ! steps:
• Sample mini-batch of noise samples "#,… , "& and 

mini-batch of real samples '#,… , '&
• Update parameters of ( by stochastic gradient ascent on

1
*+

&
log(('&) + log(1 − ( 3("&) )

• Update generator
• Sample mini-batch of noise samples "#,… , "&
• Update parameters of 3 by stochastic gradient ascent on

1
*+

&
log( 3("&)

• Repeat until happy with results



GAN: Conceptual picture
• Update discriminator: push !(#$%&%) close to 

1 and !((())) close to 0
• The generator is a “black box” to the discriminator

) ( !
(())

!((()))

#$%&%

!(#$%&%)



GAN: Conceptual picture
• Update generator: increase !(#($))

• Requires back-propagating through the 
composed generator-discriminator network 
(i.e., the discriminator cannot be a black box)

• The generator is exposed to real data only via 
the output of the discriminator (and its gradients)

$ # ! !(#($))
#($)



GAN: Conceptual picture
• Test time

! " "(!)



Original GAN results

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, 
A. Courville, Y. Bengio, Generative adversarial nets, NIPS 2014

Nearest real image for 
sample to the left

MNIST digits Toronto Face Dataset

http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf


Original GAN results

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, 
A. Courville, Y. Bengio, Generative adversarial nets, NIPS 2014

CIFAR-10 (FC networks) CIFAR-10 (conv networks)

http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf


• Propose principles for designing convolutional 
architectures for GANs

• Generator architecture

DCGAN

A. Radford, L. Metz, S. Chintala, Unsupervised representation learning with deep 
convolutional generative adversarial networks, ICLR 2016

https://arxiv.org/pdf/1511.06434.pdf


• Propose principles for designing convolutional 
architectures for GANs

• Generator architecture

DCGAN

A. Radford, L. Metz, S. Chintala, Unsupervised representation learning with deep 
convolutional generative adversarial networks, ICLR 2016

Four transposed convolution layers 
with ReLU activations

Tanh activations 
in the last layer

Uniformly 
distributed 

input

Linear 
transformation

https://arxiv.org/pdf/1511.06434.pdf


• Propose principles for designing convolutional 

architectures for GANs

• Discriminator architecture

• Don’t use pooling, only strided convolutions

• Use Leaky ReLU activations (sparse gradients 

cause problems for training)

• Use only one FC layer before the softmax output

• Use batch normalization after most layers 

(in the generator also)

DCGAN

A. Radford, L. Metz, S. Chintala, Unsupervised representation learning with deep 

convolutional generative adversarial networks, ICLR 2016

https://arxiv.org/pdf/1511.06434.pdf


DCGAN results

Generated bedrooms after one epoch



DCGAN results

Generated bedrooms after five epochs



DCGAN results
Generated bedrooms from reference implementation

Source: F. Fleuret

Notice 
repetition 
artifacts
(analysis)

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture12.pdf
https://distill.pub/2016/deconv-checkerboard/


DCGAN results
Interpolation between different points in the z space



DCGAN results
• Vector arithmetic in the z space



DCGAN results
• Vector arithmetic in the z space



DCGAN results
• Pose transformation by adding a “turn” vector



Image-to-image translation

P. Isola, J.-Y. Zhu, T. Zhou, A. Efros, Image-to-Image Translation with Conditional Adversarial 
Networks, CVPR 2017

https://phillipi.github.io/pix2pix/


Pix2Pix - Image2Image translation

"Autoencoder"
• Different input and 

output
GAN loss

• High fidelity 
reconstruction

Generator

Discriminator
fake

Discriminator
real

real 
image

Image-to-Image Translation with Conditional 
Adversarial Networks, Isola et al., CVPR 2017



Image-to-image translation
• Produce modified image ! conditioned on 

input image " (note change of notation)
• Generator receives " as input
• Discriminator receives an ", ! pair and has to 

decide whether it is real or fake



Image-to-image translation
• Generator architecture: U-Net

• Note: no ! used as input, transformation is 
basically deterministic



Image-to-image translation
• Generator architecture: U-Net

Figure source

Encode: convolution → BatchNorm → ReLU 

Decode: transposed convolution → BatchNorm → ReLU 

https://affinelayer.com/pix2pix/


Image-to-image translation
• Generator architecture: U-Net

Effect of adding skip connections to the generator



Image-to-image translation
• Generator loss: GAN loss plus L1 reconstruction 

penalty

!∗ = argmin* max,ℒ*./ !, 1 + 3 4
5

65 − !(95) ;

Generated output 
!(95) should be close to 

ground truth target 65



Image-to-image translation
• Generator loss: GAN loss plus L1 reconstruction 

penalty

!∗ = argmin* max,ℒ*./ !, 1 + 3 4
5

65 − !(95) ;



Image-to-image translation
• Discriminator: PatchGAN

• Given input image ! and second image ", decide 
whether " is a ground truth target or produced by the 
generator



Image-to-image translation
• Discriminator: PatchGAN

• Given input image ! and second image ", decide 
whether " is a ground truth target or produced by the 
generator

• Output is a 30 x 30 map where each value (0 to 1) 
represents the quality of the corresponding section 
of the output image

• Fully convolutional network, effective patch size can 
be increased by increasing the depth

Figure source

https://affinelayer.com/pix2pix/


Image-to-image translation
• Discriminator: PatchGAN

• Given input image ! and second image ", decide 
whether " is a ground truth target or produced by the 
generator

• Output is a 30 x 30 map where each value (0 to 1) 
represents the quality of the corresponding section 
of the output image

• Fully convolutional network, effective patch size can 
be increased by increasing the depth

Effect of discriminator patch size on generator output



Image-to-image translation: Results
• Translating between maps and aerial photos



Image-to-image translation: Results
• Translating between maps and aerial photos
• Human study:



Image-to-image translation: Results
• Semantic labels to scenes



Image-to-image translation: Results
• Semantic labels to scenes
• Evaluation: FCN score

• The higher the quality of the output, the better the 
FCN should do at recovering the original 
semantic labels



Image-to-image translation: Results
• Scenes to semantic labels



Image-to-image translation: Results
• Scenes to semantic labels
• Accuracy is worse than that of regular FCNs 

or generator with L1 loss



Image-to-image translation: Results
• Semantic labels to facades



Image-to-image translation: Results
• Day to night



Image-to-image translation: Results
• Edges to photos



Image-to-image translation: Results
• pix2pix demo

https://affinelayer.com/pixsrv/


Image-to-image translation: Limitations
• Visual quality could be improved
• Requires !, # pairs for training
• Does not model conditional distribution 
$(#|!), returns a single mode instead



CycleGAN
• Given: domains ! and "
• Train two generators # and $ and two 

discriminators %& and %'
• $ translates from ! to ", # translates from " to !
• %& recognizes images from !, %' from "
• We want #($())) ≈ ) and $(#(,)) ≈ ,



CycleGAN: Architecture
• Generators:

• Discriminators: PatchGAN on 70 x 70 patches

Figure source

https://hardikbansal.github.io/CycleGANBlog/


CycleGAN: Loss
• Requirements:

• ! translates from " to #, $ translates from # to "
• %& recognizes images from ", %' from #
• We want $(!())) ≈ ) and !($(,)) ≈ ,

• CycleGAN discriminator loss: LSGAN
ℒ./0 %' = 23~56787(3) (%' , − 1); + 2=~56787(=) %' ! ) ;

ℒ./0 %& = 2=~56787(=) (%& ) − 1); + 23~56787(3) %& $ , ;

• CycleGAN generator loss:
ℒ>?> !, $ = 2=~56787(=) %' ! ) − 1 ; + 23~56787(3) %& $ , − 1 ;

+ 2=~56787(=) $ ! ) − ) A + 23~56787(3) ! $ , − , A



CycleGAN
• Illustration of cycle consistency:



CycleGAN: Results
• Translation between maps and aerial photos



CycleGAN: Results
• Other pix2pix tasks



CycleGAN: Results
• Tasks for which paired data is unavailable



CycleGAN: Results
• Style transfer



CycleGAN: Failure cases
• Failure cases


