
Formalism: Markov Decision Processes
• Components:

• States !, beginning with initial state !0
• Actions #
• Transition model $(!′ | !, #)

– Markov assumption: the probability of going to 
!′ from ! depends only on ! and # and not on 
any other past actions or states

• Reward function *(!)
• Policy p(!): the action that an agent takes in any 

given state
• The “solution” to an MDP



Example MDP: Grid world

!(#) = −0.04 for 
every non-terminal 
state

Transition model:

0.8 0.10.1

Source: P. Abbeel and D. Klein 



Example MDP: Grid world
• Goal: find the best policy

Source: P. Abbeel and D. Klein 



Example MDP: Grid world
• Optimal policies for various values of !(#):



Rewards of state sequences
• Suppose that following policy ! starting in 

state "# leads to a sequence "#, "%, "&, …
• The cumulative reward of the sequence is 
∑)*# +("))

• Problem: state sequences can vary in length 
or even be infinite

• Solution: redefine cumulative reward as 
sum of rewards discounted by a factor .:

+ "# + . + "% + .&+ "& + .0+ "0 +⋯
=3

)*#
.) +(")) , 0 < . ≤ 1



Discounting
! "# + % ! "& + %'! "' + %(! "( +⋯

=+
,-#

%, !(",)

• Cumulative reward is bounded by 0123
&45

• Helps algorithms converge

Image source: P. Abbeel and D. Klein 



Value function
• The value function !"($) of a state $ w.r.t. 

policy & is the expected cumulative reward of 
following that policy starting in $:

!"($) = ( )
*+,

-* .($*) | $, = $, &

with 1* = & $* , $*23~5 6 $*,1*
• The optimal value of a state is the value 

achievable by following the best possible 
policy:

!∗($) = max" ( )
*+,

-* .($*) | $, = $, &



The Bellman equation
• Recursive relationship between optimal 

values of successive states:

!∗ # = % # + ' max+,
-.
/ #0 #, 2 !∗(#0)

Agent receives reward %(#)

Optimal policy:

5∗ # = arg max+,
-.
/ #0 #, 2 !∗(#0)

Agent chooses action 2

Environment chooses #0~ /(9 |#, 2)

Expected value for action 2:

,
-.
/ #0 #, 2 !∗(#0)

Expected 
reward: !∗(#0)



The optimal policy
• Expression using the state value function:

!∗ # = arg max*+
,-
. #/ #, 1 2∗(#/)

• To use this in practice, we need to know the 
transition model

• It is more convenient to define the value of a 
state-action pair:

56(#, 1) = 7 +
89:

;8 <(#8) |#: = #, 1: = 1, !



Q-value function
• The optimal Q-value:

!∗($, &) = max, - .
/01

2/ 3($/) | $1 = $, &1 = &, 5

• What is the relationship between 6∗ $ and 
!∗ $, & ?

6∗ $ = max7!∗ $, &

• What is the optimal policy? 

5∗ $ = arg max7!∗ $, &



Q-value function

!∗($, &) = max, - .
/01

2/ 3($/) | $1 = $, &1 = &, 5

5∗ $ = arg max8 !∗($, &)



Bellman equation for Q-values

!∗ # = max()∗ #, +

• Regular Bellman equation:

!∗ # = , # + . max(/
01
2 #3 #, + !∗(#3)

• Bellman equation for Q-values:

)∗ #, + = , # + ./
01
2 #3 #, + max(1)∗ #′, +′

= 701~9(:|0,() , # + . max(1)∗ #′, +′ |#, +



Finding the optimal policy
• The Bellman equation is a constraint on Q-values 

of successive states: 
!∗($, &) = )*+~-(.|*,0) 1 $ + 3 max0+!∗ $′, &′ |$, &

• We could think of !∗($, &) as a table indexed by 
states and actions, and try to solve the system of 
Bellman equations to fill in the unknown values of 
the table

• Problem: state spaces for interesting problems 
are huge

• Solution: approximate Q-values using a 
parametric function:

!∗ $, & ≈ !9($, &)



Deep Q-learning
• Train a deep neural network to estimate 

Q-values:

Source: D. Silver

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, M. Riedmiller,
Human-level control through deep reinforcement learning, Nature 2015

http://hunch.net/~beygel/deep_rl_tutorial.pdf
http://www.nature.com/nature/journal/v518/n7540/pdf/nature14236.pdf


Deep Q-learning
!∗($, &) = )*+~-(.|*,0) 1 $ + 3 max0+!∗ $′, &′ |$, &

• Idea: at each iteration 8 of training, update model 
parameters 9: to “nudge” the left-hand side toward 
the right-hand “target”:

;: $, & = )*+~- . $, & 1 $ + 3 max0+!<=>? $@, &@ |$, &

• Loss function:

A: 9: = )*,0~B (;:($, &) − !<= $, & )D
where E is a behavior distribution



Deep Q-learning
• Target: !"($, &) = )*+~-(.|*,0) 1 $ + 3 max0+789:; $′, &′ |$, &
• Loss: =" >" = )*,0~? (!"($, &) − 789 $, & )A

• Gradient update:

∇89=(>") = )*,0~? (!"($, &) − 789 $, & ) ∇89789 $, &
= )*,0~?,*+ (1 $ + 3 max0+789:; $′, &′ − 789 $, & ) ∇89789 $, &

• SGD training: replace expectation by sampling experiences
($, &, $′) using behavior distribution and transition model 



Deep Q-learning in practice
• Training is prone to instability

• Unlike in supervised learning, the targets 
themselves are moving!

• Successive experiences are correlated and 
dependent on the policy

• Policy may change rapidly with slight changes to 
parameters, leading to drastic change in data 
distribution

• Solutions
• Freeze target Q network
• Use experience replay



Experience replay
• At each time step:

• Take action !" according to epsilon-greedy policy
• Store experience ($", !&, '&(), $&()) in replay 

memory buffer
• Randomly sample mini-batch of experiences from 

the buffer 



Experience replay
• At each time step:

• Take action !" according to epsilon-greedy policy
• Store experience ($", !&, '&(), $&()) in replay 

memory buffer
• Randomly sample mini-batch of experiences from 

the buffer 
• Update parameters to reduce loss:

+, -, = /0,1,02 (' $ + 4 max1289:;< $′, !′ − 89: $, ! )?

Keep parameters of target 
network fixed, update every 

once in a while



Deep Q-learning in Atari

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, M. Riedmiller,
Human-level control through deep reinforcement learning, Nature 2015

http://www.nature.com/nature/journal/v518/n7540/pdf/nature14236.pdf


Experience Replay
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Putting it together: Deep Q-Learning with Experience Replay

[Mnih et al. NIPS Workshop 2013; Nature 2015]



Deep Q-learning in Atari
• End-to-end learning of !(#, %) from pixels #
• Output is !(#, %) for 18 joystick/button configurations
• Reward is change in score for that step

Q(s,a1)
Q(s,a2)
Q(s,a3)
.
.
.
.
.
.
.
.
.
.
.
Q(s,a18)

Deep Q-Network (DQN)



Deep Q-learning in Atari
• Input state is stack of raw pixels (grayscale) from 

last 4 frames
• Network architecture and hyperparameters fixed for 

all games
Deep Q-Network (DQN)



Deep Q-learning in Atari



Breakout demo

https://www.youtube.com/watch?v=TmPfTpjtdgg

https://www.youtube.com/watch?v=TmPfTpjtdgg

