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Abstract

Man made indoors environments posses regularities
which can be efficiently exploited in automated model ac-
quisition by means of visual sensing. In this context we pro-
pose an approach for inferring a topological model of an
environment from images or the video stream captured by a
mobile robot during exploration. The proposed model con-
sists of a set of locations and neighbourhood relationships
between them. Initially each location in the model is repre-
sented by a collection of similar, temporally adjacent views,
with the similarity defined according to a simple appear-
ance based distance measure. The sparser representation is
obtained in a subsequent learning stage by means of Learn-
ing Vector Quantization (LVQ). The quality of the model is
tested in the context of qualitative localization scheme by
means of location recognition: given a new view, the most
likely location where that view came from is determined.

1 Introduction and Related Work

Visual sensing greatly enhances the capabilities of mo-
bile robots and their interaction with humans in a variety
of applications. Depending on the requirements of robotic
tasks different types of models are appropriate. A variety
of 2-D maps and 3-D models proposed in the past were ac-
quired by means of range and visual sensing. However even
the full availability of 3-D information and capability of re-
covering exact pose of the mobile robot does not alleviate
the difficulty of interpreting 3-D environments.

The existing models can be broadly partitioned depend-
ing on the amount of prior information about the environ-
ment and the type of model they attempt to capture. For
landmark based approaches the topology of the environ-
ment has been induced by positions of the landmarks and
the visibility regions associated with them. While the model

of landmarks is typically given, their location was either
known a-priori or obtained during exploration [14]. In most
of these instances artificial landmarks have been considered
to simplify the issues of landmark recognition and simul-
taneously enable reliable estimation of the relative pose of
the robot with respect to a landmark [3]. A nice review of
the existing techniques focusing mostly on the model based
methods can be found in [5]. In the absence of a prior en-
vironment model visual sensing has been used successfully
for the simultaneous map building and localization (SLAM)
in the context of extended Kalman filter framework. The
detection and tracking of the salient point features tied with
the structure and motion recovery techniques in a recursive
setting enabled continuous pose maintenance of the mo-
bile robot [4]. Vision-based techniques which do not use
any prior information about the environment vary depend-
ing on whether they try to recover full geometric structure
of the scene or merely the salient environmental features,
which can be subsequently recognized and used for local-
ization [7]. The focus of these techniques is predominantly
on exact localization and recovery of exact relative pose of
the robot with respect to the environment. Alternative to the
metric models are the models which represent environment
topology. Topological representations are highly desirable
since they impose a discrete structure on the otherwise con-
tinuous configuration space which often simplifies a vari-
ety of navigation tasks [9]. The task of imposing a discrete
structure on a quasi-continuous space of visual observations
requires a definition of a distance measure in the image ap-
pearance space. The existing techniques have been moti-
vated by appearance based approaches for object recogni-
tion. The main concern of the appearance based methods
for recognition is the selection of image attributes (e.g. fea-
ture vectors characterizing the salient characteristics of the
image), which could guarantee some amount of invariance
with respect to variations in pose/viewpoint, illumination,
scale and be robust with respect to partial occlusion and
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clutter. Commonly used representations are responses to
a banks of filters, multi-dimensional histograms [12], local
Fourier-transforms [13] and affine invariant feature descrip-
tors [11]. These representations in the context of mobile
robot navigation were most commonly obtained via prin-
cipal component analysis (PCA) or alternative clustering
techniques. In case of omni-directional views PCA based
techniques were applied successfully for topological model
acquisition, thanks to small variations of the image appear-
ance within a location [1, 6].

2 Approach

In our approach the nodes of the topological model rep-
resent regions in space, so called locations, represented by a
set of views. The qualitative localization scheme proposed
here, will be enabled by recognition of locations, which
loosely correspond to the regions in the robot’s configura-
tion space which are similar in their appearance. The neigh-
boring locations are typically separated by regions where
significant robot navigation decision have to be made; such
as hallway intersections, corners and doorways. We first
identify a simple image based representation and distance
metric that enables us to compare two views. Towards
this end we adopted gradient orientation histograms of the
edge map, which captures the essential appearance infor-
mation in each view. The histograms are sufficiently dis-
criminant between individual locations and also capture the
similarity between the views which are perceptually close.
The frames of the temporally sub-sampled video sequence
are partitioned and automatically labelled during the explo-
ration phase by comparing temporal distance between con-
secutive views. After obtaining a labelled set of views we
used a Learning Vector Quantization (LVQ) technique to
obtain sparser representation for each location by selecting
the representative feature vectors which best cover the class.
In the classification stage we determine given a previously
unseen view, what is the location it most likely comes from.

2.1 Measurement Stage

The task of imposing a discrete structure on a quasi-
continuous space of visual observations requires a defini-
tion of a distance measure in the image appearance space.
Given two viewsI1, I2 we denote the distance between
themd(I1, I2). In our case we exploit the constraints of
man-made environments and seek an image descriptor and
distance measure, which would suitably capture the vari-
ations we encounter. Exploiting the observation that the
majority of directions is aligned with the axes of the world
coordinate frame [10], we use the information provided by
image gradient orientation as distinguishing characteristic
of an individual location. Gathering the gradient orientation

in a histogram we obtain appearance based measure that is
stable with respect to the changes in the lighting conditions
and disambiguates different locations well. The most no-
table characteristic of this simple feature is that it properly
reflects the changes in image appearance due to portions
of the environment leaving the field of view; characteristic
which intuitively corresponds to the change of location.

In order to obtain more robust measure, the gradient ori-
entation histograms are computed only for the pixels with
the magnitude in the top4%. This empirical choice of
threshold worked well for our image database yielding the
dominant features of the environment. This is achieved by
first computing the image derivatives[Ix, Iy]T followed by
non-maximum suppression and connected component anal-
ysis. Connected component analysis generates the final
edge map and enables us to eliminate small connected com-
ponents which do not correspond to essential features of the
environment. Examples of representative views, associated
edge maps and gradient orientation histograms are in Fig-
ure 3.
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Figure 1. Locations H (left) and F (right) of
the 4th floor, their associated edge maps and
gradient orientation histograms.

In the context of indoors environments, the orientation
histograms of edge maps give us sufficient level of invari-
ance with respect to variation in pose and illuminations con-
ditions. The resulting pixels contributing to the histogram
correctly reflect the visual cues that humans use to navigate
the environment. Commonly encountered presence of cor-
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ners, doors, and bulletin boards, is properly captured by ori-
entation histogram and discriminates locations with differ-
ent appearance. Furthermore due to the rectilinear structure
and topology of man-made indoors environment, individual
locations are typically approached with some canonical ori-
entations and hence a complete rotational invariance is not
necessary. Changes in the overall lighting intensity have
virtually no effect on edge direction. Only at the far end of
the saturation scale is its effect on edge direction detection
significant. The level of intensity saturation has an effect on
edge magnitude, but we mitigate that effect by considering
only the pixels with the greatest edge strength in each in-
dividual image. This has a normalization effect since the
pixels with the greatest edge strength tend to remain the
same even if their absolute magnitudes change. Given the
fact that the histogram is computed globally over the whole
image, occlusions caused by walking people, misplaced ob-
jects have minor effect on the total histogram.

Once the gradient orientation histogram has been se-
lected as a feature, we need to determine the best way to
compare different features. Towards this end we useχ2 em-
pirical distance measure between two distributions, which is
defined in the following way

χ2(hi, hj) =
∑

k

(hi(k) − hj(k))2

hi(k) + hj(k)
(1)

wherek is the number of histogram bins. We have car-
ried out several experiments in order to test the discrimi-
natory capability of the chosen feature vector and associ-
atedχ2 distance measure. One set of experiments consisted
of collecting 140 images along 3 corridors of the4th floor
of our building (see Figure 2). The images were taken by
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Figure 2. Floor plan of the 4th floor; explo-
ration route and label associated with indi-
vidual locations labelled by hand.

still digital camera about 2 meters apart, with the orienta-
tion in the direction of mobile robot heading. In this data
set the heading direction was in most cases aligned, or per-
pendicular with the principal directions of the world co-
ordinate frame; assumption which we plan to relax in the
future. Second data set was acquired with a commercial
digital camcorder mounted on the mobile robot during the

environment exploration. The temporal and pairwise dis-
tances between the image histograms associated with indi-
vidual views are depicted in Figures 3 and 4. Note that
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Figure 3. The temporal and pairwise com-
parison of orientation histograms of images
taken by still digital camera.
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Figure 4. The temporal and pairwise compar-
ison of orientation histograms of the video
sequence.

the affinity matrix of the first image collection in Figure 3
has clear distinguishing clusters corresponding to the im-
ages collected along particular trajectory segments at lo-
cationsA, B, C, D, E, F, G, H. The clear boundaries be-
tween the clusters are due to the discontinuity in the head-
ing of the mobile robot and sudden change in the location
appearance. Note that certain sub-sequences are similar to
each other in spite of the fact that they belong to different
locations. This is not surprising given the structure of the
office like indoors environments, where some of the loca-
tions (e.g. corridors) appear very similar. Note that the tem-
poral and pairwiseχ2 distances in case of video sequences
have much smoother transitions between the clusters indi-
cating some quasi-continuity of the space of visual obser-
vations. In case of video sequence the histograms were
smoothed both spatially and temporally in order to elimi-
nate some of the aliasing effects of the digital camcorder.
As an additional processing step we have subtracted the lo-
cal histogram mean, providing some normalization to the
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histogram data. Figure 4 depicts the affinity matrix for2800
frames long video sequence taken while the robot was trav-
elling from locationsH → G → F → E. The sequence
was temporally subsampled by factor of10 and spatially
subsampled by factor of 1 (240 × 320) . Both the temporal
distances and the affinity matrices reveal the fact that image
orientation histogram indeed captures well the appearance
similarity of different locations. In order to obtain sparser
representation for each location in terms of fewer number of
views and consequently solve the localization problem we
carry out an additional clustering stage.

2.2 Learning phase

Figures 3 and 4 demonstrate clear presence of individual
clusters corresponding to different spatial locations. The as-
signment of individual views to clusters in our case can be
naturally induced from the temporal relationships acquired
during exploration. We have examined two different meth-
ods for initial label assignment; automatic and by hand and
obtained comparable recognition results which we report in
the following section. The automatic label assignment was
obtained by searching for the peaks in temporal histogram
distance plot. First coarse peaks were detected and further
refined using an adaptive threshold and the minimum sepa-
ration distance criterion, yielding a set of dominant peaks.
Note that in Figures 3 and 4 the dominant peaks are quite
distinguishable, clearly separating images associated with
the individual locations. The goal of the learning stage in
our case is to obtain representation for each class in terms
of smaller number of prototype views.

For this purpose we have chosen Learning Vector Quan-
tization technique (LVQ) which is well established in pat-
tern recognition field. It is attractive due to its simplicity,
effectiveness, and the fact that there is an existing imple-
mentation that meets our needs. The LVQ examines the data
represented as vectorsxi ∈ R

n and in an iterative fashion
builds a set of prototype vectors, calledcodebookvectors,
that represent different regions in the n-dimensional feature
space. Initially, the algorithm chooses a set of prototype
vectors to represent the data. LVQ defines decisions sur-
faces between competing classes which are piece-wise lin-
ear hyperplanes. Given an input samplexi ∈ R

n the closest
codebook vectormc is adjusted according to the following
update rule:

mc(t + 1) = mc(t) ± α(t)(xi − mc(t)) (2)

wherexi is the sample input andmc(t) represents the clos-
est codebook at stept of the iteration. The sign± of the
update depends of whetherxi belongs to the same class as
mc or not. As a result LVQ represents the final set of clus-
ters with a small number of codebook vectors which are
properly placed in each zone of the feature space in such

a way that the decision borders between the zones are ap-
proximated by the nearest neighbour rule.

The most notable difference between the existing appli-
cations of LVQ and our problem was the use of the distance
measure. In the previously encountered cases the applica-
tions used the Euclidean distance between the feature vec-
tors for the distance computation. In spite of the fact thatχ2

statistics is not a metric (triangle inequality does not hold),
we chose to use it as our distance measure due to its good
discrimination characteristics [2].

We used the existing implementation of LVQPAK pack-
age produced by the Laboratory of Computer and Informa-
tion Science at the Helsinki University of Technology [8].
The number of codebook vectors for each class is deter-
mined in proportion to the prior probabilities of individ-
ual classes. After the initial prototype vectors are created,
they are refined using one of the heuristic approaches pro-
posed by Kohonen [8]. The refinement algorithm attempts
to minimize distances between the original data vectors
and the prototype vectors by removing vectors from over-
represented groups and adding vectors to groups that are
under-represented. The number of resulting prototypes var-
ied depending on the size of the exemplar set and variability
in the appearance within a location. The number of code-
book vectors assigned to each class significantly affects the
recognition performance. As the number of prototype vec-
tors becomes small the ability of the system to produce cor-
rect results diminishes.

2.3 Recognition phase

After generating prototype histograms corresponding to
individual locations the new images were classified using
nearest neighbour test. Given a new image, the histogram
h was generated and compared usingχ2 distance to each of
the prototype vectors generated by LVQ . Computing dis-
tances to the nearest neighbourh1st and the second closest
vectorh2nd belonging to a different class, we obtain a con-
fidence level defined as

Cχ =
χ2(h, h2nd)
χ2(h, h1st)

.

The confidence level quantifies the reliability of the classifi-
cation. If the confidence level is close to 1 (say 1-1.5), then
the two distances are close enough indicating that the clas-
sification is not reliable. In our experience, confidence level
greater than 1.6 was considered to be accurate. In case the
classification was achieved with a low confidence the clas-
sification was further refined by comparing sub-images of
the new image and the images in the database closest to the
vectors in the database.
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global sub-image
magnitude% 6% 4% 6% 4%

images 91.12 92.35 92.37 95.40

Table 1. Recognition rates for the first data
set of 185 images; global and sub-image
histograms recognition strategies are com-
pared.

3 Experimental results

The experimental results were carried out using several
data sets acquired by both still digital camera and video
camcorder. The initial data set of 185 images was taken at
7 different locationsA − F in Figure 2, the number of im-
ages associated with individual locations varied between 7 -
20 per location. After histogram computation images were
assigned initial labels corresponding to different locations.
Approximately 5% of histograms was randomly selected to
act as testing set. The remaining images were used in the
learning stage. This process was repeated 100 times, each
time recording the percentage of correctly classified images.
The number of resulting codebook vectors varied between
5 - 11 depending of the variation encountered within the
class.

Sub-image comparison Once the confidence level was
below the defined threshold the classification was refined
by comparing sub-images of the new view with the sub-
images of the nearest neighbours. We have considered
five sub-images (one in the center and four quarters of the
original image) to do the comparison. An example of a
wrong classification reflected by low confidence level and
re-classification using sub-image comparison is in Figure 5.
Histograms of the test sub-images were generated and com-
pared with the histograms of the nearest neighbours using
χ2 distance. The final classification was then based on the
median of these distances. Using this additional test led
to a slight improvement in the overall recognition rate as
reported in Table 1. The accuracy of the recognition is re-
ported as a function percentage of pixels which contributed
to the unnormalized gradient orientation histogram.

Video Clustering Due to the larger size of the video data
set, the training and testing was performed slightly differ-
ently in this case; 50 % of the examples were selected in the
training phase and the remaining 50 % were used in test-
ing. We varied the initial number of codebook vectors and
recorded the overall accuracy of recognition as this number
varied. The total recognition rates for the entire sequence
are in Table 2. Examples of representative views from the

Figure 5. Example of an image from location
F (left), misclassified as one from location E
(middle) and then re-classified correctly as F
(right) using sub-image comparison.

% of initial prototypes 10 % 20 % 30 %
video 84.17 % 92.81 % 99.28 %

Table 2. Recognition rates for the video se-
quences while varying the percentage of the
initial number of prototype vectors.

entire data set covering larger number of locations are re-
ported in Figure 6. The figure depicts the associated images
of the first three prototype vectors from each class. Note
that the resulting prototypes provide good coverage for the
class.

4 Conclusions

In the current stage the experiments have been carried
out using purely image appearance data, where the appear-
ance was characterized by a simple gradient orientation his-
togram. Both the clustering experiments and the location
recognition demonstrate promising performance. The most
commonly encountered misclassification can be in many
instances resolved by further sub-image comparison. We
are currently investigating alternative image based repre-
sentations and evaluating the performance of the method in
the environment, which is both larger in scale, represented
in terms of larger number of locations and exhibits bigger
variations in image appearance. In addition to sub-image
comparison methods we also integrating the temporal rela-
tionships between the views in the recognition phase. The
resulting representation is appealing and correctly captures
the notion of the location. We are currently using only vi-
sual data and assume in the model acquisition stage that
each location has been visited exactly once. Detecting cy-
cles requires an adoption of more elaborate inference pro-
cedure, which we are currently pursuing. If desired, given a
set of views associated with each location, additional level
of detail or geometric information can be computed from
the representative views.
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Figure 6. Examples of prototype vec-
tors associated with individual locations
A, B, C, D, E, F, G. Only first three prototype
views are depicted.

Acknowledgments

This work is supported by NSF grant IIS-0118732.

References

[1] M. Artac, M. Jogan, and A. Leonardis. Mobile robot
localization using an incremental eigenspace model.
In IEEE Conference of Robotics and Automation,
pages 1025 – 1030, 2002.

[2] P. Barber. Image-based localization for mobile robot
navigation. Master’s thesis, George Mason University,
Department of Computer Science, 2002.

[3] A. Briggs, D. Scharstein, and S. Abbott. Reliable mo-
bile robot navigation from unreliable visual cues. InIn
Fourth International Workshop on Algorithmic Foun-
dations of Robotics, New Hampshire, 2000.

[4] A. Davidson and D. Murrray. Simultaneous local-
ization and map building using active vision.IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, 24(7):865–880, 2002.

[5] G. DeSouza and A. Kak. Vision for mobile robot
navigation: A survey.IEEE Transactions of Pattern
Recognition and Machince Intelligence, 24(2), 2002.

[6] J. Gaspar, N. Winters, and J. Santos-Victor. Vision-
based navigation and environmental representations
with an omnidirectional camera.IEEE Transactions
on Robotics and Automation, pages 777–789, Decem-
ber 2000.

[7] G. Hager and D. Kriegman. Image-based prediction
of landmark features for mobile robot navigation. In
IEEE Conference on Robotics and Automation, pages
1040–1046, 1997.

[8] T. Kohonen, J. Hynninen, J. Kangas, J. Laaksonen,
and K. Torkkola. LVQPAK - the learning vector
quantization program package. Technical Report TR
A30, Helsinki University of Technology, Laboratory
of Computer and Information Science, FIN-02150 Es-
poo, Finland, 1996.
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