
Similarity Learning with 
CNN’s



Example: Face classification

• Classify who is in a picture
• Each person is a class
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Obama
Carter

WashingtonKennedyBush
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Issues
• What do we do when we have a new class?

• Classifier needs to retrain
• Instead try to learn similarity – use 

differentsame

Deep NetworkDeep Network
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Solution - Siamese networks

• Instead of having single network

• Separate network for each image a

share the final layers  

• Distance metric, cos, dot product 

• or KNN search
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Signature Verification using a Siamese Time 
Delay Neural Network, Bromley et al., NIPS 
1994
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Objective, Contrastive Loss
• Positives

• ∥ "# − "% ∥< '
• Negatives

• ∥ "# − "% ∥> '
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Contrastive Loss
• Collapse positives

• ∥ ") − "* ∥
• Separate negatives

• +,-(' −∥ ") − "* ∥, 0)

Dimensionality reduction by learning an invariant mapping, Hadsell et al., CVPR 2006

y = {0, 1}



Chopra, S., Hadsell, R. and LeCun, Y., 2005, June. Learning a similarity metric discriminatively, with application to 

face verification. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society 
Conference on (Vol. 1, pp. 539-546). IEEE.



Margin based loss
• Collapse positives

• !"#(∥ &' − &) ∥ −*, 0)
• Separate negatives

• !"#(* −∥ &' − &) ∥, 0)

Sampling Matters in Deep Embedding 
Learning, Wu et al., ICCV 2017

Problem: need to fix thresholds
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Embedding learning, Triplet Loss
• Distances

• Absolute distances don't matter at inference
• KNN cares about relative distance

• Objective
!"#(0, ∥ () − (+ ∥−∥ (+ − (, ∥ +.)

• Positive pair 0, 1
• Negative pair 0, 2
• Harder to train – need to consider all triplets
• Distorts the embedding space 

• Learning a distance metric from relative comparisons, Schultz and Joachims, NIPS 2003
• Distance metric learning for large margin nearest neighbor classification, Weinberger and Saul, JMLR 2009
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Sampling
• How do we select positives and negatives?
• All pairs, all triplets =, Bad idea
• very slow

• Pairs !(#$)
• Triples !(#&)

• Use sampling 



Random pairs / triples?
• Random positives

• Fast

• Good gradient

• Random negatives

• Far apart, Small loss, Small gradient
• Pick one negative

• Closed to each positive



Hard, Semi-hard negatives
• Too noisy

• No meaningful gradient direction
• Too hard

• Stronger gradient than positives

• Semi-hard negatives
• Fine one negatives

• at same distance as a positive



Applications Matching and Similarity Learning
• Previously features and distance metric have been learned 

independently
• Use the convolutional descriptors with Nearest neighbor 

matching with Euclidean distance 

• Goal:  learn descriptors and how to compare patches jointly 
• Applications – 2D-3D matching, pose estimation, recognition, 

retrieval)
• Training  - database that contains set of matching patches and 

nonmatching patches

P. Fischer, A. Dosovitskiy, and T. Brox. 
Descriptor matching with convolutional neural networks: a comparison to SIFT.

Zagoruyko, S. and Komodakis, 
N., 2015. Learning to compare 
image patches via 
convolutional neural networks. 
CVPR 2015



Siamese Networks

Zagoruyko, S. and Komodakis, N.,  Learning to compare image patches via convolutional neural networks, CVPR 2015

Different way to compare positive and negative examples
Inputs are embedded together – weights are shared  
Inputs are embedded independently  then merged

Two fully 
connected layers

Two channel 
image – decision 
layer – 1 output  

yes or no Two separate inputs – shared weights 
– or  pseudo shared weights  image –
Outputs are concatenated – passed to 

decision layer  output  yes or no

Spatial Pyramid Pool  
Layer to be able 

To handle patches of 
different sizes



Loss Functions

• Make distance between positive examples small and negative 
examples large

• Different Loss for positive pairs   
• Different Loss for negative pairs (hinge loss)

• Contrastive Loss

• Combination of positive and negative loss

Patch embedding 

y = {0, 1}

y = {-1, 1}
Network output Network weight regulariztaion

Loss =           loss of positive pairs – loss of negative pairs

Chopra, S., Hadsell, R. and LeCun, Y., 
2005, June. Learning a similarity 
metric discriminatively, with 
application to face verification. CVPR 
2005



Triplet networks

• Triplet networks – allows ranking of the examples, positive 
and negative patches in one go

L(A, B, C) = max(0, m + D(A, B) – D(A, C))

…… …

D(f(A), f(B)) < D(f(A), f(C))

A B C



Bell, S. and Bala, K., 2015. Learning visual similarity for product design with convolutional neural networks. ACM 
Transactions on Graphics (TOG), 34(4), p.98.

• Typical negative pair (xn, xq) loss : 
L(xn, xq) = max(0, m2 - ||xn – xq||2) (Hinge Loss)

We can use different loss functions for the two types of input pairs.
• Typical positive pair (xp, xq) loss: L(xp, xq) = ||xp – xq||2 

(Euclidian Loss)



Applications 

Vo, N.N. and Hays, J., 2016, October. Localizing and orienting street views using overhead imagery. 
In European Conference on Computer Vision (pp. 494-509).



Applications 
• Learning discriminative patches from multiple views
• Training data generated from multiple views 
• Matching Aerial views to ground level views 

Vo, N.N. and Hays, J., 2016, October. 
Localizing and orienting street views 
using overhead imagery. In European 
Conference on Computer Vision (pp. 
494-509).



• Query image – determine correct match

A B C D E

Vo, N.N. and Hays, J., 2016, October. Localizing and orienting street views using overhead imagery. In 
European Conference on Computer Vision (pp. 494-509).



Classification CNN:

Siamese-like CNN:

Siamese-classification hybrid 
network:

Triplet network CNN:

I = concatenation(A, B)
f = AlexNet
l = {0, 1}, label

D = ||f(A) – f(B)||2
m = margin parameter (A, B) is a match pair

(A, C) is a non-match pair

Iconv = concatenation(fconv(A), fconv(B))

L(A, B, l) = LogLossSoftMax(f(I), l) L(A, B, l) = LogLossSoftMax(ffc(Iconv), l)

L(A, B, l) = l * D + (1- l) * max(0, m – D)

L(A, B, C) = max(0, m + D(A, B) – D(A, C))



Siamese-like CNN: Triplet network CNN:

Test set Denver Detroit Seattle

Siamese 85.6 83.2 82.9

Triplet 88.8 86.8 86.4

Matching accuracy

Observation 1: 
• Triplet network outperforms the Siamese by a large margin



Siamese-like CNN: Triplet network CNN:

Test set Denver Detroit Seattle

Siamese 85.6 83.2 82.9

Siamese-DBL 90.0 88.0 88

Triplet 88.8 86.8 86.4

Triplet-DBL 90.2 88.4 87.6

Matching accuracy

Observation 2: 
• Distance-based logistic (DBL) Nets significantly outperform 

the original network. 

!(#, %) = 1 + *+!(−-)
1 + *+!(. −-)

L(A, B, l) = LogLoss (p(A, B), l)

Distance-based 
logistic (DBL) loss:
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Learning Correspondences

Matterport3D: Learning from RGB-D Data in Indoor Environments 
Angel Chang et. al. Princeton University, Stanford University, Technical 
University of Munich 

Simo-Serra, E., Trulls, E., Ferraz, L., Kokkinos, I., Fua, P. and Moreno-Noguer, F., 2015. Discriminative learning of deep 
convolutional feature point descriptors. In Proceedings of the IEEE International Conference on Computer Vision (pp. 118-

126).



Cross modal embeddings

Wang, L., Li, Y. and Lazebnik, S., 2016. Learning deep structure-preserving image-text embeddings. In 
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 5005-5013).

Man in black shirt 
playing a guitar



Person Re-indentification problem

Subramaniam, A., Chatterjee, M. and Mittal, A., 2016. Deep Neural Networks with 
Inexact Matching for Person Re-Identification. In Advances in Neural Information 
Processing Systems (pp. 2667-2675).



Subramaniam, A., Chatterjee, M. and Mittal, A., 2016. Deep Neural Networks with Inexact Matching for Person 
Re-Identification. In Advances in Neural Information Processing Systems (pp. 2667-2675).

Baseline:

Proposed 
Method:



Unsupervised Deep Homography: A Fast and Robust Homography Estimation Model 
Ty Nguyen∗, Steven W. Chen∗, Shreyas S. Shivakumar, Camillo J. Taylor, Vijay Kuma 

• Some supervisory signal is easily attainable – matches gathered by 
SFM and data augmentation techniques 

Fig. 2: Overview of homography estimation methods; (a) Benchmark supervised deep learning approach; (b) Feature-based
methods; and (c) Our unsupervised method. DLT: direct linear transform; PSGG: parameterized sampling grid generator;
DS: differentiable sampling.

IV. UNSUPERVISED DEEP HOMOGRAPHY MODEL

While the supervised deep learning method has promising
results, it is limited in real world applications since it requires
ground truth labels. Drawing inspiration from traditional
direct methods for homography estimation, we can define an
analogous loss function. Given an image pair I

A(x) and I
B(x)

with discrete pixel locations represented by homogeneous
coordinates {xi = (xi,yi,1)T}, we want our network to output
H̃4pt that minimizes the average L1 pixel-wise photometric
loss

LPW =
1
|xi| Âxi

|IA(H (xi))� I
B(xi)| (4)

where H̃4pt defines the homography transformation H (xi).
We chose the L1 error versus the L2 error because previous
work has observed that it is more suitable for image align-
ment problems [28], and empirically we found the network
to be easier to train with the L1 error. This loss function is
unsupervised since there is no ground truth label. Similar to
the supervised case, we choose the 4-point parameterization
which is more suitable than the 3⇥3 parameterization.

In order to compare our unsupervised deep learning al-
gorithm with the supervised algorithm, we use the same
VGGNet architecture to output the H̃4pt . Fig. 2(c) depicts
our unsupervised learning model. The regression module
represents the VGGNet architecture and is shared by both the
supervised and unsupervised methods. Although we do not
investigate other possible architectures, different regression
models such as SqueezeNet [29] may yield better perfor-
mance due to advantages in size and computation require-

ments. The second half of Fig. 2(c) represents the main
contribution of this work, which consists of the differentiable
layers that allow the network to be successfully trained with
the loss function (4).

Using the pixel-wise photometric loss function yields ad-
ditional training challenges. First, every operation, including
the warping operation H (xi), must remain differentiable
to allow the network to be trained via backpropagation.
Second, since the error signal depends on differences in
image intensity values rather than the differences in the
homography parameters, training the deep network is not
necessarily as easy or stable. Another implication of using
a pixel-wise photometric loss function is the implied as-
sumption that lighting and contrast between the input images
remains consistent. In traditional direct methods such as
ECC, this appearance variation problem is addressed by
modifying the loss function or preprocessing the images. In
our unsupervised algorithm, we standardize our images by
the mean and variance of the intensities of all pixels in our
training dataset, perform data augmentation by injecting ran-
dom illumination shifts, and use the standard L1 photometric
loss. We found that even without modifying the loss function,
our deep neural network is still able to learn to be invariant
to illumination changes.

A. Model Inputs

The input to our model consists of three parts. The first
part is a 2-channel image of size 128⇥ 128⇥ 2 which is
the stack of P

A and P
B - two patches cropped from the two

images I
A and I

B. The second part is the four corners in I
A,
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Homography Estimation 

Photometric Loss

Unsupervised Deep Homography: A Fast and Robust Homography
Estimation Model

Ty Nguyen⇤, Steven W. Chen⇤, Shreyas S. Shivakumar, Camillo J. Taylor, Vijay Kumar

Abstract— Homography estimation between multiple aerial
images can provide relative pose estimation for collaborative
autonomous exploration and monitoring. The usage on a robotic
system requires a fast and robust homography estimation
algorithm. In this study, we propose an unsupervised
learning algorithm that trains a Deep Convolutional Neural
Network to estimate planar homographies. We compare
the proposed algorithm to traditional feature-based and
direct methods, as well as a corresponding supervised
learning algorithm. Our empirical results demonstrate
that compared to traditional approaches, the unsupervised
algorithm achieves faster inference speed, while maintaining
comparable or better accuracy and robustness to illumination
variation. In addition, our unsupervised method has superior
adaptability and performance compared to the corresponding
supervised deep learning method. Our image dataset and a
Tensorflow implementation of our work are available at htt ps :
//github.com/tynguyen/unsupervisedDeepHomographyRAL2018.

I. INTRODUCTION

A homography is a mapping between two images of a
planar surface from different perspectives. They play an
essential role in robotics and computer vision applications
such as image mosaicing [1], monocular SLAM [2], 3D
camera pose reconstruction [3] and virtual touring [4], [5].
For example, homographies are applicable in scenes viewed
at a far distance by an arbitrary moving camera [6], which
are the situations encountered in UAV imagery. However, to
work well in the aerial multi-robot setting, the homography
estimation algorithm needs to be reliable and fast.

The two traditional approaches for homography estimation
are direct methods and feature-based methods [7]. Direct
methods, such as the seminal Lucas-Kanade algorithm [8],
use pixel-to-pixel matching by shifting or warping the images
relative to each other and comparing the pixel intensity
values using an error metric such as the sum of squared dif-
ferences (SSD). They initialize a guess for the homography
parameters and use a search or optimization technique such
as gradient descent to minimize the error function [9]. The
robustness of direct methods can be improved by using dif-
ferent performance criterion such as the enhanced correlation
coefficient (ECC) [10], integrating feature-based methods
with direct methods [11], or by representing the images in
the Fourier domain [12]. In addition, the speed of direct
methods can be increased by using efficient compositional
image alignment schemes [13].

The authors are with GRASP Lab, University of Pennsylvania, Philadel-
phia, PA 19104, USA, {tynguyen, chenste, sshreyas,
cjtaylor, kumar}@seas.upenn.edu.

⇤: The authors have equal contributions

Fig. 1: Above: Synthetic data; Below: Real data; Homog-
raphy estimation results from the unsupervised neural net-
work. Red represents the ground truth correspondences,
and yellow represents the estimated correspondences. These
images depict an example of large levels of displacement
and illumination shifts in which feature-based, direct and/or
supervised learning methods fail.

The second approach are feature-based methods. These
methods first extract keypoints in each image using local
invariant features (e.g. Scale Invariant Feature Transform
(SIFT) [14]). They then establish a correspondence between
the two sets of keypoints using feature matching, and use
RANSAC [15] to find the best homography estimate. While
these methods have better performance than direct methods,
they can be inaccurate when they fail to detect sufficient
keypoints, or produce incorrect keypoint correspondences
due to illumination and large viewpoint differences between
the images [16]. In addition, these methods are significantly
faster than direct methods but can still be slow due to the
computation of the features, leading to the development of
other feature types such as Oriented FAST and Rotated
BRIEF (ORB) [17] which are more computationally efficient
than SIFT, but have worse performance.

Inspired by the success of data-driven Deep Convolutional
Neural Networks (CNN) in computer vision, there has been
an emergence of CNN approaches to estimating optical
flow [18], [19], [20], dense matching [21], [22], depth esti-
mation [23], and homography estimation [24]. Most of these
works, including the most relevant work on homography
estimation, treat the estimation problem as a supervised
learning task. These supervised approaches use ground truth
labels, and as a result are limited to synthetic datasets where
the ground truth can be generated for free, or require costly
labeling of real-world data sets.

Our work develops an unsupervised, end-to-end, deep
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