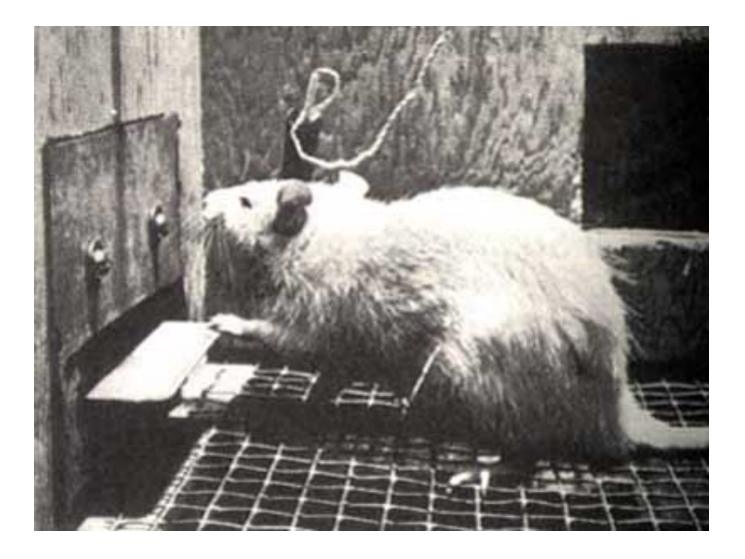
Reinforcement Learning



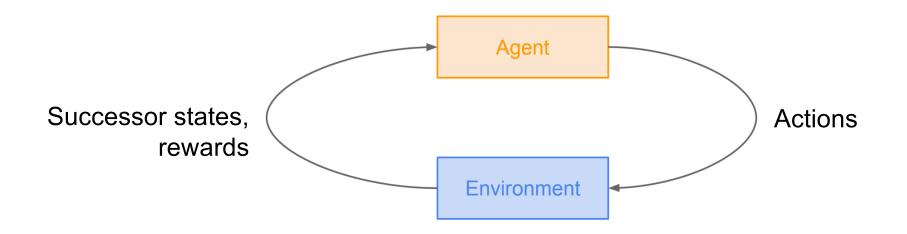
Slides L. Lazebnik and others

Previously

Supervised learning (classification, regression) Unsupervised learning (e.g. metric learning)

Reinforcement learning (RL)

- Agent can take actions that affect the state of the environment and observe occasional rewards that depend on the state
- The goal is to learn a *policy* (mapping from states to actions) to maximize expected reward over time



RL vs. supervised learning

- Reinforcement learning loop
 - From state s, take action a determined by policy $\pi(s)$
 - Environment selects next state s' based on transition model P(s'|s, a)
 - Observe s' and reward r(s'), update policy
- Supervised learning loop
 - Get input x_i sampled i.i.d. from data distribution
 - Use model with parameters *w* to predict output *y*
 - Observe target output y_i and loss $l(w, x_i, y_i)$
 - Update *w* to reduce loss: $w \leftarrow w \eta \nabla l(w, x_i, y_i)$

RL vs. supervised learning

- Reinforcement learning
 - Agent's actions affect the environment and help to determine next observation
 - Rewards may be sparse
 - Rewards are not differentiable w.r.t. model parameters
- Supervised learning
 - Next input does not depend on previous inputs or agent's predictions
 - There is a supervision signal at every step
 - Loss is differentiable w.r.t. model parameters

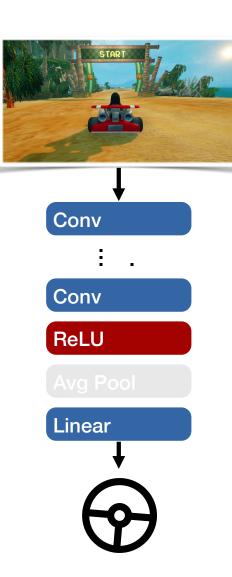
Deep learning for action

Input

- Observation
- Output
 - Action

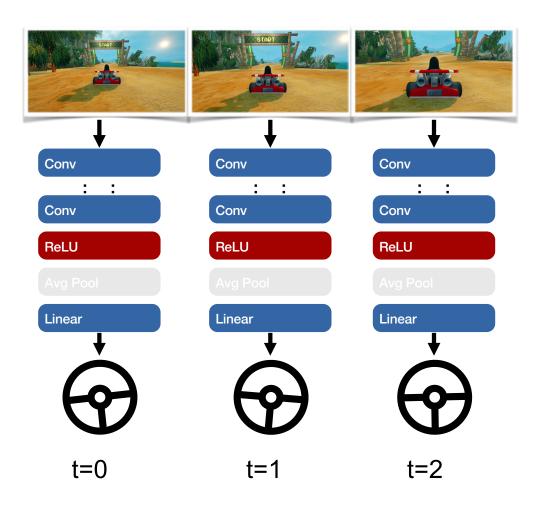
How to backpropagate ? What is the loss ? How to train such networks ?

© 2019 Philipp Krähenbühl and Chao-Yuan Wu

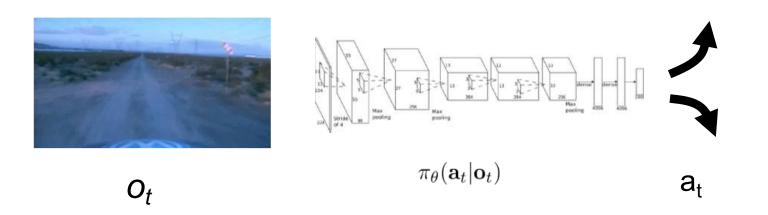


Acting in an environment

- Action changes that state the of the world
 - Non-differentiable
 - Often non-repeatable
 - Long-range dependencies
 - Time matters



Learn policies



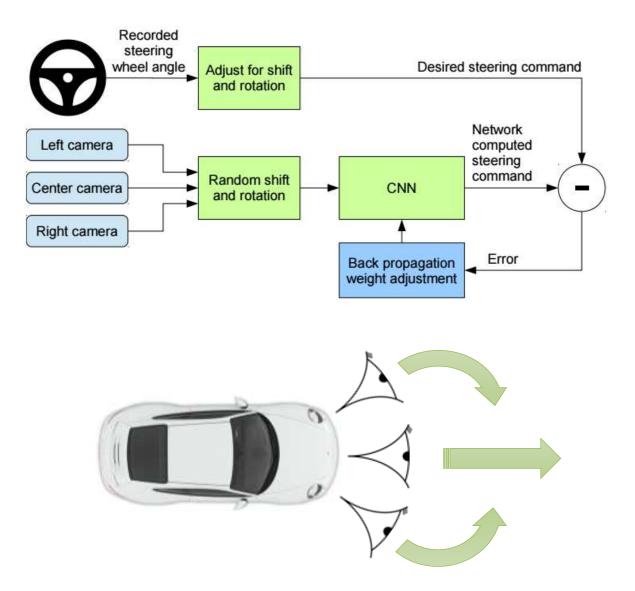
Supervised learning paradigm training data o_t a_t

Learn the policy $\pi_{\theta}(\mathbf{a}_t | \mathbf{o}_t)$

Does is work?

Supervised Learning – Imitation Learning

Bojarski '16 NVIDIA. End to End Learning for Self-Driving Cars



Dagger

- How to handle distribution shift
- Gather more training data using initial policy

DAgger: Dataset Aggregation

goal: collect training data from $p_{\pi_{\theta}}(\mathbf{o}_t)$ instead of $p_{\text{data}}(\mathbf{o}_t)$ how? just run $\pi_{\theta}(\mathbf{a}_t | \mathbf{o}_t)$ but need labels \mathbf{a}_t !

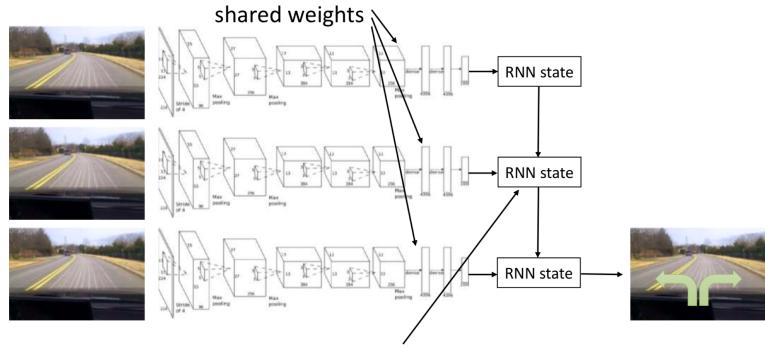
1. train $\pi_{\theta}(\mathbf{a}_t | \mathbf{o}_t)$ from human data $\mathcal{D} = \{\mathbf{o}_1, \mathbf{a}_1, \dots, \mathbf{o}_N, \mathbf{a}_N\}$ 2. run $\pi_{\theta}(\mathbf{a}_t | \mathbf{o}_t)$ to get dataset $\mathcal{D}_{\pi} = \{\mathbf{o}_1, \dots, \mathbf{o}_M\}$ 3. Ask human to label \mathcal{D}_{π} with actions \mathbf{a}_t 4. Aggregate: $\mathcal{D} \leftarrow \mathcal{D} \cup \mathcal{D}_{\pi}$

Problems

Non-markovian

- Multi-model behavior
- Output mixtures of Guassians
- Implicit density models
- Latent variable models (how to use noise effectively)
- Auto-regressive discretization

How to use the history



Typically, LSTM cells work better here

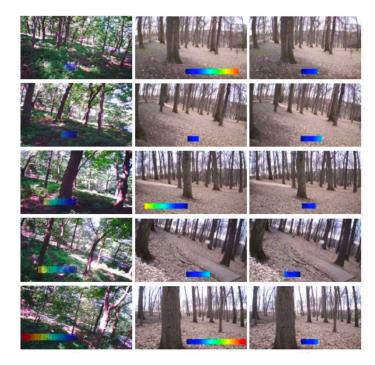
• Trail following as classification

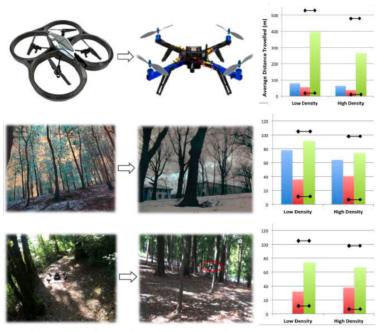
A Machine Learning Approach to Visual Perception of Forest Trails for Mobile Robots, A. Guisti et al

• <u>Video</u>

Case studies

Learning transferable policies for monocular reactive control of MAV, Daftry, Bagnell, Hebert





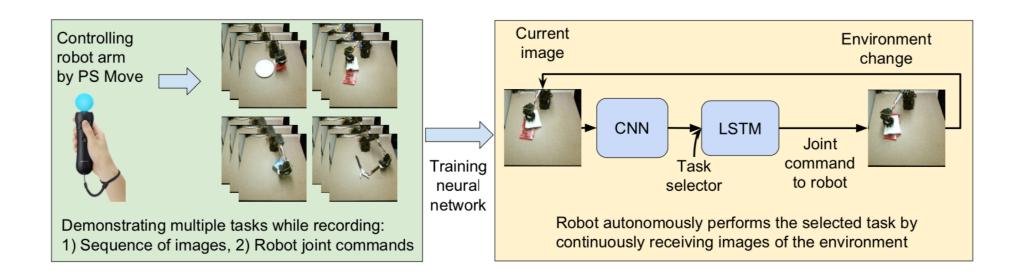
Source Target w/o Domain Adaptation Target with Domain Adaptation Lower Bound

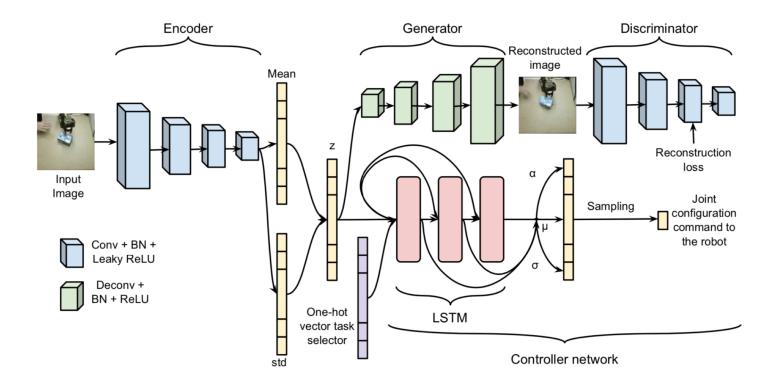
Problems

Non-markovian Multi-model behavior Output mixtures of Gaussians Implicit density models Auto-regressive discretization

Case studies

Vision-based multi-task manipulation for inexpensive robots using end-to-end demonstrate, Rouhollah Rahmatizadeh, Pooya Abolghasemi, Ladislau Bölöni, and Sergey Levine.





Issues with supervised learning

Human needs to provide training data Need a lot of data, some important training data is hard to obtain

Topics : interaction and active learning

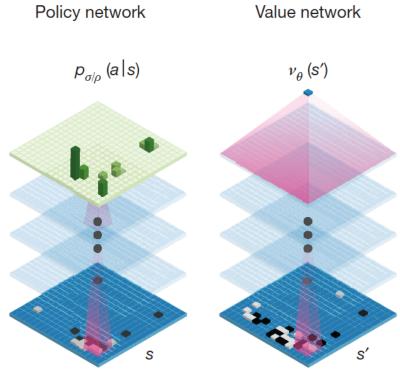
Humans can learn without this level of supervision

From their own experience, feedback through rewards, improving

Back to -> Reinforcement learning

Applications of deep RL

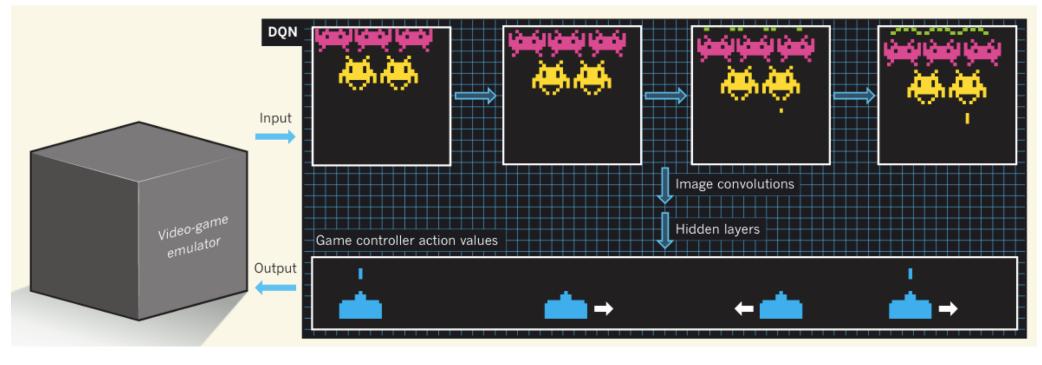
AlphaGo and AlphaZero



https://deepmind.com/research/alphago/

Applications of deep RL

Playing video games



<u>Video</u>

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, M. Riedmiller, <u>Human-level control through deep reinforcement learning</u>, *Nature* 2015

Applications of deep RL

 End-to-end training of deep visuomotor policies

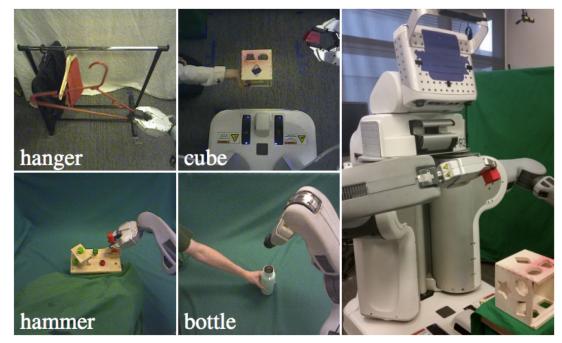


Fig. 1: Our method learns visuomotor policies that directly use camera image observations (left) to set motor torques on a PR2 robot (right).

<u>Video</u>

Sergey Levine et al., Berkeley