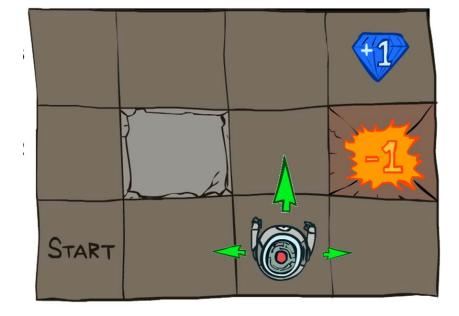
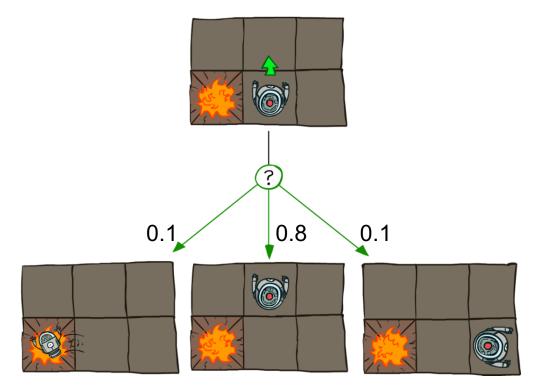
Formalism: Markov Decision Processes

- Components:
 - **States** *s*, beginning with initial state *s*₀
 - Actions a
 - Transition model P(s' | s, a)
 - Markov assumption: the probability of going to s' from s depends only on s and a and not on any other past actions or states
 - Reward function r(s)
- **Policy** $\pi(s)$: the action that an agent takes in any given state
 - The "solution" to an MDP

Example MDP: Grid world



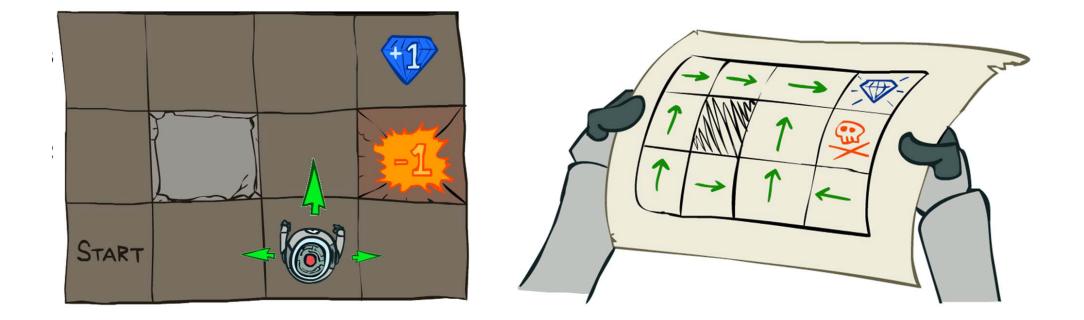
Transition model:



r(s) = -0.04 for every non-terminal state

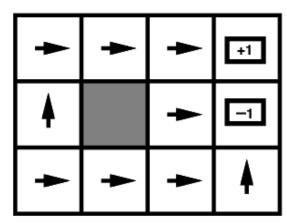
Example MDP: Grid world

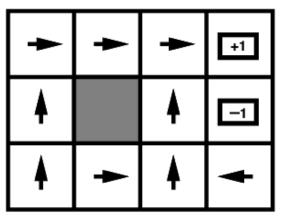
• Goal: find the best policy



Example MDP: Grid world

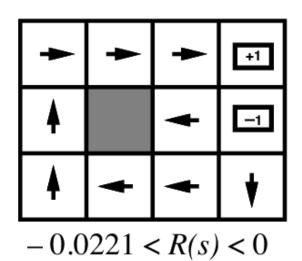
• Optimal policies for various values of r(s):

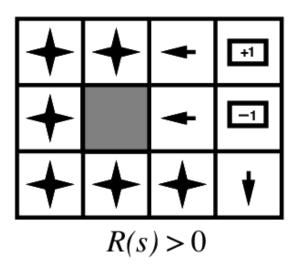




R(s) < -1.6284

-0.4278 < R(s) < -0.0850



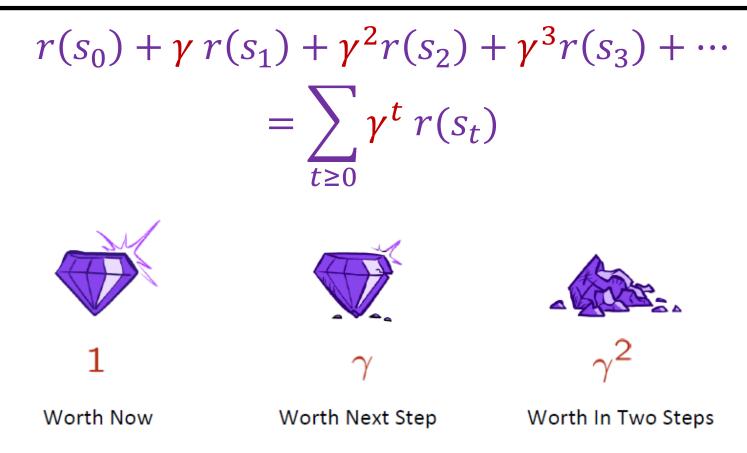


Rewards of state sequences

- Suppose that following policy π starting in state s_0 leads to a sequence $s_0, s_1, s_2, ...$
- The cumulative reward of the sequence is $\sum_{t\geq 0} r(s_t)$
- **Problem:** state sequences can vary in length or even be infinite
- Solution: redefine cumulative reward as sum of rewards *discounted* by a factor γ:

$$\begin{aligned} r(s_0) + \gamma \, r(s_1) + \gamma^2 r(s_2) + \gamma^3 r(s_3) + \cdots \\ &= \sum_{t \ge 0} \gamma^t \, r(s_t), \qquad 0 < \gamma \le 1 \end{aligned}$$

Discounting



- Cumulative reward is bounded by $\frac{r_{\text{max}}}{1-\gamma}$
- Helps algorithms converge

Value function

The value function V^π(s) of a state s w.r.t.
 policy π is the expected cumulative reward of following that policy starting in s:

$$V^{\pi}(s) = \mathbb{E}\left[\sum_{t\geq 0} \gamma^t r(s_t) \mid s_0 = s, \pi\right]$$

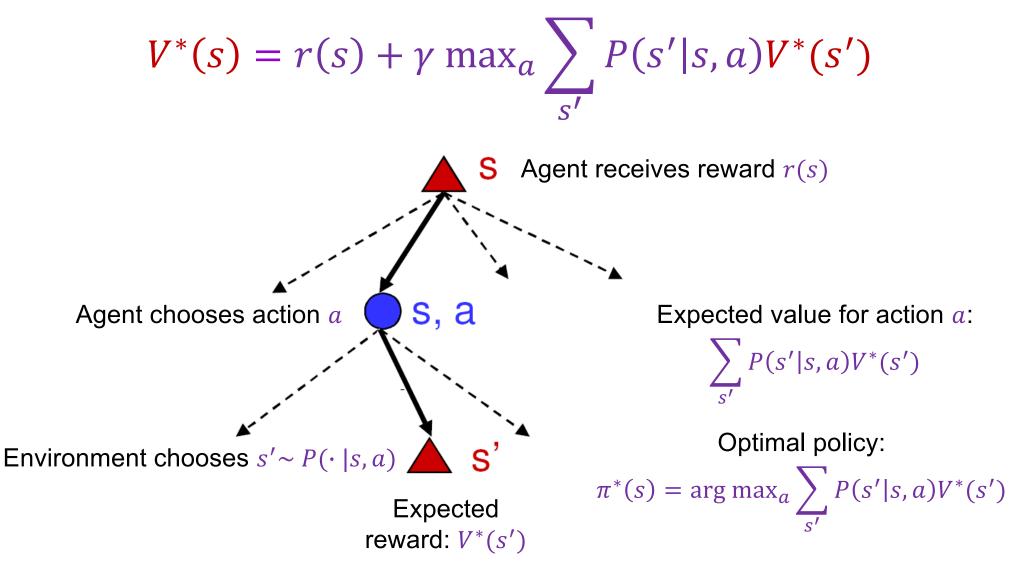
with
$$a_t = \pi(s_t), s_{t+1} \sim P(\cdot | s_{t,a_t})$$

 The optimal value of a state is the value achievable by following the best possible policy:

$$V^*(s) = \max_{\pi} \mathbb{E}\left[\sum_{t \ge 0} \gamma^t r(s_t) \mid s_0 = s, \pi\right]$$

The Bellman equation

• Recursive relationship between optimal values of successive states:



The optimal policy

- Expression using the state value function: $\pi^*(s) = \arg \max_a \sum_{s'} P(s'|s, a) V^*(s')$
 - To use this in practice, we need to know the transition model
- It is more convenient to define the value of a state-action pair:

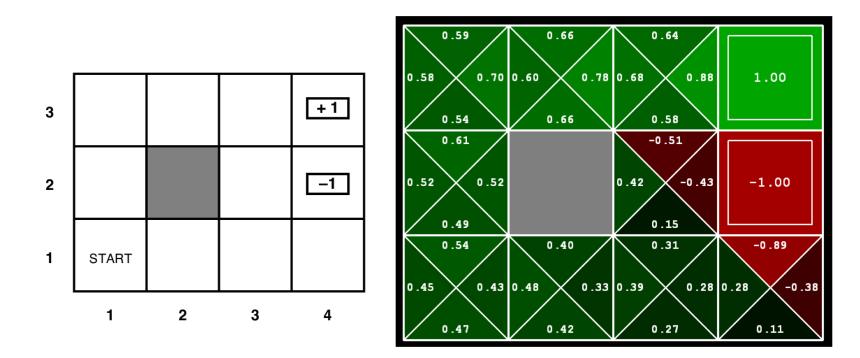
$$Q^{\pi}(s,a) = \mathbb{E}\left[\sum_{t\geq 0} \gamma^t r(s_t) | s_0 = s, a_0 = a, \pi\right]$$

Q-value function

- The optimal Q-value: $Q^*(s,a) = \max_{\pi} \mathbb{E}\left[\sum_{t \ge 0} \gamma^t r(s_t) \mid s_0 = s, a_0 = a, \pi\right]$
- What is the relationship between V*(s) and Q*(s, a)?
 V*(s) = max_aQ*(s, a)
- What is the optimal policy?

 $\pi^*(s) = \arg \max_a Q^*(s, a)$

$$Q^*(s, a) = \max_{\pi} \mathbb{E}\left[\sum_{t \ge 0} \gamma^t r(s_t) \mid s_0 = s, a_0 = a, \pi\right]$$
$$\pi^*(s) = \arg\max_a Q^*(s, a)$$



Bellman equation for Q-values

$$V^*(s) = \max_a Q^*(s, a)$$

- Regular Bellman equation: $V^*(s) = r(s) + \gamma \max_a \sum_{s'} P(s'|s, a) V^*(s')$
- Bellman equation for Q-values: $Q^*(s,a) = r(s) + \gamma \sum_{s'} P(s'|s,a) \max_{a'} Q^*(s',a')$ $= \mathbb{E}_{s' \sim P(\cdot|s,a)} [r(s) + \gamma \max_{a'} Q^*(s',a')|s,a]$

Finding the optimal policy

• The Bellman equation is a constraint on Q-values of successive states:

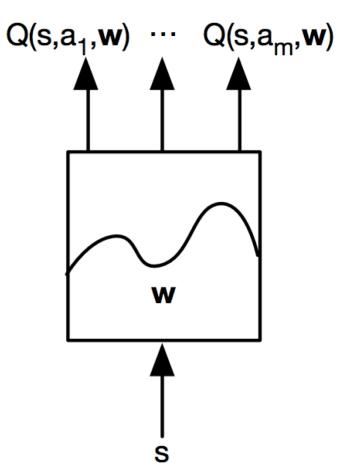
 $Q^*(s,a) = \mathbb{E}_{s' \sim P(\cdot|s,a)} \left[r(s) + \gamma \max_{a'} Q^*(s',a') | s,a \right]$

- We could think of Q*(s, a) as a table indexed by states and actions, and try to solve the system of Bellman equations to fill in the unknown values of the table
- **Problem:** state spaces for interesting problems are huge
- **Solution:** approximate Q-values using a parametric function:

 $Q^*(s,a) \approx Q_w(s,a)$

Deep Q-learning

 Train a deep neural network to estimate Q-values:



Source: D. Silver

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, M. Riedmiller, <u>Human-level control through deep reinforcement learning</u>, *Nature* 2015 $Q^*(s,a) = \mathbb{E}_{s' \sim P(\cdot|s,a)} \left[r(s) + \gamma \max_{a'} Q^*(s',a') | s,a \right]$

 Idea: at each iteration *i* of training, update model parameters *w_i* to "nudge" the left-hand side toward the right-hand "target":

 $y_i(s,a) = \mathbb{E}_{s' \sim P(\cdot|s,a)} \left[r(s) + \gamma \max_{a'} Q_{w_{i-1}}(s',a') | s, a \right]$

• Loss function:

 $L_i(w_i) = \mathbb{E}_{s,a \sim \rho} \left[(y_i(s,a) - Q_{w_i}(s,a))^2 \right]$ where ρ is a behavior distribution

Deep Q-learning

- Target: $y_i(s, a) = \mathbb{E}_{s' \sim P(\cdot|s, a)} \left[r(s) + \gamma \max_{a'} Q_{w_{i-1}}(s', a') | s, a \right]$
- Loss: $L_i(w_i) = \mathbb{E}_{s,a \sim \rho} \left[(y_i(s,a) Q_{w_i}(s,a))^2 \right]$
- Gradient update:

 $\nabla_{w_i} L(w_i) = \mathbb{E}_{s,a\sim\rho} \left[(y_i(s,a) - Q_{w_i}(s,a)) \nabla_{w_i} Q_{w_i}(s,a) \right]$ = $\mathbb{E}_{s,a\sim\rho,s'} \left[(r(s) + \gamma \max_{a'} Q_{w_{i-1}}(s',a') - Q_{w_i}(s,a)) \nabla_{w_i} Q_{w_i}(s,a) \right]$

SGD training: replace expectation by sampling *experiences* (*s*, *a*, *s*') using behavior distribution and transition model

Deep Q-learning in practice

- Training is prone to instability
 - Unlike in supervised learning, the targets themselves are moving!
 - Successive experiences are correlated and dependent on the policy
 - Policy may change rapidly with slight changes to parameters, leading to drastic change in data distribution
- Solutions
 - Freeze target Q network
 - Use experience replay

Experience replay

- At each time step:
 - Take action *a_t* according to *epsilon-greedy policy*
 - Store experience (s_t, a_t, r_{t+1}, s_{t+1}) in replay memory buffer
 - Randomly sample *mini-batch* of experiences from the buffer

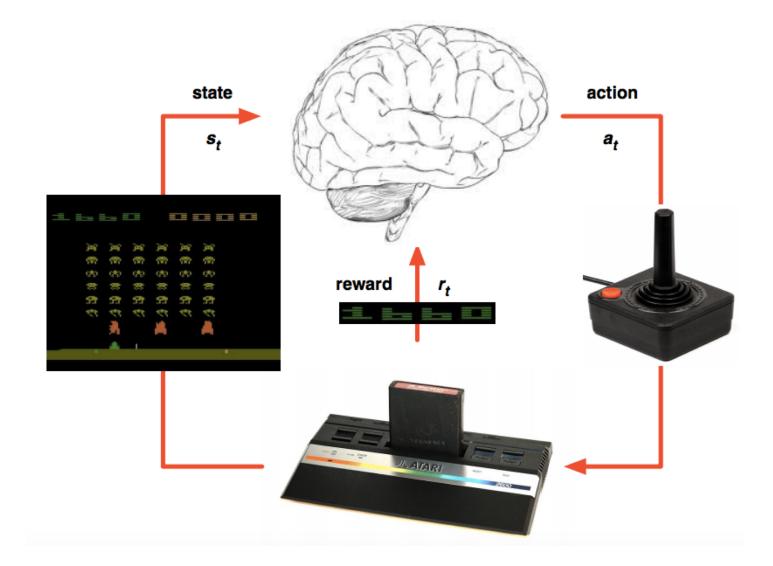
$$\begin{array}{c} s_{1}, a_{1}, r_{2}, s_{2} \\ s_{2}, a_{2}, r_{3}, s_{3} \\ s_{3}, a_{3}, r_{4}, s_{4} \\ \dots \\ s_{t}, a_{t}, r_{t+1}, s_{t+1} \end{array}$$

Experience replay

- At each time step:
 - Take action *a_t* according to *epsilon-greedy policy*
 - Store experience (s_t, a_t, r_{t+1}, s_{t+1}) in replay memory buffer
 - Randomly sample *mini-batch* of experiences from the buffer
 - Update parameters to reduce loss:

 $L_{i}(w_{i}) = \mathbb{E}_{s,a,s'} \left[(r(s) + \gamma \max_{a'} Q_{w_{i-1}}(s',a') - Q_{w_{i}}(s,a))^{2} \right]$

Keep parameters of *target network* fixed, update every once in a while



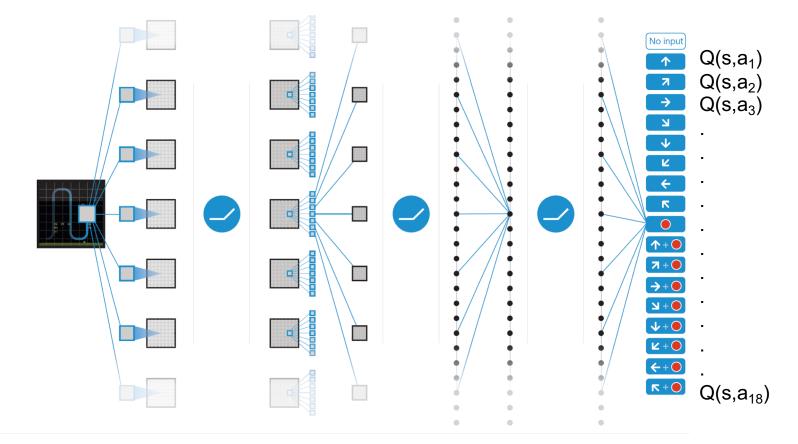
V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, M. Riedmiller, <u>Human-level control through deep reinforcement learning</u>, *Nature* 2015

Experience Replay

Algorithm 1 Deep Q-learning with Experience Replay

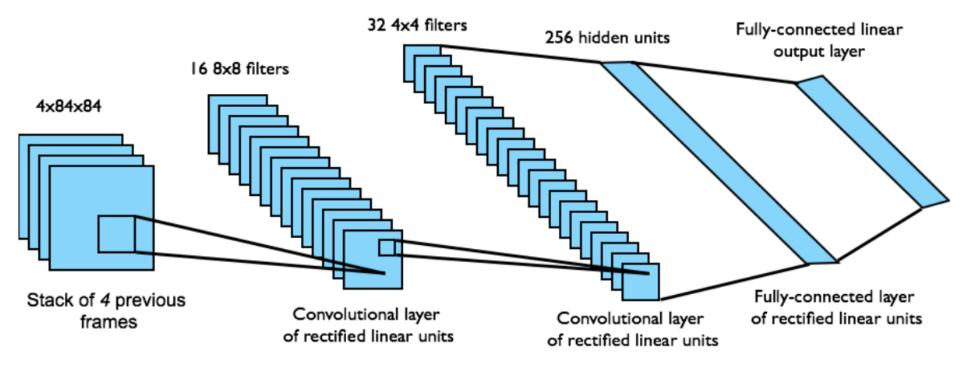
Initialize replay memory \mathcal{D} to capacity N Initialize action-value function Q with random weights for episode = 1, M do Initialise sequence $s_1 = \{x_1\}$ and preprocessed sequenced $\phi_1 = \phi(s_1)$ for t = 1, T do With probability ϵ select a random action a_t otherwise select $a_t = \max_a Q^*(\phi(s_t), a; \theta)$ Execute action a_t in emulator and observe reward r_t and image x_{t+1} Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$ Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in \mathcal{D} Sample random minibatch of transitions $(\phi_j, a_j, r_j, \phi_{j+1})$ from \mathcal{D} Set $y_j = \begin{cases} r_j & \text{for terminal } \phi_{j+1} \\ r_j + \gamma \max_{a'} Q(\phi_{j+1}, a'; \theta) & \text{for non-terminal } \phi_{j+1} \\ Perform a gradient descent step on <math>(y_j - Q(\phi_j, a_j; \theta))^2$ according to equation 3 end for end for

- End-to-end learning of Q(s, a) from pixels s
- Output is Q(s, a) for 18 joystick/button configurations
- Reward is change in score for that step

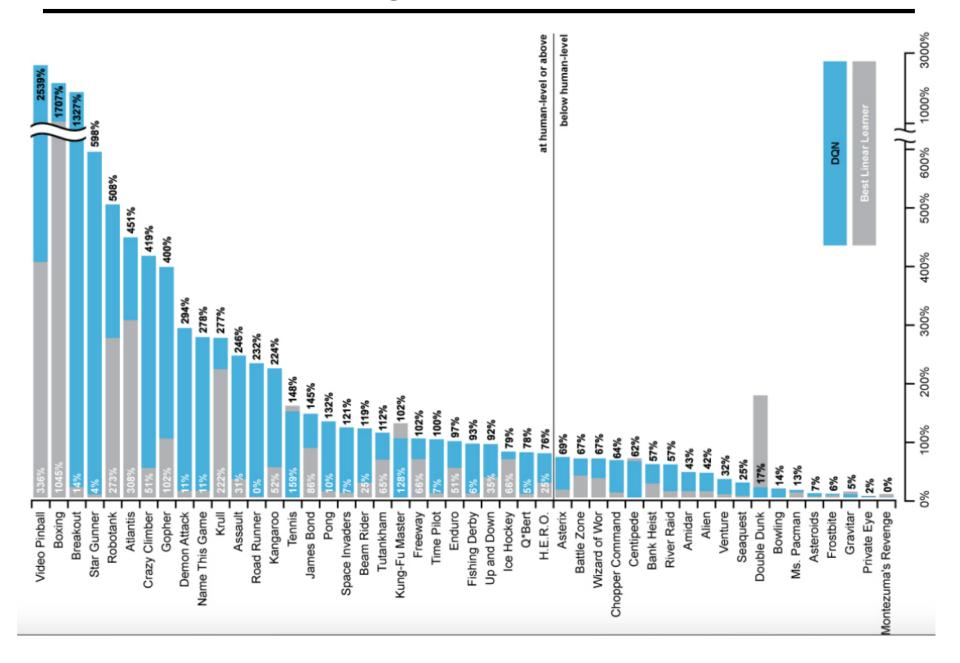


Deep Q-Network (DQN)

- Input state is stack of raw pixels (grayscale) from last 4 frames
- Network architecture and hyperparameters fixed for all games



Deep Q-Network (DQN)



Breakout demo

https://www.youtube.com/watch?v=TmPfTpjtdgg