
CS483 Design and Analysis of Algorithms

Lectures 4-5 Randomized Algorithms

Instructor: Fei Li

lifei@cs.gmu.edu with subject: CS483

Office hours: STII, Room 443, Friday 4:00pm - 6:00pm or by
appointments

Course web-site:
http://www.cs.gmu.edu/∼lifei/teaching/cs483 fall08/

Figures unclaimed are from books “Algorithms” and “Introduction
to Algorithms”

1 / 28



Announcements

1 Assignment 3 is updated (with 2 more questions).

2 Lecture note 3 is updated.

3 Assignment 3 is due on September 24, next Wednesday.

4 Solutions of the first 3 assignments will be given in class
(September 24). Thus, late submission will not be accepted.
Please inform your classmates.

5 Regarding to Assignment 4 to Assignment 8: Each assignment
deserves 6 points.

2 / 28



Chapter 5 of CLRS — Probabilistic Analysis and
Randomized Algorithms

1 Example

2 Indicator Random Variables

3 Probabilistic Analysis

4 Randomized Algorithms

3 / 28



Example — Hiring Problem

Need an office assistant and minimize the cost

a. Agency sends one candidate every day — pay Ci

b. Interview the person, either hire him/her (and fire the old
one), or keep old one — pay Ch � Ci

c. Always want the best person — hire if interviewee is better
than current person

Solution

?

4 / 28



Example — Hiring Problem

function hire(n)

best = 0;

for (i = 1 to n)
interview candidate i;
if i is better than best

best = i;
hire i;

m people hired. Total cost

n · Ci + m · ch

Worst-case cost: ?
Best-case cost: ?

5 / 28



Probabilistic Analysis

function hire(n)

best = 0;

for (i = 1 to n)
interview candidate i;
if i is better than best

best = i;
hire i;

m people hired. Total cost

n · Ci + m · ch

Average-case cost

1 Assume applicants come in random order
2 Each permutation of applicants is equally likely

6 / 28



Probabilistic Analysis versus Randomized Algorithms

1 Randomness internal to the algorithm or not

2 Input distribution is known or not

(CLSR 5.1-3)

A Random-Number-Generator outputs 1 with some
probability p and 0 with probability 1− p, where 0 < p < 1.
You do not know p.

Give an algorithm that uses Random-Number-Generator as a
subroutine, and returns an unbiased answer, returning 0 with
probability 1/2 and 1 with probability 1/2

What is the running time of your algorithm?

7 / 28



Probability Review — Indicator Random Variable

1 Indicator variable associated with event A in sample space
{H, T}. It converts between probabilities and expectations.

I{A} =

{
1, if A occurs,
0, otherwise.

2 X is a random variable in a sample space {H, T}. XH is the
expected number of H in flipping coins

XH = I{X = H} =

{
1, if H occurs,
0, otherwise.

E [XH ] = E [I{X = H}]
= 1 · Pr{H}+ 0 · Pr{T}
= 1 · (1/2) + 0 · (1/2)

= 1/2

8 / 28



Probability Review — Indicator Random Variable

1 Indicator variable associated with event A in sample space
{H, T}. It converts between probabilities and expectations.

I{A} =

{
1, if A occurs,
0, otherwise.

2 X is a random variable in a sample space {H, T}. XH is the
expected number of H in flipping coins

XH = I{X = H} =

{
1, if H occurs,
0, otherwise.

E [XH ] = E [I{X = H}]
= 1 · Pr{H}+ 0 · Pr{T}
= 1 · (1/2) + 0 · (1/2)

= 1/2

9 / 28



Probability Review — Indicator Random Variable

1 Indicator variable associated with event A in sample space
{H, T}. It converts between probabilities and expectations.

I{A} =

{
1, if A occurs,
0, otherwise.

2 X is a random variable in a sample space {H, T}. XH is the
expected number of H in flipping coins

XH = I{X = H} =

{
1, if H occurs,
0, otherwise.

E [XH ] = E [I{X = H}]
= 1 · Pr{H}+ 0 · Pr{T}
= 1 · (1/2) + 0 · (1/2)

= 1/2

10 / 28



Probability Review
Lemma

Given a sample space S and an event A in the sample space S, let XA = I{A} (XA is
an indicator random variable). Then E [XA] = Pr{A}.

Proof.

By the definition of an indicator random variable and the definition of expected value,
we have

E [XA] = E [I{A}]
= 1 · Pr{A}+ 0 · Pr{Ā}
= Pr{A}

Linearity of expectation

E [X + Y ] = E [X ] + E [Y ]

Let Xi = I{the ith flip results in event H}
Let X be the random variable denoting the total number of heads in n coin flips

X = ?
n∑

i=1

Xi

E [X ] = ? E [
n∑

i=1

Xi ] =
n∑

i=1

E [Xi ] =
n∑

i=1

1/2 = n/2

11 / 28



Practice — Hiring Problem

Let Xi be the indicator variable associated with the event that ith
candidate is hired

Xi = I{candidate i is hired} =

{
1, if candidate i is hired,
0, otherwise.

Let X be the random variable whose value equals the number of
times we hire a new assistant

E [X ] =
n∑

i=1

x · Pr{X = x}

X = X1 + X2 + . . . + Xn

E [Xi ] = Pr{candidate i is hired} = ?

12 / 28



Practice — Hiring Problem

E [X ] = E [
n∑

i=1

Xi ]

=
n∑

i=1

E [Xi ]

=
n∑

i=1

(1/i)

= ln n + O(1)

Theorem

Assuming the candidates are presented in a random order (i.e., we
know the distribution), algorithm HIRE has a total (expected)
hiring cost of O(ch · ln n)

13 / 28



Randomized Algorithms
Instead of assuming a distribution, we impose a distribution, which
is internal to the algorithm

function rand-hire(n)

random permutate the list of candidates;

best = 0;

for (i = 1 to n)
interview candidate i;
if i is better than best

best = i;
hire i;

Theorem

Assuming the candidates are presented in a random order (i.e., we
know the distribution), algorithm RAND-HIRE has a total expected
hiring cost of O(ch · ln n)

14 / 28



Producing a Uniform Random Permutation

Definition

A uniform random permutation is one in which each of the n!
possible permutations are equally likely

Definition

Given a set of n elements, a k-permutation is a sequence
containing k of the n elements. There are n!

(n−k)! such
k-permutations

15 / 28



Producing a Uniform Random Permutation

Definition

A uniform random permutation is one in which each of the n!
possible permutations are equally likely

Definition

Given a set of n elements, a k-permutation is a sequence
containing k of the n elements. There are n!

(n−k)! such
k-permutations

function permutate-by-sorting(A)

n = length[A];

for i = 1 to n
P[i ] = RANDOM(1, nˆ3); Choose a number between 1 and n^3

sort A, using P as sort keys;

return A;
16 / 28



Producing a Uniform Random Permutation

function permutate-by-sorting(A)

n = length[A];

for i = 1 to n

P[i ] = RANDOM(1, nˆ3); Choose a number between 1 and n^3

sort A, using P as sort keys;

return A;

Lemma

Procedure permutate-by-sorting produces a uniform random permutation of the
input, assuming that all priorities are distinct.

Proof.

?

What is the running time?

17 / 28



Background: Mathematical Induction
Theorem

Principle of Mathematical Induction. Let P be a property of positive integer such
that:

1 Base case: P(1) is true; and

2 Induction step: If P(n) is true, then P(n + 1) is true.

Then P(n) is true for all positive integers.

Exercise

Prove that the sum of the n first odd positive integers is n2, i.e.,
1 + 3 + 5 + . . . + (2 · n − 1) = n2

Proof.

?

Exercise

Find the largest number R(n) of regions in which the plane can be divided by n
straight lines.

Proof.

?

18 / 28



Background: Mathematical Inductions

1 Generalization of the base case.

Exercise

Prove that 2 · n + 1 ≤ 2n, for n ≥ 3.

2 Strong form of mathematical induction.

Theorem

Let P be a property of positive integers such that

1 Base case: P(1) is true, and

2 Induction step: If P(k) is true for all 1 ≤ k ≤ n, then P(n + 1) is true.

Then P(n) is true for all positive integers.

Exercise

Prove that every integer n ≥ 2 is prime or a product of primes.

Proof.

?

19 / 28



Background: Mathematical Inductions

1 Generalization of the base case.

Exercise

Prove that 2 · n + 1 ≤ 2n, for n ≥ 3.

2 Strong form of mathematical induction.

Theorem

Let P be a property of positive integers such that

1 Base case: P(1) is true, and

2 Induction step: If P(k) is true for all 1 ≤ k ≤ n, then P(n + 1) is true.

Then P(n) is true for all positive integers.

Exercise

Prove that every integer n ≥ 2 is prime or a product of primes.

Proof.

?

20 / 28



Background: Loop Invariant Proof

We use loop invariant to help us understand why an algorithm is correct. We must
show three things about a loop invariant:

1 Initialization. It is true prior to the first iteration of the loop.

2 Maintenance. If it is true before an iteration of the loop, it remains true before
the next iteration.

3 Termination. When the loop terminates, the invariant gives us a useful property
that helps show that the algorithm is correct. This property is perhaps the most
important one, since we are using the loop invariant to show correctness. It also
differs from the usual use of mathematical induction, in which the inductive step
is used infinitely; here, we stop the “induction” when the loop terminates.

21 / 28



Producing a Uniform Random Permutation

Definition

A uniform random permutation is one in which each of the n! possible permutations
are equally likely

Definition

Given a set of n elements, a k-permutation is a sequence containing k of the n
elements. There are n!

(n−k)!
such k-permutations

function rand-in-space(A)

n = length[A];

for i = 1 to n
swap A[i] with A[RANDOM(i, n)];

22 / 28



Proof Using Loop Invariants

Remark

For each possible (i − 1)-permutation, the sub-array A[1, 2, . . . , i − 1] contains this

(i − 1)-permutation with probability (n−i+1)!
n!

Proof.

? Maintenance. We assume that just before the (i − 1)-st iteration, each possible

(i − 1)-permutation appears in the sub-array A[1, . . . , i − 1] with probability (n−i+1)!
n!

.
We will show that after the ith iteration, each possible i-permutation appears in the

sub-array A[1, . . . , i ] with probability (n−i)!
n!

. Incrementing i for the next iteration will
then maintain the loop invariant
(Continue)

23 / 28



Proof Using Loop Invariants

Remark

For each possible (i − 1)-permutation, the sub-array A[1, 2, . . . , i − 1] contains this

(i − 1)-permutation with probability (n−i+1)!
n!

Proof.

Let E1 denote the event in which the first i − 1 iterations have created the particular
(i − 1)-permutation < x1, . . . , xi−1 > in A[1, . . . , i − 1]. By the loop invariant,

Pr(E1) = (n−i+1)!
n!

. Let E2 be the event that i-th iteration puts xi in position A[i ]

Pr{E2 ∩ E1} = Pr{E2|E1} · Pr{E1}

=
1

n − i + 1
·

(n − i + 1)!

n!

=
(n − i)!

n!

24 / 28



Online Hiring Problem

Hire exactly once + Maximize the probability of hiring the best candidate
?

function online-hire(k, n)

best-score = 0;

for i = 1 to k

if score(i) > best-score

best-score = score(i);

for i = k + 1 to n

if score(i) > best-score

return i;

return n;

25 / 28



Online Hiring Problem

Hire exactly once + Maximize the probability of hiring the best candidate
?

function online-hire(k, n)

best-score = 0;

for i = 1 to k

if score(i) > best-score

best-score = score(i);

for i = k + 1 to n

if score(i) > best-score

return i;

return n;

26 / 28



Online Hiring Problem

Hire exactly once + Maximize the probability of hiring the best candidate
?

function online-hire(k, n)

best-score = 0;

for i = 1 to k

if score(i) > best-score

best-score = score(i);

for i = k + 1 to n

if score(i) > best-score

return i;

return n;

27 / 28



Analysis of Online Hiring Problem

Let S be the event we succeed in choosing the best-qualified candidate smax

Let Si be the event we succeed when smax is the i-th candidate we interviewed

Pr{S} =
n∑

i=1

Pr{Si} =
n∑

i=k+1

Pr{Si}

Let Bi be the event smax is in position i
Let Oi be the event online-hire does no choose any in a position k + 1 to i − 1

Pr{Si} = Pr{Bi ∩ Oi} = Pr{Bi} · Pr{Oi} =
1

n
·

k

i − 1

?

Pr{S} =
k

n
·

n−1∑
i=k

1

i
=

k

n
· (ln n − ln k − 1)⇒ k =

n

e

28 / 28


