Fooling deep networks

Adversarial perturbations

Fooling a deep network

 Image + noise = wrong prediction

- Intriguing properties of neural networks, Szegedy et al., arXiv 2013
- Explaining and Harnessing Adversarial Examples , Goodfellow et al., ICLR 2015

Assume networks are locally linear

For input **X**

Find ϵ

- Such that $f(\mathbf{x} + \epsilon) \neq f(\mathbf{x})$
- i.e. the networks predicts something different
- Has to put some constraints on perturbation
- Optimal attack with $\| \in \|_{\infty} \leq c$ if function is linear
 - $\epsilon = \operatorname{sign}(\nabla_{\mathbf{x}}\ell(f(\mathbf{x}), y))$

O 2019 Philipp Krähenbühl and Chao-Yuan Wu

Projected gradient descent

Networks are not linear

Optimize for the attack using gradient descent

Assume networks are locally linear

For input \boldsymbol{x}

Find ϵ

Such that $f(\mathbf{x} + \epsilon) \neq f(\mathbf{x})$ (i.e. predicts different class)

- maximize $_{\epsilon} \ell(f(\mathbf{x} + \epsilon), y)$
- s.t. $\| \varepsilon \|_{\infty} < c$

Towards Deep Learning Models Resistant to Adversarial Attacks, Madry et al., ICLR 2018

dog

Global adversarial attacks

Attacks all possible inputs at once

• PGD on entire dataset

Attack not input specific

Attack transfers between architectures

• Dataset specific?

Universal adversarial perturbations, Moosavi-Dezfooli et al., CVPR 2017

Universal Perturbations

(d) VGG-19

(f) ResNet-152

	VGG-F	CaffeNet	GoogLeNet	VGG-16	VGG-19	ResNet-152
VGG-F	93.7%	71.8%	48.4%	42.1%	42.1%	47.4 %
CaffeNet	74.0%	93.3%	47.7%	39.9%	39.9%	48.0%
GoogLeNet	46.2%	43.8%	78.9%	39.2%	39.8%	45.5%
VGG-16	63.4%	55.8%	56.5%	78.3%	73.1%	63.4%
VGG-19	64.0%	57.2%	53.6%	73.5%	77.8%	58.0%
ResNet-152	46.3%	46.3%	50.5%	47.0%	45.5%	84.0%

Universal adversarial perturbations, Moosavi-Dezfooli et al., CVPR 2017

Defense

Show network attacked images during training for each iteration

- Construct mini-batch
- Perturb mini-batch
- Forward / backward
 - Original
 - Perturbed

Attacking "robust models" Still works

• just harder

Attacker has access to model and gradients

- Fast gradient sign
- Projected gradient descent

Can we defend against attacks if we do not allow backprop?

$$\chi \quad \epsilon = \operatorname{sign}(\nabla f(x))$$

Back box attacks

Train network to imitate black box network

- Attack new network
 - Attack black box
- If not successful
 - repeat

Practical Black-Box Attacks against Machine Learning, Papernot et al., arXiv 2016

What attacks should we worry about?

Random noise attacks don't matter (yet)

 Doing the wrong thing for real images does

Try a validation set

- No guarantees
- Might overfit to validation / test set
- Failures can be rare, but fatal

