
Formalism: Markov Decision Processes
• Components:

• States !, beginning with initial state !0
• Actions #
• Transition model $(!′ | !, #)

– Markov assumption: the probability of going to
!′ from ! depends only on ! and # and not on
any other past actions or states

• Reward function *(!)
• Policy p(!): the action that an agent takes in any

given state
• The “solution” to an MDP

Example MDP: Grid world

!(#) = −0.04 for
every non-terminal
state

Transition model:

0.8 0.10.1

Source: P. Abbeel and D. Klein

Example MDP: Grid world
• Goal: find the best policy

Source: P. Abbeel and D. Klein

Example MDP: Grid world
• Optimal policies for various values of !(#):

Rewards of state sequences
• Suppose that following policy ! starting in

state "# leads to a sequence "#, "%, "&, …
• The cumulative reward of the sequence is
∑)*# +("))

• Problem: state sequences can vary in length
or even be infinite

• Solution: redefine cumulative reward as
sum of rewards discounted by a factor .:

+ "# + . + "% + .&+ "& + .0+ "0 +⋯
=3

)*#
.) +(")) , 0 < . ≤ 1

Discounting
! "# + % ! "& + %'! "' + %(! "(+⋯

=+
,-#

%, !(",)

• Cumulative reward is bounded by 0123
&45

• Helps algorithms converge

Image source: P. Abbeel and D. Klein

Value function
• The value function !"($) of a state $ w.r.t.

policy & is the expected cumulative reward of
following that policy starting in $:

!"($) = ()
*+,

-* .($*) | $, = $, &

with 1* = & $* , $*23~5 6 $*,1*
• The optimal value of a state is the value

achievable by following the best possible
policy:

!∗($) = max" ()
*+,

-* .($*) | $, = $, &

The Bellman equation
• Recursive relationship between optimal

values of successive states:

!∗ # = % # + ' max+,
-.
/ #0 #, 2 !∗(#0)

Agent receives reward %(#)

Optimal policy:

5∗ # = arg max+,
-.
/ #0 #, 2 !∗(#0)

Agent chooses action 2

Environment chooses #0~ /(9 |#, 2)

Expected value for action 2:

,
-.
/ #0 #, 2 !∗(#0)

Expected
reward: !∗(#0)

The optimal policy
• Expression using the state value function:

!∗ # = arg max*+
,-
. #/ #, 1 2∗(#/)

• To use this in practice, we need to know the
transition model

• It is more convenient to define the value of a
state-action pair:

56(#, 1) = 7 +
89:

;8 <(#8) |#: = #, 1: = 1, !

Q-value function
• The optimal Q-value:

!∗($, &) = max, - .
/01

2/ 3($/) | $1 = $, &1 = &, 5

• What is the relationship between 6∗ $ and
!∗ $, & ?

6∗ $ = max7!∗ $, &

• What is the optimal policy?

5∗ $ = arg max7!∗ $, &

Q-value function

!∗($, &) = max, - .
/01

2/ 3($/) | $1 = $, &1 = &, 5

5∗ $ = arg max8 !∗($, &)

Bellman equation for Q-values

!∗ # = max()∗ #, +

• Regular Bellman equation:

!∗ # = , # + . max(/
01
2 #3 #, + !∗(#3)

• Bellman equation for Q-values:

)∗ #, + = , # + ./
01
2 #3 #, + max(1)∗ #′, +′

= 701~9(:|0,() , # + . max(1)∗ #′, +′ |#, +

Finding the optimal policy
• The Bellman equation is a constraint on Q-values

of successive states:
!∗($, &) =)*+~-(.|*,0) 1 $ + 3 max0+!∗ $′, &′ |$, &

• We could think of !∗($, &) as a table indexed by
states and actions, and try to solve the system of
Bellman equations to fill in the unknown values of
the table

• Problem: state spaces for interesting problems
are huge

• Solution: approximate Q-values using a
parametric function:

!∗ $, & ≈ !9($, &)

Deep Q-learning
• Train a deep neural network to estimate

Q-values:

Source: D. Silver

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, M. Riedmiller,
Human-level control through deep reinforcement learning, Nature 2015

http://hunch.net/~beygel/deep_rl_tutorial.pdf
http://www.nature.com/nature/journal/v518/n7540/pdf/nature14236.pdf

Deep Q-learning
!∗($, &) =)*+~-(.|*,0) 1 $ + 3 max0+!∗ $′, &′ |$, &

• Idea: at each iteration 8 of training, update model
parameters 9: to “nudge” the left-hand side toward
the right-hand “target”:

;: $, & =)*+~- . $, & 1 $ + 3 max0+!<=>? $@, &@ |$, &

• Loss function:

A: 9: =)*,0~B (;:($, &) − !<= $, &)D
where E is a behavior distribution

Deep Q-learning
• Target: !"($, &) =)*+~-(.|*,0) 1 $ + 3 max0+789:; $′, &′ |$, &
• Loss: =" >" =)*,0~? (!"($, &) − 789 $, &)A

• Gradient update:

∇89=(>") =)*,0~? (!"($, &) − 789 $, &) ∇89789 $, &
=)*,0~?,*+ (1 $ + 3 max0+789:; $′, &′ − 789 $, &) ∇89789 $, &

• SGD training: replace expectation by sampling experiences
($, &, $′) using behavior distribution and transition model

Deep Q-learning in practice
• Training is prone to instability

• Unlike in supervised learning, the targets
themselves are moving!

• Successive experiences are correlated and
dependent on the policy

• Policy may change rapidly with slight changes to
parameters, leading to drastic change in data
distribution

• Solutions
• Freeze target Q network
• Use experience replay

Experience replay
• At each time step:

• Take action !" according to epsilon-greedy policy
• Store experience ($", !&, '&(), $&()) in replay

memory buffer
• Randomly sample mini-batch of experiences from

the buffer

Experience replay
• At each time step:

• Take action !" according to epsilon-greedy policy
• Store experience ($", !&, '&(), $&()) in replay

memory buffer
• Randomly sample mini-batch of experiences from

the buffer
• Update parameters to reduce loss:

+, -, = /0,1,02 (' $ + 4 max1289:;< $′, !′ − 89: $, !)?

Keep parameters of target
network fixed, update every

once in a while

Deep Q-learning in Atari

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, M. Riedmiller,
Human-level control through deep reinforcement learning, Nature 2015

http://www.nature.com/nature/journal/v518/n7540/pdf/nature14236.pdf

Experience Replay

22

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 14 - May 23, 201753

Putting it together: Deep Q-Learning with Experience Replay

[Mnih et al. NIPS Workshop 2013; Nature 2015]

Deep Q-learning in Atari
• End-to-end learning of !(#, %) from pixels #
• Output is !(#, %) for 18 joystick/button configurations
• Reward is change in score for that step

Q(s,a1)
Q(s,a2)
Q(s,a3)
.
.
.
.
.
.
.
.
.
.
.
Q(s,a18)

Deep Q-Network (DQN)

Deep Q-learning in Atari
• Input state is stack of raw pixels (grayscale) from

last 4 frames
• Network architecture and hyperparameters fixed for

all games
Deep Q-Network (DQN)

Deep Q-learning in Atari

Breakout demo

https://www.youtube.com/watch?v=TmPfTpjtdgg

https://www.youtube.com/watch?v=TmPfTpjtdgg

